
Scalability analysis of Hash Distributed A* on
commodity cluster: results on the 15-puzzle problem

Victoria Sanz (1,2), Armando De Giusti (1,2) and Marcelo Naiouf (1)
(1) III-LIDI. School of Computer Science, UNLP, Argentina

(2) CONICET. Ministry of Science, Technology and Productive Innovation, Argentina

Email:{vsanz,degiusti,mnaiouf}@lidi.info.unlp.edu.ar

Abstract—The A* algorithm is generally used to solve combi-
natorial optimization problems, but it requires high computing
power and a large amount of memory. In this sense, Hash
Distributed A* (HDA*) parallelizes A* in order to benefit from
the computing power and the accumulated memory provided by
clusters. The parallelization is done by applying a decentralized
strategy and using a hash function to distribute nodes among
processes. In this paper, we present a detailed implementation of
HDA* using MPI, which includes a parameter that determines
the number of nodes to be computed by each process per
iteration of the algorithm. The experimental work is carried
out on a commodity cluster, using the 15-puzzle as study case.
Our experimental results reveal that the included parameter
favors performance. Finally, we present a performance analysis
of HDA*, as the problem size and the number of processors
increase, which indicates that the algorithm scales well.

Keywords:Hash Distributed A*, Commodity Cluster, Scala-

bility, 15-Puzzle.

I. INTRODUCTION

In the area of Artificial Intelligence, heuristic search algo-

rithms are used as the basis to solve combinatorial optimiza-

tion problems that require finding a sequence of actions that

minimize a goal function and allow transforming an initial

configuration (which represents the problem to be solved) into

a final configuration (which represents the solution).

One of the most widely used search algorithms for that

purpose is A* [1], [2], a variant of Best-First Search, which

browses the graph that represents the state space of the

problem using a cost function f̂ to value the nodes, in order to

process the most promising paths first. To that end, function

f̂ contains known cost information of the path from the

initial node s to the current node n (ĝ), as well as heuristic

information to estimate the unknown cost of the path that

goes from the current node n to the solution node t (ĥ),

which can never overestimate the actual cost. The algorithm

is different from conventional methods because the search tree

is implicit and dynamically generated. During the process, it

keeps two data structures: one for the unexplored nodes sorted

by function f̂ (open list), and another for the already explored

nodes (closed list) used to avoid processing the same state

multiple times. In each iteration, the most promising node

(according to f̂) available on the open list is removed, it is

added to the closed list, and legal actions are applied to it

to generate successor nodes that will be added to the open

list under certain conditions (verification known as duplicate

detection). The search process continues until the node that

represents the solution is removed from the open list.

The major drawback of A* is that it requires high computing

power and a large amount of memory, as a consequence of

the exponential or factorial growth of the state space of the

problem. Therefore, over the last decades, the development of

parallel A* algorithms has been promoted which, in particular,

may benefit from the computing power and the accumulated

memory provided by clusters.

In this sense, Hash Distributed A* (HDA*) [3] parallelizes

A* by applying a decentralized strategy (i.e. each processor

has its own open and closed lists and performs a quasi-

independent search) and using a hash function to assign each

state of the problem to a single processor. In this way, when

a processor generates a node, it determines who the owner

is and transfers the node to that owner. This mechanism

allows balancing the workload and pruning duplicate nodes
(i.e. nodes representing the same state) in an absolute way,

as they are always sent to the same processor. The imple-

mentation of HDA* proposed by these authors uses MPI and

asynchronous communication. Although they carried out an

extensive experimental work on an HPC cluster with Infini-

band interconnection, for applications with different heuristic

computation time such as the domain-independent planning

and the Sliding Puzzle, the tests carried out on a conventional

cluster with Ethernet connection did not take into account the

latter application.

In this paper, we present a detailed implementation of

HDA*, which includes the LNPI (Limit of Nodes per Iteration)

parameter that determines the number of nodes to be computed

by each process per iteration of the algorithm. In this sense,

our version differs from the original algorithm, since in the

latter each process computes a single node per iteration. The

implementation was carried out using MPI and the 15-Puzzle

was selected as study case. The experimental work is focused

on analyzing the speedup and efficiency obtained by the

parallel algorithm when it is run on a cluster of multi-core

machines connected through Ethernet (a commodity cluster),

as the problem size and the number of processors increase. Our

experimental results reveal that the included parameter favors

performance. Finally, this analysis shows that the implemented

version scales well.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 221

ISBN: 1-60132-444-8, CSREA Press ©

II. RELATED WORK

So far, different authors have presented various techniques

to parallelize A*, which vary in the method used to manage

the open and closed lists and the strategy used to balance load

among processors during the execution. The technique to be

chosen will depend on the architecture and the problem to

solve [4].

