
Evaluating a Persistent Soft Fault Model on Preconditioned
Iterative Methods

Evan Coleman1,2, Masha Sosonkina2
1Naval Surface Warfare Center - Dahlgren Division, Dahlgren, VA, USA

2Modeling, Simulation, and Visualization Engineering Department, Old Dominion University, Norfolk, VA, USA

Abstract— The impact of soft fault errors on the GMRES
iterative method with flexible preconditioning (called FGM-
RES) is explored. In particular, a new method for simulating
soft fault errors is implemented directly in FGMRES, and
the effect of error magnitude and timing is evaluated for
the FGMRES convergence in solving of an elliptical PDE
problem on a regular grid. Two types of preconditioners
are explored, featuring an incomplete LU factorization and
an algebraic recursive multilevel solver ARMS. The experi-
ments have confirmed an intuition that, in general, injecting
perturbation-based faults at the matrix-vector operation
stage had a greater impact on the convergence rate than
doing so at the preconditioning application stage, resulting
in more cases when the iterative solver failed. In addition,
several cases of better convergence under faults in precon-
ditioning operation were observed and analyzed.

Keywords: iterative solvers, preconditioning, fault model, flexible

GMRES, pARMS

1. Introduction
Fault tolerance methods are devised to increase both

reliability and resiliency of high-performance computing

(HPC) applications on exascale platforms, in which the mean

time to failure (MTTF) is projected to decrease dramatically

due to the sheer size of the computing platform [4]. There

are many reports (e.g., [1], [4], [16]) that discuss the

expected increase in the number of faults experienced by

HPC environments. This is expected to be a more prevalent

problem as HPC environments continue to evolve towards

larger systems. As the landscape of HPC continues to grow

into one where experiencing faults during computations

is increasingly commonplace, the software used in HPC

applications needs to continue to change alongside it in order

to provide an increased measure of resilience against the

increased number of faults experienced. Typically, faults are

divided into two categories: hard faults and soft faults (see,

e.g., [6], [10]). Hard faults come from negative effects on

the physical hardware components of the system and cause

program interruption. As hardware components themselves

continue to evolve and grow both smaller and faster, they

(generally) become more prone to error, and the algorithms

and software packages that are used in HPC environments

need to be able to respond to sudden and unexpected changes

in both the quantity and quality of the physical resources that

may be available for use. The other category of faults, soft

faults, are the focus of this work. This category of failures

captures all faults that a program might experience that do

not immediately interrupt program execution. Most often,

these faults refer to some form of data corruption that is

occurring either directly inside of, or as a result of, the

algorithm that is being executed. It is possible for a program

to detect the presence of a soft fault while it is still executing.

In order to properly investigate the impact of soft errors, one

needs to select a fault model that fully encapsulates all of the

potential impacts of a soft fault, implement the selected fault

model into the algorithm to be investigated, and conduct the

necessary experiments to determine the potential impact of a

fault occurring during the selected algorithm. Typically, soft

faults have been modeled by a bit flip. This study focuses

on utilizing an arguably more general approach towards the

modeling of soft faults, and subsequently evaluating it in the

case study of the Flexible GMRES (FGMRES) [14] iterative

solver. Faults were injected as small perturbations to results

of certain mathematical operations using a modified version

of fault injection found in [6] and [8].

The rest of the paper is organized as follows: in Section 2,

a brief overview of related studies is provided, in Section 3,

details concerning the fault model that is used throughout

this work are given, in Section 4, experimental results are

provided, and in Section 5, a quick summary is presented

along with possible directions for future work.

2. Related Work
Traditionally, when performing experiments to analyze the

potential impact of soft faults upon a computing environ-

ment, researchers have relied primarily upon the injection

of bit flips into a particular portion of the routine [3], [9]. In

contrast, in the work by Elliot, Hoemmen, and Mueller [8],

[6], faults are modeled in a more general sense. These

studies choose to generalize the simulation of soft faults to

producing an incorrect solution to one of key computational

parts, such as the application of the preconditioner inside of

an iterative solver. This approach generalizes the simulation

of soft faults by disregarding the actual source of the fault

98 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

and allowing the fault injector to create as large or as small

a fault as necessary for the experiment. In the experiments

conducted in [8], [6], [7] faults are typically defined as

either a scaling of the contribution of the result of the

preconditioner application for the Message Passing Interface

(MPI) process in which a fault was injected, or a permutation

of the components of the vector result of the preconditioner

application for the MPI process in which a fault was injected.

