Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

Optimization of Machine Learning on Apache Spark

Rohit Taneja(IBM), Rajaram B. Krishnamurthy(IBM), Gang Liu(IBM)
11400 Burnet Road, Austin, Texas, USA 78758

Abstract - Wide adoption of Spark for running big data
analytics jobs not only requires focus on the functional
performance of applications, but also on their operational
efficiency with optimal usage of hardware resources. Since
Spark has a large number of tunables, a bottom up
approach to finding the optimal runtime by varying Spark
executors and Spark executor cores can create an explosion
of tuning runs for a given application because of the
multiplicative nature of possible configurations. Instead, we
use a hybrid top-bottom approach by first characterizing
the application and then custom tuning the Spark
environment to further enhance performance.

We have experimented extensively with Spark's
tunables and share our tuning methodology by providing a
detailed walk-through of an Alternating Least Squares
Based Matrix Factorization application. Using our
methodology, we have been able to improve runtimes by a
factor of 2.22X. We have successfully applied this
methodology to complex Spark workflows consisting of
Spark SQL and ML Pipelines, and achieved substantial
performance improvements. Our methodology has been
applied to a variety of cluster architectures to validate our
approach.

Keywords: Apache Spark, Machine learning, Performance

evaluation and optimization, Matrix Factorization

Submission: Regular Research Paper

1 Introduction

Data sets are growing more rapidly than ever: every day
more than 2.5 exabytes of data is created, while at the same time
the world's technological capacity to store information has roughly
doubled every 40 months since the 1980s[1]. To leverage the
power of big data, scientists and engineers have been working on
innovative solutions for high performance big data engines.
Apache Spark[2] has quickly emerged as one of the most popular
in-memory big data processing engines for being easy to use, fast
and exhaustive with its built-in modules for streaming, SQL,
machine learning and graph processing.

For a big data analytic application running on the Spark
framework, the efficient use of underlying cluster resources is vital
and often requires a lot of time to apply the necessary tuning in
order
performance point influences total cost of ownership and
performance per dollar of applications. In fact,
understanding the characteristics of the workload, efficient parallel
execution on a distributed computing platform may not be

to achieve the efficiency. Determining the optimal

without

achieved. To minimize execution times and to achieve
performance benefits from parallelism in a Spark cluster
environment, characterization in terms of application's resource
usage is very crucial. This also involves the identification of
critical sections and hardware bottlenecks in order to fine tune the
application before deployment on a distributed computing

platform.

The rest of the paper is organized as follows: In Section 2,
we have discussed about the abstraction that Spark provides and
understood the vital parameters in deploying workloads on Spark.
In Section 3, we have evaluated the popular machine learning
Alternating Least Squares (ALS) based Matrix
Factorization (MF)[3], on a Spark cluster. Finally we have
described the various optimization iterations that we performed on

model:

the MF application and conclude our paper in Section 4.

2 Background
2.1 Apache Spark

Apache Spark is usually launched on top of an existing
Hadoop Cluster with Hadoop file system spanning worker nodes,
while master node drives the work-flow and provide management
services. Spark provides distributed computing through working
on collection of objects called resilient distributed dataset (RDD).
RDDs can be created with a file in the Hadoop file system or by
transforming the existing RDD. This abstraction allows in-memory
caching of data, but at the same time makes spark more sensitive
to data locality. RDDs are kept as partitions spread across the
worker nodes in a cluster, and a driver program is initiated to
manage the user application. Worker nodes execute the tasks on
these partitions in parallel. These set of tasks are grouped into
spark stages and various stages are grouped together to be called
as a Spark Job, which is the highest layer of abstraction in Spark
framework.

For the optimization process, the understanding of key spark
parameters is necessary:-

e Spark executor Instances: This parameter decides the
number of executors per node. A worker node can have
more than one executor, but for the purpose of this
paper, we use 1 executor per worker.

e Spark executor cores: Number of threads or logical
CPUs per executor on a worker node.

e Spark executor memory: The maximum heap size per
executor on a worker node.