The commonly used parallelization technique is known as

decentralized strategy [5], and it is based on the following:

each processor has its own local open and closed lists, and

carries out a quasi-independent search. This strategy is suitable

both for shared memory and distributed memory architectures.

However, communication among processors is needed due to

the following reasons: the search tree is generated at run time,

therefore, the workload should be distributed dynamically;

duplicate nodes can be generated by different processors and

should be pruned in order to prevent processors from per-

forming redundant work (it is possible to achieve an absolute
duplicate detection and pruning by using a hash function that

assigns each state to a particular processor); the termination

criterion should be modified because if the search is ended

when a solution is found, there will be no guarantee that such

solution is the best one; the costs of the partial solutions found

so far should be communicated in order to use them to prune

the paths that lead to suboptimal cost solutions.

The earliest parallel A* algorithms based on the decen-
tralized strategy used receiver/sender initiated load balanc-

ing algorithms [4], [5], [6], [7]. However, those techniques

cause duplicate nodes to arise on the open or closed lists

of different processors in the system, because they usually

involve carrying out a partial duplicate detection and pruning,

i.e., that procedure is performed only by the donor processor

and the recipient processor. Therefore, redundant work is

carried out by different processors, which in turn increases

the Search Overhead1 and the amount of RAM consumed

by the parallel algorithm, situation that is even worse as

more processors are used. Consequently, an absolute duplicate

detection and pruning procedure should be applied to obtain

higher performance.

In this sense, the Hash Distributed A* algorithm (HDA*) [3]

parallelizes A* by applying a decentralized strategy and using

Zobrist’s hash function [8] to assign each state of the problem

to a single processor. Thus, when a processor generates a node

that does not belong to it, it determines who the owner is

and transfers the node to that owner. This mechanism allows

balancing the workload and pruning duplicates in an absolute
way, as the nodes representing the same state are always sent

to the same processor.

The implementation of HDA* proposed by these authors

uses MPI and asynchronous communication, so the algorithm

is suitable for execution both on distributed memory and

1The Search Overhead represents the percentage of nodes that the parallel
algorithm expands in excess as compared to the sequential algorithm. It is
calculated using the formula 100x(NP/NS -1), where NP is the number of
nodes processed by the parallel algorithm and NS is the number of nodes
processed by the sequential algorithm.

shared memory architectures. To avoid congestion in the com-

munication medium caused by messages being sent containing

a single node, the algorithm uses the technique proposed in

[9], which involves packing in one message a given number of

nodes whose recipient is the same before sending the message

(in this paper, we refer to this value as LNPT, or Limit of Nodes
per Transfer).

The experimental work carried out by these authors uses

the domain-independent Fast Downward planner [10], placing

HDA* as the search mechanism. On the other hand, it uses

the 24-Puzzle problem, a specific application where processing

a state is faster, together with a disjoint pattern database
heuristic [11], [12], but they exclude the time required for

reading these data from the disc. The authors note that the

speed of processing a state significantly affects the efficiency
of the parallel search algorithm: when processing a state

is expensive, the impact of parallelization-related overheads,

such as communication and synchronization, tends to decrease.

For this reason, studying the efficiency achieved by HDA* for

various types of applications running on different architectures

is of interest.

Consequently, the authors analyze the speedup and effi-

ciency achieved by HDA* on a single, 32GB RAM multicore

machine, for planning problems. However, they do not assess

performance for the 24-Puzzle since the instances they used

exhaust RAM before finding a solution.

Additionally, the authors study the scalability of HDA*

for the applications mentioned above on a multicore cluster

with Infiniband interconnection (HPC cluster). They show that

HDA* achieves good performance and scales relatively well

for complex planning problems that require large amounts of

RAM. On the other hand, the performance obtained for the

24-Puzzle application is not as satisfactory as in the previous

case, and it rapidly degrades when increasing the number of

cores in the architecture.