In the taxonomy of faults given in [6], [10] soft faults are

divided into the categories of transient, sticky, and persistent.

Transient faults are defined as faults that occur only once,

sticky faults indicate a fault that recurs for some period of

time but where computation eventually returns to a fault-free

state, and persistent faults arise when the fault is permanent.

Whether the studies discussed above model faults using bit

flips or adopt a more numerical analysis style approach,

much of the previous work on the impact of silent data

corruption (SDC) has to do with modeling transient errors.

The goal of this effort is to present a fault model that

can accurately predict the impact of persistent soft faults.

Examples of scenarios that could cause a persistent fault are

a stuck bit in memory, or a hardware malfunction – such

as the Intel Pentium FDIV bug – or the incorrect copy of

data from one location to another. [6], [5], [10] The model

presented here is general enough that it can be adapted to

simulate the impact of any persistent error, including those

caused by hardware malfunction.

Traditional analysis of potential persistent type errors has

rested more in the hardware domain than in the algorithmic

domain, with analysis of both processor based faults [11],

[2] and memory based faults [15]. The impact of persistent

faults on iterative methods does not seem to have explored

to a great extent. The work presented here follows an

idea from [8], [6], [7] of disregarding the source of the

error in the simulated fault. In other words, an analytical

approach is taken as opposed to flipping random bits inside

some pertinent data structures. On the other hand, here the

simulated soft faults persist once injected as opposed to work

in [8], [6] where the faults are transient in nature.

3. Fault Model
The approach chosen was to perturb the vector result

of key computations for the single MPI process in which

a fault was injected. This perturbation-based fault model

is an adaptation of the fault model presented in [6], [8],

[7]. The fault model presented in [6], [8], and [7] focuses

exclusively on modeling transient faults; the fault model

presented here attempts to modify that approach to extend

it to persistent soft faults. In an attempt to accurately model

the impact of a persistent soft fault, a small randomized

perturbation is injected on each iteration after the fault is

modeled to occur. Adopting a characterization from [7],

faults are divided based upon their impact to the l2-norm

of the vector they are injected into. The default version of

the fault model presented here relies on the generation of

small random numbers that are added to each element of

the data structure where the fault is injected. However, the

fault model was also adapted to allow for the possibility of

either moving each element of the vector to be perturbed

further away from, or closer towards, zero. In this way, the

fault model offers some level of control over whether the

l2-norm of the vector the fault is injected into increases

or decreases. This allows observations about the effect of

perturbing the l2-norm on the general convergence of the

total algorithm. Since FGMRES works towards reducing the

l2-norm of the residual vector, modifying the l2-norm of

any of the vectors used to construct the residual vector may

affect its convergence rate by affecting the l2-norm of the

residual in a ripple-like effect [7], [14]. Hence, one of three

outcomes may occur: The iterative solver will converge at

about the same rate as without perturbation, or converge but

will take significantly longer to reach convergence, or fail

to converge entirely [8]. However, it is also possible that

the injected fault will actually cause the iterative solver to

converge in fewer iterations than without perturbations.

It is important to design the fault model in such a way that

it encapsulates the worst-case behavior that one is trying to

protect against. By modeling faults as a random perturbation,

a controlled amount of noise is added to the result of key

operation inside of the algorithm. The amount of this noise

is parameterized throughout the different experiments. How-

ever, the random nature of the faults limits the knowledge

of specific details regarding the fault that was injected.

As persistent faults are one of three types of soft faults

accounted for in the taxonomy of soft faults presented in

[6], [10], designing a fault model to accurately measure the

impact of these faults is an important endeavor. The nature of

the fault model presented here, in that every iteration inside

of the iterative solver is perturbed after the fault initially

occurs, provides a way to quantify the impacts of a potential

persistent soft fault.