ISBN: 1-60132-444-8, CSREA Press ©

163

164

e Spark shuffle location and manager: The shuffle
operation in Spark writes the ‘map’ output before
performing the ‘reduce’ on the data. Depending upon the
available memory, intermediate shuffle data may remain
entirely in memory or get spilled to shuffle location,
which is usually HDDs or SSDs. Selection of the shuffle
manager based on the characterization of an application
can also provide substantial gain in performance. There
are three types of shuffle managers: Hash based, Sort
based and Tungsten-sort.

e RDD persistence storage level: Caching of RDD
partitions across nodes in a cluster can be done only in
memory, or stored on disk if RDD does not fit in
memory. Serialized java objects, where only one byte
array per partition is created, are more space-efficient,
but more CPU-intensive to read.

The latest change in the Spark execution engine, called
as Project Tungsten[4] improves memory and CPU efficiency
through its explicit memory management, binary processing and
better cache aware computation. We have evaluated the impact of
Project Tungsten's features on ALS MF application.

2.2 Sparkbench Suite

Tailored for Apache Spark, Sparkbench suite[5] has four
major categories of applications: Machine learning, SQL query,
Streaming applications Graph This
comprehensive suite makes extensive use of the built-in modules
of Spark and exposes different bottlenecks with different
application characteristics.

and computation.

For the work described in this paper, we have selected a
Machine learning model: ALS based MF to be evaluated and
optimized. MF is used in Recommendation systems as it provides
model based collaborative filtering and can be configured to use
feedback from users. The memory hungry nature of this
application with heavy shuffle operations makes it an important
and interesting benchmark to evaluate and optimize.

2.3 Spark Cluster environment

We have created Spark environment for our experiments on
IBM Power Systems S812LC[6] server machines, which
comprises of POWERS processors[7]. The high thread density of 8
per CPU core enhances the parallelism provided by Spark compute
model. 10-core POWERS 3.54 GHz processor module has 512 KB
of L2 cache per core, 8 MB of L3 cache per core, and a system
memory of 512GB. We have deployed Hadoop file system for data
storage to take advantage of the efficient distribution of data across
worker nodes in a cluster.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

3 Performance evaluation and
optimization

3.1 MF application

We have evaluated the ALS MF application with synthetic
dataset generated with help of Sparkbench testing framework,
which allows for the easy reproduction of our experiments. For the
experiments described in this paper, Table 1 provides details about
the number of rows and columns and size of dataset. The dataset
resides in the Hadoop file system once the data generation phase
finishes. The Cluster environment details are mentioned in Table 2.

[Data generation parameters 'Value
Rows in data matrix 62000
Columns in data matrix 62000
Data set size 100 GB

Table 1: Parameters used for data generation in MF application

Spark parameter 'Value for MF
Master node 1

Worker nodes 6

Executors per Node 1

Executor cores 80 /40 /24
Executor Memory 480 GB
Shuffle Location HDDs

Input Storage HDFS

Table 2: Spark environment details for application evaluation

3.2 MF work-flow

The run phase of the ALS MF model training consists of a
series of jobs, which are further divided into stages that perform
Spark actions like ‘first’, ‘count’, ‘saveasTextfile’ etc, and
transformations like ‘map', ‘join’, ‘cogroup’ etc. We have
highlighted the jobs and the associated APIs in Table 4 to better
understand the actions and work flow of the MF application. We
have depicted the order in which jobs of the MF application
execute in Figure 1, based on Job Ids of Table 4. The reason for

<

more than one API call in some jobs is due to the different stages

within a job — and each stage calling different APIs.
'