Similarly, they assess the scalability of HDA* for planning

applications on a multicore cluster with Ethernet connec-

tion (commodity cluster), obtaining an almost linear relative

speedup. However, they do not evaluate the performance on

this architecture for the 24-Puzzle.

HDA* is currently interesting due to its simplicity and good

scalability. On the other hand, the Sliding Puzzle has recently

gained relevance because it is related to real problems such

as moving pallets with an automated guided vehicle in high-

density storage warehouses [13]. Also, research centers usu-

ally have clusters formed by connecting multicore machines

through conventional networks such as Ethernet. It is for all

these reasons that the study of HDA* behavior on this type

of clusters for solving the Sliding Puzzle is an open research

line.

III. HASH DISTRIBUTED A*

Hash Distributed A* (HDA*) [3] parallelizes A* based on

a decentralized strategy. It was programmed using exclusively

the MPI message passing library and asynchronous communi-

cation; therefore, it is suitable for execution both on distributed

222 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

memory as well as shared memory architectures. It uses a

hash function to assign states to processes, thus it implicitly

achieves load balancing and absolute duplicate detection (two

nodes representing the same state are sent to the same process,

which in turn checks for duplicates in its local structures).

Initially, the relevant process adds the initial node to its open

list. Then, each process carries out iterations until a global

optimal solution is reached. In each iteration:

1) It checks if one or more nodes have been received

through messages. If so, for each node received, it

carries out the duplicate detection to determine if the

node must be added to the open list or if it should be

discarded.

2) If no messages containing nodes were received, the

process selects a node from its open list (the one with

the lowest f̂ -value) and expands it, generating successor

nodes. Then, for each successor, it calculates the hash
value to identify the owner process and, if the node

belongs to another process, it sends asynchronically the

node to its owner through a message.

To reduce the communication overhead, the idea proposed

in [9] is used, which involves packing within a single message

a given number of nodes whose recipient is the same (in

this paper, this number is referred to as Limit of Nodes
per Transfer, or LNPT). The number of nodes to be packed

depends on factors such as communication medium speed and

number of processors, among others.

To obtain a uniform distribution of nodes, which is nec-

essary to achieve an effective load balancing, Zobrist’s hash
function [8] is used. On the other hand, to detect the end of

the computation, i.e., to know the state in which all processes

are idle and there are no messages in transit, Mattern’s time
algorithm [14] is used.

IV. IMPLEMENTATION OF HASH DISTRIBUTED A*

We developed our own version of the HDA* algorithm,

which is described in this section. For its implementation, the

following tools were used: MPI; asynchronous communica-

tion; non-blocking query for a message’s arrival (MPI Iprobe)

when the process is not idle, blocking query (MPI Probe)

otherwise; the termination detection algorithm proposed by

Dijkstra and Safra [15], since we opted for not increasing the

size of each work message sent with additional information2;

Zobrist’s hash function to assign nodes to processes; and

the technique proposed in [9] to package a given number of

nodes (LNPT) before sending the work message to its recipient

process.

Each process carries out an A* search locally and com-

municates with its peers for any of the following reasons:

2This algorithm is similar to Mattern’s time algorithm [14], [16]. Both are
based on the same idea of counting messages. The main difference between
them is that Dijkstra and Safra’s algorithm is based on the double wave
approach, whereas Mattern’s time algorithm is based on the single wave
approach (at the expense of increasing the amount of control information
or augmenting every message with a time stamp).

sending/receiving work messages containing nodes, send-

ing/receiving the costs of solutions found, sending/receiving

the termination token, sending/receiving termination notifica-
tion messages.

Locally, each process has its open and closed lists, which

will be empty at first, the cost of the best global solution

known so far (best solution cost), the best solution found by

the process (best solution), the data required by the termina-

tion detection algorithm, and a variable that changes its value

when the computation reaches its end (end). For the purpose

of packing several nodes in a message before sending them to

their owner, processes are equipped with a buffer for each peer

process (send buffer); each buffer will contain node records,

its physical dimension is known as LNPT (Limit of Nodes per

Transfer), and its logical dimension must be kept updated to

know the number of nodes that have been accumulated.
Although the code is the same for all processes, process 0

is in charge of: loading the initial configuration; generating

the initial node, which will be added to the open list of this

process (if the node belongs to it) or which will be sent to the

corresponding owner process; and carrying out the termination

detection, which involves sending the termination notification

to the other processes.
Each process performs a series of iterations until receiving

the termination notification; at that moment the optimal solu-

tion has been reached. In each iteration, the following stages

are carried out:

1) Work message reception stage: the process checks, in a

non-blocking manner (MPI Iprobe), if work messages
containing nodes have arrived. If so, it receives each

message and, for each node record whose cost is lower

than best solution cost, it carries out the following

actions: it allocates space in dynamic memory; it assigns

the record received to the allocated space; it performs

the duplicate detection adding the node to the open list

as appropriate.