3.1 FGMRES
The FGMRES algorithm, as described in [14], is provided

in Algorithm 1. FGMRES is similar in its nature to the

standard GMRES with the notable exception of allowing

the preconditioner to change in each iteration by storing the

result of each preconditioning operation (cf. matrix Zm in

line Line 10). FGMRES was selected in this study because

it is a robust, popular iterative solver which is proven to

converged under variable preconditioning, possibly resulting

from a perturbation in the preconditioning operation. Here,

such a perturbation is due to injected faults. In particular,

faults were injected at two distinct points inside of the

FGMRES algorithm; Line 1, termed here as the outer matvec
operation, and Line 3, which the application of the precondi-

tioner. In this study, the effect of injecting faults exclusively

into one of these two locations as well as into both locations

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 99

ISBN: 1-60132-444-8, CSREA Press ©

simultaneously was considered. Also, the GMRES restart

parameter (m in Algorithm 1) was taken to be 20.

Input: A linear system Ax = b and an initial guess at

the solution, x0

Output: An approximate solution xm for some m ≥ 0
1 r0 = b−Ax0, β = ||r0||2, v1 = r0/β
2 for j = 1, 2, . . . ,m do
3 zj = M−1

j vj
4 w = Azj
5 for i = 1, 2, . . . , j do
6 hi,j = w · vi
7 w = w − hi,jvi
8 end
9 hj+1,j = ||w||2, vj+1 = w/hj+1,j

10 Zm = [z1, . . . , zm], H̄m = hi,j1≤i≤j+1;1≤j≤m

11 end
12 ym = argminy||H̄my − βe1||2, xm = x0 + Zmym
13 if Convergence was reached then return xm

14 else set x0 ← xm, GoTo Line 1

Algorithm 1: FGMRES as given in [14]

3.1.1 Preconditioner
A traditional linear system is given by Ax = b, however

a transformed preconditioned system is given by M−1Ax =
M−1b, when preconditioning is applied from the left, and

AM−1y = b with x = M−1y, when preconditioning is

applied from the right. The matrix M is a nonsingular

approximation to A, and is called the preconditioner. Incom-

plete LU factorization methods (ILUs) are an effective class

of preconditioning techniques for solving linear systems.

They define the preconditioner as M = L̄Ū , where L̄ and Ū
are approximations of the L and U factors of the standard

triangular LU decomposition of A. The incomplete factor-

ization may be computed from the Gaussian Elimination

(GE) algorithm, by discarding some entries in the L and U
factors. If the m independent unknowns are numbered first,

and the other n − m unknowns last, the coefficient matrix

of the system is permuted in the 2 × 2 block structure. In

multi-elimination methods, a reduced system is recursively

constructed from the permuted system by performing a block

LU factorization of PAPT of the form

PAPT =

(
D F
E C

)
=

(
L 0
G In−m

)
×
(

U W
0 A1

)

where D is a diagonal matrix, L and U are the triangular

factors of the LU factorization of D, A1 = C − ED−1F
is the Schur complement with respect to C, In−m is the

identity matrix of dimension n − m, and then denote by

G = EU−1 and W = L−1F . The reduction process can

be applied another time to the reduced system with A1,

and recursively to each consecutively reduced system until

the Schur complement is small enough to be solved with a

standard method. The factorization of PAPT above defines

a general framework which accommodates for different

methods. The ARMS preconditioner uses block independent

sets to discover sets of independent unknowns and computes

them by using the greedy algorithm. In the ARMS imple-

mentation used here, the incomplete triangular factors L̄, Ū
of D are computed by one sweep of ILUT. In the second

loop, an approximation Ḡ to EŪ−1 and an approximate

Schur complement matrix Ā1 are derived. This holds at each

reduction level. At the last level, another sweep of ILUT is

applied to the (last) reduced system.

3.1.2 Fault Detection and Resilience in FGMRES
Fault detection inside of FGMRES can be achieved in

many different ways. Upon each restart of FGMRES, the

norm of the residual is computed, and in a fault-free envi-

ronment these norms should be monotonically decreasing. A

cheap fault detector could be implemented to check this, and

it would be an intuitive way to attempt to detect faults that

occur during the outer sparse matrix-vector multiply. It will

be shown experimentally that if the fault that is injected into

the outer sparse matrix-vector multiply does not increase the

norm of the initial residual, than it has a significantly less

negative effect on the convergence of FGMRES.
One of the key observations made in [10] was that since