Figure 1. ALS MF jobs execution over time

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

Configur |1 2 3 4 5 6 7 8 9 10 11

ation

Spark 80 80 Ko 40 40 40 40 40 24 24 24

lexecutor

cores

GC Default Default [Default |[ParallelGCthre [ParallelGCthrea [ParallelGCthre [ParallelGCthre [ParallelGCthre [ParallelGCthre [ParallelGCthre [Default

options lads=40 ds=40 lads=40 lads=40 lads=40 lads=24 ads=24

RDD True False False False True True [False [False False False [False

compress

lion

Storage |memory_an [memory_ imemory_ jmemory_only jmemory_and_d memory_only_ jmemory_only |memory_only [memory_and_d memory_and_d memory_a

level d_disk only only lisk_ser ser lisk_ser isk_ser ind_disk_se
r

Partition (1000 1000 1000 1000 1000 1000 800 1200 1000 1000 1000

numbers

Shuffle |Sort based (Sort Sort Sort Sort Sort Sort Sort Sort Tungsten-sort (Tungsten-s

Manager [based based based based based lbased based based lort

Run-time |40 34 26 24 20 25 26 27 21 19 18

(minutes)

Job [Function Description / API called

7 Mean at |AbstractJavaRDDLike.map
IMFApp.java [MatrixFactorizationModel.predict

JavaDoubleRDD.mean

6 |Aggregate at ~ [MatrixFactorizationModel.predict
IMFModel.scal [MatrixFactorizationModel.countApproxDistinctUserProduc
a it

5 [First at ml.recommendation.ALS.computeFactors
IMFModel.scal
a

4 [First at ml.recommendation.ALS.computeFactors
IMFModel.scal
a

3 Count at |ALS.train and ALS.intialize
IALS.scala

2 Count at |ALS.train
IALS.scala

1 Count at |ALS.train
IALS.scala

0 Count at |ALS.train
IALS.scala

Table 4. Description of jobs in MF application

3.3 Optimizing MF application

We have carried out several experiments to evaluate the
performance impact with different Spark parameters. The Spark
parameters that we have tuned for this work are listed in Table 3,
in which each column is representative of an optimization
iteration. We have tested configuration 1 and 2 from Table 3 for
the purpose of characterizing the MF application, thus providing
the maximum resources available in the cluster. For the purpose of
a better understanding, we have plotted the CPU utilization over
time for a node in Figure 2, and the memory footprint on a node in
Figure 3. The low CPU utilization sections in the Figure 2 is
representative of garbage collection (GC) pause times. We have
confirmed that garbage collection happens during the low CPU

Table 3: Various configurations tried in optimizing MF application on Spark

activity sections by looking the history logs of stages and tasks.

100
20
80
70
€0
50
40
30
20
10

0
Tima

B User B System B Wait
Figure 2. CPU utilization on a worker node (configuration 1 in Table 3)

% CPU

500,000

400,000
w 300,000
2

200,000

100,000

o

B active W inactive @ memfree

Time
Figure 3. Memory utilization on a worker node (configuration 1 in Table 3)

In configurations 3, 4, 5 and 6 from Table 7, we selected the
spark executor cores as 40 which improves the performance by
providing more executor-memory per spark-executor-core and
reducing contention in the last level cache with fewer spark
The the
configurations is the storage level and the java garbage collection
options. Performance with configuration 5 is twice that of
configuration 1, which highlights the advantage by using same GC
parallel threads as executor cores.

executor cores. difference in above mentioned

In the next set of experiments, we evaluated the performance
impact by changing the number of partitions in the RDD.
Configurations 7 and 8 show the partition numbers and the
corresponding run times that we achieved. As the number of
partitions decides the number of tasks that are spawned, careful
selection of number of partitions to efficiently utilize CPU is vital
to efficiently exploit the parallelism provided by the underlying
compute resources. Configuration 7 and 8 did not yield any
improvement over configuration 5,
optimization process using settings from Configuration 5.

so we continued the

ISBN: 1-60132-444-8, CSREA Press ©

165

166

In order to further reduce the last level cache contention, we
configured Spark executor cores to 24 in configuration 9, 10 and
11, and it positively impacts the performance. Also, GC time is
considerably reduced with 24 executor cores in configuration 9,
but it still faces overhead from too many java objects created and
garbage collection.