2) Cost message reception stage: the process checks, in

a non-blocking manner (MPI Iprobe), if cost messages
containing the cost of a better solution found have

arrived. If so, it receives the messages and updates the

local variable best solution cost as appropriate. Now, if

the cost of the best open node (according to function

f̂) is at least best solution cost, the process empties

its open list since the nodes stored in it would lead to

suboptimal solutions.

3) Processing stage: the process expands at most LNPI
(Limit of Nodes per Iteration) nodes from its open list.

For each extracted node, the process checks if its cost

is at least best solution cost. If so, the process empties

the open list. Otherwise, it checks if the node represents

the solution and in that case it empties the open list

and updates best solution and best solution cost. When

the extracted node is not the solution, it is added to

the closed list, it is expanded (i.e., successor nodes
are generated) and then, for each successor, the Zobrist
function is calculated to determine its corresponding

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 223

ISBN: 1-60132-444-8, CSREA Press ©

owner process. When the successor belongs to this very

process, it carries out the duplicate detection and adds

the node to its open list as appropriate. Otherwise, the

process adds the node record to the send buffer for the

destination process and, if that buffer is full (i.e., it

already has LNPT nodes), it sends the work message
asynchronically.

4) Idle stage: the process goes into this stage when its

open list is empty. If a new solution was found in

the processing stage, the process sends the solution

cost to its peers. It then sends work messages to those

destination processes whose send buffer contains nodes

that were not communicated. Finally, it remains wait-

ing (MPI Probe) for any type of message: (1) work

message, (2) cost message (3) token message, (4) ter-

mination notification message. The process ends this

stage when it has nodes on its open list, as a result

of having received a work message, or when it receives

the termination notification message. Messages of types

(1) and (2) are processed in a similar way as described

above; messages of the type (3) are processed based on

the termination detection algorithm (knowing that the

process is idle and it must send the token to the next

process or assess the termination condition in the case

of Process 0); messages of the type (4) are processed

by changing the value of variable end, and by doing so,

algorithm ends.

Each work message that is sent or received is processed

as indicated by the termination detection algorithm. Three

additional fields are added to the token message to make

solution retrieval possible: cost of the best global solution

found so far, ID of the process that found that solution,

and memory address for the solution node. Before sending

the token, the process must update these fields with its own

information if it has the best solution so far.

When computation ends, the solution is retrieved in a

distributed manner, obtaining the sequence of actions that

allows transforming the initial state into the final state.

V. EXPERIMENTAL RESULTS

Experimental tests were carried out on a cluster composed

by 7 machines connected through 1Gb Ethernet. Each machine

has two Intel Xeon E5620 processors and 32GB RAM. Each

processor has four 2.4Ghz physical cores. Each processor has

a memory controller and uses a 5.86 GT/s QPI connection.

A* and HDA* were configured to use the Jemalloc memory

allocator (with 256 arenas) and a heuristic that is a variation of

the Sum of Manhattan Distances (SMD) of the tiles with the

addition of linear conflicts detection, the detection of the last

moves applied and an analysis of corner tiles [17]. We showed

in [18] that this configuration improves the performance of A*

versus using the default memory allocator (Ptmalloc) and the

SMD heuristic.

A* was run on a single machine of the previous cluster.

HDA* was run on various cluster configurations, i.e., vary-

ing the number of machines used between 2 and 7. For all

tests, 4 processes were assigned to each machine used3 (two

processes per processor in the machine). The parameters and

values used were: number of processes/cores (8, 12, 16, 20,

24, 28), LNPI (1, 5, 50, 500) and LNPT (26, 210, 1680). The

LNPT values correspond to work messages whose size is 1KB,

8KB and 64KB, respectively.

The tests considered the 15-Puzzle instances used in [19]

whose sequential execution time is of at least 5 seconds

(numbered 3, 15, 17, 21, 26, 32, 33, 49, 53, 56, 59, 60, 66, 82,

88, 100) and six of the 10 configurations that are part of the

test suite proposed in [20] (numbered 101-106 in this paper).