the preconditioner is allowed to change on every iteration

in the FGMRES algorithm, faults that occur during the

precondioning operation (Line 3 in Algorithm 1) can be

modeled as different preconditioners. As such, if a fault were

to occur anywhere inside of the preconditioning operation

it can be modeled by injecting a fault into the result of

the preconditioning operation (zj in Algorithm 1). The

perturbation-based fault model proposed in this paper allows

the size of the fault to be controlled by offering direct control

on the size of the perturbation that is injected.
It will be shown experimentally that FGMRES is capable

of proceeding through many faults occuring in the precondi-

tioning operation by accepting the faulty output as a different

preconditioner. This natural adaptive response in the FGM-

RES algorithm to faults that occur during preconditioning

should also cause faults that occur during the outer sparse

matrix-vector multiply to have more of an impact on the

convergence of FGMRES. This was also able to be shown

experimentally, and results are provided in Section 4.

4. Experimental Results
The test problem that was used comes directly from the

pARMS library [12], and represents an elliptic 2D partial

differential equation,

−Δu+ 100
∂

∂x
(exyu) + 100

∂

∂y
(e−xyu)− 10u = f

100 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

Parameter Acceptable Values
Global Preconditioner Block Jacobi
Local Preconditioner ILUT, ARMS
Tolerance Required for Convergence 10

−6

Starting Iteration at which Fault Appears ≥ 5

Order of Perturbation 10
−6, . . . , 10−4

Effect on l2-norm Any, Decrease, Increase

Table 1: Input parameters the value of which varied in the

experiments.

on a square region with Dirichlet boundary conditions, dis-

cretized with a five-point centered finite-difference scheme

on a nx × ny grid, excluding boundary points. The mesh is

mapped to a virtual px × py grid of processors, such that

a subrectangle of rx = nx/px points in the x direction

and ry = ny/py points in the y direction is mapped to a

processor. The size of the problem was varied and controlled

by changing the size of the mesh that was used in the

creation of the domain. The mesh sizes that were considered

ranged from nx = ny = 100 to nx = ny = 500, and these

mesh sizes were run on numbers of processors that varied

from four (px = py = 2) to 100 (px = py = 10). In order

to compare experiments run with different parameters the

resulting number of iterations was compared to the number

of iterations in the same unperturbed run and depicted as the

percentage in the plots throughout this section.

In all of the experiments that were conducted, multiple

sets of runs were executed for each set of parameters (i.e.

perturbation size, iteration fault was first injected) and their

effect on the convergence of FGMRES was combined into

an average with all other runs with the same parameters

before being analyzed. The parameters that were varied in

these experiments are detailed in Table 1.

Since the fault model presented here is based on a series of

random perturbations, multiple runs/solves were conducted

for each set of parameters, and the results were averaged and

depicted in the plots of this section. In all of the experiments,

a maximum number of iterations was instituted and, if a

run did not converge within this preset number of iterations,

then it was terminated, and determined to have failed. The

focus is on investigating the effects on two of the local

preconditioners available within pARMS: Incomplete LU

with dual nonzero dropping strategy [14] (referred to as

ILUT), and the ARMS preconditioner [13].

The experiments conducted for this study were run on two

distinct hardware environments. The first test environment

was a node with Intel Core i7 processor having four physical

cores at 2.50 GHz each and 16 GB of main memory. The

second was the Hopper supercomputer, which is a compute

resource of the National Energy Research Scientific Center

(NERSC). Hopper has a total of 153,216 compute cores,

212 Terabytes of memory and nodes are connected with a

custom high-bandwidth, low-latency network provided by

Cray. Up to five compute nodes of Hopper were utilized. The

problem size was scaled appropriately for each environment,

by adjusting the size of the square mesh per subdomain;

namely, 200 and 500 points for the Intel Core i7 and Hopper,

respectively.

The results shown in all the figures of Sections 4.1 to 4.3

come from runs on the Intel Core i7 platform using four

MPI ranks, one per core. The results from the runs with

larger problem sizes performed on Hopper showed similar

convergence tendencies under perturbation-based faults con-

sidered here. Note that, in all the plots, the x-axis represents

the fraction (as %) of the execution when a fault begins and

the y-axis shows the increase (or decrease) in the number of

iterations with respect to non-perturbed case. For example,

a data point with x coordinate of 50% shows an effect from

the fault injected halfway through the number of iterations
that would be required by a fault-free run. This effect is

quantified by the y coordinate of the point, such that, if

y = +100%, e.g., then the run corresponding to this data

point required twice as many iterations to converge than that

did in a fault free case.