We evaluated the tungsten-sort shuffle manager from Project
Tungsten in configurations 10 and 11. We disabled the java GC
options in configuration 11, because tungsten-sort works directly
against the binary data instead of java objects, thus alleviating the
garbage collection overhead. This configuration gives us the best
result with the experiments we performed for the scope of this
paper. Using 24 out of 80 available threads along with
tungsten-sort as the shuffle manager helps MF application to do
more cache-aware computation, causes less last level cache
contention and releases the pressure that comes from JVM object
model.

The overall run time and memory footprint is greatly
reduced as seen in Figure 5. We have highlighted the most time
consuming stage in Figure 4, which is also the last stage of ALS
MF application. We have compared the run time and GC time for
this stage in Table 6, which shows the impact of using different
values of spark executor cores and tungsten-sort on run-time and
GC time.

.
Shuffle Read
(CoGrouped RDD)

oy

Figure 4. Directed Acyclic Graph of last stage in ALS MF

500,000
400,000
300,000
200,000
100,000

[+]

M active M inactive ® memfree

Figure 5. Memory footprint of configuration 11 from Table 3

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

Configuration Run time of last stage |GC time of last stage
1 12 min 4.4 min

4 4.4 min 1.8 min

9 3.5 min 1.6 min

11 47s 16s

Table 6. Run time and GC time of Stage 68 for different configurations in Table 3

50 - — =
{40 N G mning f

[{

LN %
paraliol GO thisads 1 Tungsten-sort

Duration | = minute

Configuraion

—— Totnl execubon time == GC time (max)

Figure 6. Run time and GC time for configurations in Table 3

4 Conclusion

The work presented in this paper explores the wide
optimization space for the applications running on Spark. We use a
hybrid top-bottom approach by searching the configuration space
carefully after workload characterization through
monitoring. This systematic methodology helps reduce the tuning
iterations and achieving performance targets faster.

resource

The shuffle heavy characteristic of ALS MF puts pressure on
storage, network and
garbage collection due to JVM object model. Use of tungsten-sort
feature alleviates these issues by doing explicit memory
management and binary processing. We also observe that
tungsten-sort does not bring advantage for all applications, and
thus our hybrid “top-down” approach of workload characterization
followed by searching configuration space becomes vital in order
to apply custom optimization strategy.

also increases memory pressure from

Performance evaluation and optimization has resulted in a
speed up of over 2x for the ALS MF application as well as other
SQL and ML pipeline bases applications. The categorization of
different applications and applying custom tuning for the different
categories can not only improve operational efficiency, but also
can be economical in the long run for an organization. We continue
to evaluate more applications and improve our approach so as to
reach best performance point with minimum optimization
iterations for a Spark application.

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 167

References

[1] Hilbert, Martin; Loépez, Priscila (2011). "The World's Technological
Capacity to Store, Communicate, and Compute Information". Science
332 (6025): 60. doi:10.1126/science.1200970. PMID 21310967

[2] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M.
J. Franklin, S. Shenker, and I. Stoica. Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster computing. In
Proceedings of the 9th USENIX NSDI, Berkeley, CA, USA, 2012.

[3] Haoming Li, Bangzheng He, Michael Lublin,Yonathan Perez (2015).
"Matrix Completion via Alternating Least Square (ALS)".
http://stanford.edu/~rezab/dao/notes/lec14.pdf

[4] Reynold Xin and Josh Rosen (2015). “Project Tungsten: Bringing
Spark Closer to Bare Metal”.
https://databricks.com/blog/2015/04/28/project-tungsten-bringing-spa
rk-closer-to-bare-metal.html

[5] MinLi, Jian Tan, Yandong Wang, Li Zhang, Valentina Salapura (2015).
“SparkBench: a comprehensive benchmarking suite for in memory
data analytic platform Spark”. CF '15 Proceedings of the 12th ACM
International Conference on Computing Frontiers, Article No. 53

[6] IBM Power System S812LC, https://www.ibm.com /marketplace/
cloud/big-data-infrastructure/us/en-us

[7] POWERS, https://en.wikipedia.org/wiki/POWERS8

ISBN: 1-60132-444-8, CSREA Press ©