Thus, the 22 configurations used present different levels of

complexity, which is measured in terms of the number of

nodes processed by A*, and varies between 1 and 103 million

processed nodes.

We have selected the instances mentioned above because

they are solvable on a single 32GB RAM machine. Serial

runtimes can not be measured for hard problems, for example

Korf’s 24-puzzle instances, using our architecture because A*

exhausts RAM before finding a solution. The same problem

arises when running HDA* on a single 32GB RAM multicore

machine for those instances [3]. While it may be possible

to solve some Korf’s 24-puzzle instances on our cluster and

measure relative speedup and efficiency as in [3], as future

work we intend to analyze the scalability of our version

of HDA*, implemented using MPI, on a multicore machine

for the Sliding Puzzle problem, and to compare the results

achieved with those presented here and those obtained by

our optimized version of HDA* for multicore machines,

implemented using Pthreads [18], [21].

HDA* is non-deterministic, i.e., when multiple runs are

carried out using the same input data (initial and final states),

the results generated by the algorithm may be different.

For this reason, 10 tests were carried out for each cluster

configuration, initial configuration and set of parameters. The

data obtained with these 10 runs were then averaged, which

will be referred to as mean sample.

In the following sections, we analyze the impact of the

LNPI and LNPT parameters on the performance of HDA*,

and then we assess its scalability when the parameters values

that experimentally improved performance are used.

A. Limit of Nodes per Iteration (LNPI)

The LNPI parameter determines how many nodes a process

must expand per algorithm iteration, i.e., it establishes the

interval for checking the arrival of work messages and cost
messages.

To analyze the impact of this parameter on execution time,

all mean samples obtained from runs carried out for LNPT=26

(i.e., 1KB work messages) were taken; and those with the same

initial configuration and number of cores were grouped. That

3It was observed that when 8 processes per machine are used, the perfor-
mance obtained is poor. This is because each machine has a single network
controller and therefore bottlenecks are caused by network I/O; this is even
worse because services communicate through the same network.

224 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

TABLE I
SD AND CV RANGES SORTED BY LNPT

LNPT SD range (seconds) CV range

26 0.063-18.94 0.054-1.28

210 0.04-9.43 0.054-0.24

1680 0.12-9.45 0.07-0.17

is, each group contained the mean samples whose only dif-

ference among them was the LNPI parameter value. For each

group, Standard Deviation (SD) and Coefficient of Variation
(CV) of execution time were calculated, since these values

measure how much the execution time of a mean sample in

the group tends to deviate from the group mean time.

From the data obtained for LNPT=26, it was observed that

only 60% of the groups have SD values below 1, and 39%
below 0.5. Similarly, only 11% of the groups have CV values

below 0.1.

The procedure described above was also applied to mean
samples obtained from runs carried out for LNPT=210 and

LNPT=1680 (i.e., 8KB and 64KB work messages, respec-

tively).

Table I shows the ranges of SD and CV values for the

groups, sorted by the LNPT value. As it can be seen, when

work messages contain few nodes (small LNPT), the LNPI

value has a greater impact on execution time, since there is a

greater difference in the execution times of the mean samples
in each group (greater CV). The results obtained indicate that

there is a significant variation in execution time when changing

the value of the LNPI parameter among those defined (1, 5,

50 or 500), mainly for LNPT=26 and LNPT=210.

The LNPI value that improves performance depends on the

initial configuration, the number of processes and the LNPT

value.

For LNPT=26, the LNPI value that improves overall perfor-

mance is 50. The configurations that presented improvements

with LNPI=500 are some of the most complex ones (60,

88, 105, 106 and 104); however, as the number of cores

increases, the number of configurations that favored such value

decreased. The configurations that presented improvements

with LNPI=5 are some of the less complex ones (3, 21 and

49) with a large number of cores.

For LNPT=210 and LNPT=1680, performance improves

with LNPI=50 or LNPI=500. In contrast with the previous

case, there is no clear preference for either of these two values.

From the data presented above, the following can be con-

cluded:

1) When LNPT is small, processes will send numerous

work messages containing few nodes. If LNPI is set

to a very high value, processes will carry out too

much speculative work on their local nodes in each

processing stage, without adding newly arrived nodes,

increasing the Search Overhead, which is even worse

as the number of processes increases. Therefore, the

frequency of checking for message’s arrival has to be

increased (low LNPI) to allow the addition of nodes that

are among the global best ones.