4.1 Matvec Perturbations
The first set of experiments affected only the outer matvec

operation in the FGMRES algorithm (see Line 1). The

following results are provided the instance where the sign

of the perturbation (and hence, the magnitude of the l2-

norm) was not controlled by the fault model. Figure 1

shows the effects of faults with various perturbation sizes in

outer matvec when the ARMS (top) or ILUT (bottom) local

preconditioner is used. Only perturbation sizes no larger

than 5 × 10−5 are shown since for larger values the solver

failed to converge. Comparing the results in Fig. 1 (top) and

(bottom), a similar convergence behavior may be observed.

However, the faults corresponding to smaller perturbations

(10−6, . . . , 5× 10−5) have a slightly greater negative effect

on the runs with the ILUT preconditioner than on those with

ARMS. When examining effects of very small perturbations

(on the order of convergence tolerance, which is 10−6 here),

it was found that they had either no effect at all on the

convergence rate or slightly decreased the total number of

iterations. This beneficial effect was noted regardless of

when during the run the fault has started, and it appears

more often with the ARMS preconditioner than with ILUT.

Next, results for the case where the sign of the pertur-

bation was matched with the sign of the existing vector

component in order to ensure that the l2-norm of the

perturbed operation result decreased (Fig. 2). In order to

match the sign appropriately, the fault model checks the sign

of the original vector component before applying the fault.

It is interesting to observe in Fig. 2 the increased rate of

successful convergence for a much larger range of fault mag-

nitudes. A larger spectrum of perturbation sizes resulted in

successful convergence and, hence, is represented in Fig. 2.

Comparing the effects of injecting faults that vary the l2-

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 101

ISBN: 1-60132-444-8, CSREA Press ©

Fig. 1: Outer matvec perturbation faults with varied l2-norm

for the ARMS preconditioner (top) and ILUT preconditioner

(bottom). On y- and x-axis, % of extra iterations and of fault-

commencing iteration, respectively, compared to the number

of iterations in the fault-free run.

norm (Fig. 1) to those that shrink the l2-norm (Fig. 2),

there is also a decrease in the negative effect that a fault

of the same magnitude has upon the FGMRES algorithm.

In general, the performance of the two preconditioners is

fairly similar in the case when faults are incurred in the

outer matvec operation. For instance, as expected, there is

a tendency for the fault to have more of an impact on the

convergence if the fault commences later in the execution;

smaller perturbations show little effect while larger pertur-

bations produce a much higher variations of convergence

results. Perturbed executions resulting in fewer iterations

than non-perturbed ones appear to arise with about equal

frequency between scenarios using either the ARMS or the

ILUT preconditioner. These results are seen for all the fault

sizes—although much more commonly for faults of size

≤ 10−4—and are observed most when faults occur before

the run reaches approximately 60% of completion of a fault-

free run.

Fig. 2: Outer matvec perturbation faults with decreasing l2-

norm for the ARMS preconditioner (top) and ILUT precon-

ditioner (bottom). On y- and x-axis, % of extra iterations

and of fault-commencing iteration, respectively, compared

to the number of iterations in the fault-free run.

4.2 Preconditioner Perturbations
Results (Fig. 3) are presented for each of the two precon-

ditioners, ARMS and ILUT, and exclusively for the version

of the perturbation-based soft fault model that decreases the

l2-norm of the vector that it is applied to. Comparing the

results with the ILUT preconditioner to those with ARMS,

it again appears that the runs with the latter suffer less of a

negative effect than those with the former for the faults of

an equivalent size. Next, when examining results with the

ARMS preconditioner in Fig. 3(top), it is clear that injecting

a perturbation-based fault into the result of the application

of the preconditioner (from Line 3 in Algorithm 1) has

less of an effect on a FGMRES solve using the ARMS

preconditioner than that from injecting a similar fault into

the result of the outer matvec iteration (Fig. 2(top)). Even

a magnitude of fault (e.g., 10−4) that may cause stagnation

when injected into the outer matvec operation, causes only

a 40–50% increase in the total number of iterations here

and only has a large impact if injected throughout the

102 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

Fig. 3: Preconditioner perturbation faults with decreasing l2-

norm for the ARMS preconditioner (top) and ILUT precon-

ditioner (bottom). On y- and x-axis, % of extra iterations

and of fault-commencing iteration, respectively, compared

to the number of iterations in the fault-free run.