2) When LNPT is large, processes will send few work
messages containing many nodes. If LNPI is set to a

high value, the number of checks for message’s arrival,

that are likely to fail, decreases. Otherwise, if LNPI is set

to a low value, performance is not affected that much

because non-blocking checks are used. No significant

variations in Search Overhead are observed with LNPI

changes.

It should be noted that setting LNPI to 1 never resulted in

improved performance. This indicates that the parameter that

was added to our own version of HDA* is indeed relevant and

an original contribution in the area.

B. Limit of Nodes per Transfer (LNPT)

The LNPT parameter indicates the maximum number of

nodes that will be included in each work message.

For the purpose of analyzing the effect of the LNPT

parameter on execution time, all mean samples obtained from

runs limiting LNPT to 26 nodes (1KB messages), 210 nodes

(8KB messages) and 1680 nodes (64KB messages) were taken.

Then, all mean samples with identical initial configuration,

number of cores and LNPI values were grouped; i.e., each

group contained mean samples whose only difference was the

value for their LNPT parameter. For each group, Standard
Deviation (SD) and Coefficient of Variation (CV) of execution

time were calculated, since these values measure how much

the execution time of a mean sample in the group tends to

deviate from the group mean time.

In general, the results obtained show that the SD for the

groups is between 0.045 and 24.37. This indicates that when

varying the LNPT parameter between the values defined, mean
samples execution times tend to deviate at most in 24.37

seconds from their group mean. It should be noted that 46.21%
of the groups has a SD value below 1, and 23.10% has a SD

value below 0.5.

On the other hand, the general CV values obtained for the

groups range from 0.019 to 1.15; i.e., the execution time of a

mean sample in the group tends to deviate between 1.9% and

115% from the group mean when the LNPT parameter changes

between the values defined. Only 24.4% of the groups have

CV values below 0.1.

Based on the high CV values, it is concluded that the

LNPT parameter affects execution time. This is because this

parameter impacts network traffic, process activity and volume

of speculative work carried out. The following can be inferred:

1) A low value of LNPT will cause processes to generate

small work messages, which increases the number of

work messages that are sent from one process to another

over the network using MPI, which in turn generates an

overhead for handling buffers associated to communica-

tions and network congestion.

2) Very high values of LNPT can also degrade performance

because, if a process packs too many nodes for a recip-

ient process, it could cause the latter’s idleness when it

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 225

ISBN: 1-60132-444-8, CSREA Press ©

TABLE II
SPEEDUP AND EFFICIENCY FOR EACH LNPT VALUE AND NUMBER OF

PROCESSES

LNPT Processes/Cores Speedup Efficiency

26 8 4.72 - 6.58 0.59 - 0.82

210 8 5.05 - 7.53 0.63 - 0.94

1680 8 3.20 - 8.26 0.40 - 1.03

26 12 6.74 - 10.31 0.56 - 0.86

210 12 6.85 - 11.79 0.57 - 0.98

1680 12 2.90 - 11.35 0.24 - 0.95

26 16 8.52 - 13.73 0.53 - 0.86

210 16 7.16 - 15.62 0.45 - 0.98

1680 16 2.15 - 14.70 0.13 - 0.92

26 20 11.07 - 17.76 0.55 - 0.89

210 20 8.57 - 20.22 0.43 - 1.01

1680 20 2.11 - 19.40 0.11 - 0.97

26 24 12.73 - 21.23 0.53 - 0.88

210 24 8.92 - 24.27 0.37 - 1.01

1680 24 1.72 - 22.71 0.07 - 0.95

26 28 13.49 - 25.16 0.48 - 0.90

210 28 8.60 - 28.86 0.31 - 1.03

1680 28 1.61 - 27.05 0.06 - 0.97

has only few nodes to process or when it is currently

idle due to lack of work. The process could also delay

the transmission of higher quality nodes (according to

f̂) than those that are currently being processed by the

recipient, which would increase the Search Overhead.

Table II summarizes the ranges for Speedup and Efficiency,

sorted by LNPT value and number of processes/cores. For each

LNPT, initial configuration and number of cores, the mean
sample with the best performance was selected (i.e., that whose

LNPI value reduces execution time).