majority of the run. Similar observations may be made

for the ILUT preconditioning in Fig. 3(bottom): less of

a negative effect is evident when perturbation-based faults

appear in this preconditioning operation than in the outer

matvec (cf. Fig. 2(bottom)). In general, FGMRES, being

able to converge with a preconditioner that changes at each

iteration, does not negatively react to perconditioner changes

due to faults in the course of linear system solution.

4.3 Matvec and Preconditioner Perturbations
The graphs in Fig. 4 show the effect of injecting a

fault into the two fault sites considered simultaneously (i.e.,

at the same FGMRES iteration), the outer matvec and
preconditioner application, such that the l2-norm decreases.

In Fig. 4, notice that, for large faults (starting at 10−4), the

increase in the number of iterations required to converge was

very high—between 400-600% at times. This increase is also

much higher than that for either matvec- or preconditioner-

only incurred faults producing the highest increases of ∼60%

Fig. 4: Outer matvec and preconditioner application faults

with decreasing l2-norm for the ARMS preconditioner (top)

and ILUT preconditioner (bottom). On y- and x-axis, % of

extra iterations and of fault-commencing iteration, respec-

tively, compared to the number of iterations in the fault-free

run.

and ∼55%, respectively, for the same perturbation value of

10−4. Conversely, for perturbation sizes of 10−5 and smaller,

the effect on convergence appears similar to that of either

matvec faults. This suggests that the ability of FGMRES to

accept faulty preconditioners is inhibited by the coexistence

of a matvec fault. Also, there were fewer cases where the

number of iterations to converge decreased due to faults.

All of the experiments were also performed with a variant

of this perturbation-based fault model that increased the l2-

norm of the operation result. In all instances, smaller fault

sizes caused FGMRES to fail to converge compared with

the other l2-norm variants of the fault model, and, for the

cases in which the iterative solver converged, many more

iterations were required. Due to space considerations, the

experiments with the increasing l2-norm are not detailed in

this paper.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 103

ISBN: 1-60132-444-8, CSREA Press ©

Fault Size Fault Location Starting Its l2-norm Effect PC Improvement

5× 10−5 matvec 0% - 30% Varied ARMS 2% - 4%

10−6 matvec (anywhere) Varied ARMS 0% - 1%

10−6 − 10−5 matvec (anywhere) Varied ILUT 0% - 1%

(any size) matvec 0% - 60% Decreasing ARMS, ILUT 0% - 1%

≤ 5× 10−5 PC (anywhere) Decreasing ARMS 0% - 5%

≤ 5× 10−6 PC (anywhere) Decreasing ILUT 0% - 2%

Table 2: Summary of Beneficial Results- Note: Its (Iteration), PC (Preconditioner)

5. Summary and Future Work
This paper showcased experiments designed to exhibit a

persistent fault model with faults affecting bounds within an

iterative solver, which may be monitored and play a role

in the solver reaction to faults. Specifically, effects on the

l2-norm of the fault-perturbed vector were explored and it

was found that persistent faults may be treated similarly to

episodic faults in quantifying their effects except that the

application possibly needs to adjust to continuing operation

“under failure”. An investigation of such adaptations is left

as a future work. In particular, persistent faults that shrink the

l2-norm have less of a negative effect upon the convergence

of the iterative solver. It was also found that injecting faults

into the outer matvec operation, in general, had a greater

impact upon the FGMRES convergence than doing so for the

preconditioner application—including causing more cases

in which the iterative solver failed—which was observed

for both the ARMS and ILUT preconditioners. It appears

that runs using ARMS preconditioner are more naturally

resilient to the injection of persistent perturbation-based

faults than runs using the ILUT preconditioner; regardless

of which of the two fault sites is chosen. In addition, a small

fault injection resulted in several runs that converged in up

to 5% fewer iterations than would be typically required.

Table 2 summarizes beneficial outcomes from the results

presented in this paper. In the future, it is planned to use

this summary as a guide in devising algorithm based fault

tolerance procedures for the flexible GMRES.

5.1 Acknowledgments
This work was supported in part by the Air Force Office

of Scientific Research under the AFOSR award FA9550-12-

1-0476, by the National Science Foundation grant 1516096,

by the U.S. Department of Energy (DOE), Office of Ad-

vanced Scientific Computing Research, through the Ames

Laboratory, operated by Iowa State University under contract

No. DE-AC02-07CH11358, and by the U.S. Department

of Defense High Performance Computing Modernization

Program, through a HASI grant. This work used resources of

the National Energy Research Scientific Computing Center

(NERSC), a DOE Office of Science User Facility supported

by the U.S. Department of Energy under Contract No. DE-

AC02-05CH11231.

References
[1] K Asanovic, R Bodik, BC Catanzaro, JJ Gebis, P Husbands,

K Keutzer, DA Patterson, WL Plishker, J Shalf, SW Williams,
et al. The landscape of parallel computing research: A view from
berkeley. Technical report, Technical Report UCB/EECS-2006-183,
EECS Department, University of California, Berkeley, 2006.

[2] FA Bower, DJ Sorin, and S Ozev. Online diagnosis of hard faults
in microprocessors. ACM Transactions on Architecture and Code
Optimization (TACO), 4(2):8, 2007.

[3] G Bronevetsky and B de Supinski. Soft error vulnerability of
iterative linear algebra methods. In Proceedings of the 22nd annual
international conference on Supercomputing, pages 155–164. ACM,
2008.

[4] F Cappello, A Geist, W Gropp, S Kale, B Kramer, and M Snir.
Toward exascale resilience: 2014 update. Supercomputing frontiers
and innovations, 1(1), 2014.

[5] A Edelman. The mathematics of the Pentium division bug. SIAM
review, 39(1):54–67, 1997.

[6] J Elliott, M Hoemmen, and F Mueller. Evaluating the impact of SDC
on the GMRES iterative solver. In Parallel and Distributed Processing
Symposium, 2014 IEEE 28th International, pages 1193–1202. IEEE,
2014.

[7] J Elliott, M Hoemmen, and F Mueller. Tolerating Silent Data Cor-
ruption in Opaque Preconditioners. arXiv preprint arXiv:1404.5552,
2014.

[8] J Elliott, M Hoemmen, and F Mueller. A numerical soft fault model
for iterative linear solvers. In Proceedings of the 24nd International
Symposium on High-Performance Parallel and Distributed Comput-
ing, 2015.

[9] J Elliott, F Mueller, M Stoyanov, and C Webster. Quantifying the
impact of single bit flips on floating point arithmetic. preprint, 2013.

[10] M Hoemmen and MA Heroux. Fault-tolerant iterative methods via
selective reliability. In Proceedings of the 2011 International Con-
ference for High Performance Computing, Networking, Storage and
Analysis (SC). IEEE Computer Society, volume 3, page 9. Citeseer,
2011.

[11] ML Li, P Ramachandran, SK Sahoo, SV Adve, VS Adve, and Y Zhou.
Trace-based microarchitecture-level diagnosis of permanent hardware
faults. In Dependable Systems and Networks With FTCS and DCC,
2008. DSN 2008. IEEE International Conference on, pages 22–31.
IEEE, 2008.

[12] Z Li, Y Saad, and M Sosonkina. pARMS: a parallel version of the
algebraic recursive multilevel solver. Numerical linear algebra with
applications, 10(5-6):485–509, 2003.

[13] Y Saad and B Suchomel. ARMS: An algebraic recursive multilevel
solver for general sparse linear systems. Numerical linear algebra
with applications, 9(5):359–378, 2002.

[14] Yousef Saad. Iterative methods for sparse linear systems. Siam, 2003.
[15] B Schroeder, E Pinheiro, and WD Weber. DRAM errors in the wild: a

large-scale field study. In ACM SIGMETRICS Performance Evaluation
Review, volume 37, pages 193–204. ACM, 2009.

[16] M Snir, RW Wisniewski, JA Abraham, SV Adve, S Bagchi, P Balaji,
J Belak, P Bose, F Cappello, B Carlson, et al. Addressing failures
in exascale computing. International Journal of High Performance
Computing Applications, page 1094342014522573, 2014.

104 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