In most of the cases, the value of LNPT that improves

execution times for each configuration and number of cores

is 210, i.e., 8KB work messages. There are some excep-

tions with some low-complexity configurations as the number

of processes scales, for which performance improved using

LNPT=26, since higher values of LNPT increased Search
Overhead. Other exceptions were observed with some of the

more complex configurations when only a few processes were

used; in these cases, the best performance was obtained with

LNPT=1680 because it produces a lower Search Overhead or

a lower load unbalancing.

The following configurations had their best performance

with LNPT=26: 21 with 12 processes; 100, 21 and 101 with

16 processes; 100, 21, 101 and 82 with 20 processes; 100, 33,

21, 101 and 82 with 24 processes; 100, 33, 21, 101, 82, 59

and 53 with 28 processes. The following configurations had

their best performance with LNPT=1680: 88, 102, 106 and

104 with 8 processes; 104 with 12 processes.

From the above, it can be concluded that, for less complex

configurations, as the number of processors increases it is

better to use smaller work messages (smaller LNPT). In

the case of more complex configurations and only a few

Fig. 1. Speedup obtained by HDA* on cluster

Fig. 2. Efficiency obtained by HDA* on cluster

processes, the best performance is occasionally obtained with

larger work messages (larger LNPT). However, empirically

for this architecture, as the workload and the number of

processes/cores scale, better performance is obtained when

using 8KB work messages (i.e., LNPT= 210).

C. Performance analysis

To analyze the performance of HDA*, for each initial

configuration and number of processes, the mean sample that

minimized resolution time was selected; that is, the sample

whose LNPI and LNPT values resulted in the best perfor-

mance.

To assess algorithm scalability, the various selected mean
samples were sorted by configuration complexity (that is,

based on the number of nodes processed by A*, which is

related to sequential execution time). In this sense, scaling the

problem means increasing the number of processed /generated

nodes. On the other hand, the architecture is scaled by increas-

ing the number of cores/processes used to solve the problem.

Figure 1 shows the speedup obtained by the mean sample
selected for each initial configuration using 8, 12, 16, 20,

24 and 28 processes/cores (4 processes per machine), while

Figure 2 shows the efficiency obtained.

After analyzing the data presented, it can be concluded

that, if workload is constant (initial configuration) and the

number of cores/processes is increased, speedup improves,

meaning that less time is required to solve the problem.

However, this improvement does usually not keep efficiency

at a constant value. The decrease in efficiency is due to factors

such as: sequential portions of the algorithm, particularly at the

beginning and at the end of the computation, synchronization,

communication, idle time, load unbalancing, increased search

overhead, and so forth.

226 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

Fig. 3. Scalability for HDA* on cluster

The superlinear speedup obtained for the configuration 102

and 8 processes was due to the fact that the parallel algorithm

processed a lower number of nodes than the sequential algo-

rithm, which is possible in this type of search algorithms[4],

[5]. The remaining cases are due to the decrease in the number

of elements in the open-list and closed-list structures, which

causes an acceleration of the operations carried out on them.

Figure 3 shows the efficiency as the workload (problem

complexity) and the number of processes/cores increase. As

it can be observed, when problem complexity is scaled and

the number of cores used is constant, the efficiency generally

improves or remains constant because the overhead is less

significant for total processing time.

Based on the results presented above, it can be concluded

that the behavior presented by the algorithm, when it is run

on cluster configurations with 4 processes per machine, is

typical of a scalable parallel system, where the efficiency can

be kept at a constant value as both problem size and number

of processors are increased.

VI. CONCLUSIONS AND FUTURE WORK

We developed our own version of HDA*, which differs

from the original version in that it includes the LNPI (Limit of
Nodes per Iteration) parameter, which indicates the maximum

number of nodes to be processed in each iteration.

The effect of the LNPI and LNPT parameters (the latter

determines the size of work messages) on performance was

analyzed. It was concluded that the LNPI value that improves

performance depends on the initial configuration, the number

of processes and the size of work messages (LNPT). It was

noted that performance never improved by processing one

node per algorithm iteration (LNPI=1), as done in the original

version, which indicates that the parameter added to our ver-

sion favors performance. On the other hand, it was established

that, empirically for this architecture, as the problem size

and number of processes/cores increase, better performance

is obtained when using 8KB work messages (LNPT=210).

Finally, algorithm scalability was assessed. The results

obtained indicate that the parallel algorithm, if run on cluster

configurations with 4 processes per machine, presents the

typical behavior of scalable parallel systems.

As for future work, we intend to compare performance

achieved and memory consumed by HDA* for shared-memory

architectures and HDA* for distributed-memory architectures,

when they are run on a multicore machine. The former

algorithm was presented in [18], [21] and implemented with

Pthreads, and the latter was introduced in this paper and

implemented with MPI. The results will allow assessing if

there are any potential benefits of converting HDA* into a

hybrid application that uses programming tools for shared

and distributed memory when the underlying architecture is

a multicore cluster.

REFERENCES

[1] Hart et al. A Formal Basis for the Heuristic Determination of Minimum
Cost Paths. IEEE Transactions on Systems Science and Cybernetics
1968; 4(2):100-107.

[2] Russel et al. Artificial Intelligence: A Modern Approach 2nd ed. Prentice
Hall: New Jersey, 2003.

[3] Kishimoto et al. Evaluation of a simple, scalable, parallel best-first
search strategy. Artificial Intelligence 2013; 195: 222-248.

[4] Kumar et al. Parallel Best-First Search of State-Space Graphs: A
Summary of Results. Proceedings of the 7th Nat. Conf. AI. AAAI:1988;
122-127.

[5] Grama et al. Introduction to Parallel Computing 2nd ed. Pearson:
Harlow, 2003.

[6] Dutt et al. Parallel A* Algorithms and Their Performance on Hypercube
Multiprocessors. Proceedings of Seventh International Parallel Process-
ing Symposium. IEEE Computer Society:1993; 797-803.

[7] Sanz et al. Parallel Optimal and Suboptimal Heuristic Search on
multicore clusters. Proceedings of The 2011 International Conference
on Parallel and Distributed Processing Techniques and Applications.
CSREA Press:2011; 673-679.

[8] Zobrist. A New Hashing Method with Application for Game Playing.
Computer Sciences Department, University of Wisconsin: Madison,
1968. Technical Report 88.

[9] Romein et al. A performance analysis of transposition-table-driven work
scheduling in distributed search. IEEE Transactions on Parallel and
Distributed Systems 2002; 13(5): 447-459.

[10] Helmert. The Fast Downward Planning System. Journal of Artificial
Intelligence Research 2006; 26: 191-246.

[11] Culberson et al. Pattern databases. Computational Intelligence 1998;
14(3): 318-334.

[12] Korf. Recent Progress in the Design and Analysis of Admissible
Heuristic Functions. Proceedings of the 4th International Symposium on
Abstraction, Reformulation, and Approximation. Springer:2000; 45-55.

[13] Gue et al. GridStore: A Puzzle-Based Storage System With Decentral-
ized Control. IEEE Transactions on Automation Science and Engineer-
ing 2014; 11(2): 429-438.

[14] Mattern. Algorithms for distributed termination detection. Distributed
Computing 1987; 2(3):161-175.

[15] Dijkstra. Shmuel Safra’s version of termination detection. Department
of Computer Sciences, University of Texas: Austin, 1987. EWD-Note
998.

[16] Mittal et al. A family of optimal termination detection algorithms.
Distributed Computing 2007; 20(2):141162.

[17] Korf et al. Finding Optimal Solutions to the Twenty-Four Puzzle. Pro-
ceedings of the Thirteenth National Conference on Artificial Intelligence
AAAI:1996; 1202-1207.

[18] Sanz et al. On the Optimization of HDA* for Multicore Machines.
Performance Analysis. Proceedings of the 2014 International conference
on Parallel and Distributed Processing Techniques and Applications.
CSREA Press:2014; 625-631.

[19] Korf. Depth-first Iterative-Deepening: An Optimal Admissible Tree
Search. Artificial Intelligence 1985; 27(1): 97-109.

[20] Brüngger. Solving Hard Combinatorial Optimization Problems in Par-
allel: Two Cases Studies. Swiss Federal Institute of Technology Zurich:
Zurich, 1998. Diss. ETH No. 12358.

[21] Sanz et al. Performance tuning of the HDA* algorithm for multicore ma-
chines. Computer Science and Technology Series.XX Argentine Congress
of Computer Science. Selected Papers. EDULP: La Plata,2015.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 227

ISBN: 1-60132-444-8, CSREA Press ©

