
EDUCATING DISCRETE SIMULATION
BY AGENT-BASED ROLEPLAY

H.P.M. Veeke, J.A. Ottjes, G. Lodewijks
Dep. of Marine and Transport Technology

Faculty of Mechanical, Maritime and Materials Engineering, 3mE
Delft University of Technology

Mekelweg 2, 2628 CD Delft, the Netherlands
E-mail: H.P.M.Veeke@tudelft.nl, J.A.Ottjes@tudelft.nl, G.Lodewijks@tudelft.nl

Abstract

Since the introduction of real process oriented simulation it
has been educated in two different ways. For students in
informatics and mathematics it is educated in a strict formal
way based on things like paradigms and finite state machines.
For students that don’t need to become professional
programmers but do have to understand the principles of
simulation it is mostly educated in an informal intuitive way
when not learned by off-the-shelf click-and-play packages.
Starting from a general programming platform, the major
problem in educating simulation is the explanation of
simultaneity and synchronization. This paper describes a
recently developed method, by which students experience
these problems themselves and –as far as the first results can
show- master the techniques to solve synchronization
problems. The method is based on roleplaying agents.

Keywords: simulation, process interaction, education,
agent-based

1 Introduction

Many years of experience in educating simulation led us to the
conclusion that the main problem is to let students understand
how to describe unambiguously the “behavior of a system”, in
a time-based manner. Most discrete simulation literature [e.g.
1,2] starts from a notion of a change in the state of a system
defining this notion as an “event”. The ‘event’ however
appears to be too abstract to understand completely and it
leads to complex implementations of a system’s behavior.

The real difficulty in understanding behavior is to realize that
we implicitly take some “events” for granted, while they are
essential for the synchronization of processing activities.
“Doing nothing” is also a type of activity. This paper explains
an agent-based role-play approach that improves the
understanding and leads in a natural way to the process-
oriented approach for describing the behavior of discrete
systems.

2. Events vs. Processes

In [3] the construction of a “Tool for Object oriented
Modelling And Simulation” (TOMAS) has been presented. It
is implemented as a toolbox in the general programming
platform Delphi®, so the complete functionality of Delphi®
can be used too. Using Delphi® is not essential, but Delphi®
is based on Pascal and this offers many advantages for
students that are not supposed to become experienced
programmers. Delphi® offers all possibilities and flexibility of
a general programming language, so there will be no
restrictions other than the creativity of the student or
researcher. The way of modelling, closely matches the
qualitative modelling as defined in the Delft Systems
Approach (DSA) [4,5]. It differs widely from the approaches
used in well-known packages. DSA uses as its main modelling
element the concept of a “function” that expresses why a
particular process is executed and what its contribution is to
the environment. By this the modeller takes the necessary
distance from what he experiences, in order to make a general
model for the situation under investigation. Within this notion
of function, a process is described from the company’s
viewpoint (as a repetitive series of activities of a department
/group/person/machine that handles orders, materials, or even
resources). Many packages use the viewpoint of the customer
or the flowing element itself (a visitor’s view). The visitor and
company views are really different; for example, Zeigler et al.
[6] call it the “flow oriented” vs. “real process oriented”
approach. The latter approach is characterized by the fact that
the sequence in which program statements are executed,
differs from the written sequence.

An example is shown in table 1 for two elements A and B (the
arrows show the order in which statements are executed).
Already in the nineteen seventies a first implementation of the
real process approach was constructed by Sierenberg and De
Gans [7],called PROSIM. At that time the lectures about
simulation with PROSIM didn’t explain how to choose
elements and corresponding processes. The lectures appealed
to the common sense of the students, , which worked very well
for some of the students, but left others in confusion.

Int'l Conf. Modeling, Sim. and Vis. Methods | MSV'16 | 23

ISBN: 1-60132-443-X, CSREA Press ©

Process of CompA
Begin
 CompB.Start(Now)
 Wait

 While CompB.Color = Green
 Standby

 Finish
End

Process of CompB
Begin

 Work(5)
 Color Green
 CompA.Resume(Now)
 …
 Other things
 …
 Color Red
 Finish
End

Table 1. Real Process Oriented Approach

The problem appeared to be twofold:

1. What is the selection criterion to choose elements?

2. How to describe and communicate the behaviour of the
elements?

The first question has been answered in an earlier contribution
[8], where it was found that recognizing the functions that
need to be fulfilled, led to the elements fulfilling them. Here
we will focus on the second question.

3. Behavior

A first short description will highlight the role of the elements
in the model. Throughout this paper the example of an
automated container terminal’s import processes will be
followed. Ships arrive from deep-sea at a berth of a container
terminal. A number of containers should be unloaded,
transported to a stacking area and stored there.

The (physical) elements in the model are Ships, Quay cranes,
AGV’s (Automated Guided Vehicles), ASC’s (Automated
Stacking Cranes), Stack and Containers.

Fig.1. artist impression of Automated Container Terminal

The role of each element is:

Ship : arrives with containers at berth
Quay crane : unloads containers from ship
AGV : transports containers from Quay crane to ASC
ASC : stores containers into stack
Stack : keeps containers in storage

Actually this is already a complete behavior description of the
import processes, but there is no synchronization at all yet.
Providing facilities to synchronize the different processes is
the core problem of describing the behavior in order to
construct a model like the one in the figure below.

Fig.2. Screenshot of a model of container import processes [9]

We used to progress interactively with the students by
expanding step by step the descriptions above. If we restrict
the description to the synchronization between Quay cranes,
AGV’s and ASC’s it could look like the table below.

Firstly it should be made clear that all equipment (or
resources) repeat their actions during the whole simulation
run, so its process description starts with “Repeat”.

A Quay crane starts with unloading a container from a ship
and needs a first synchronization with AGV activities; an
AGV should be simply there to take over the container. Here
we use a queue (QcQ) for this purpose, and let the Quay crane
wait until there is at least one AGV in the queue. Queues are
standard available in simulation packages, and one can use
them for many purposes, here it is used for synchronization.
Elements that have been placed in a queue should be removed
from it too, so the quay crane removes the agv in front from
the queue and puts a container on it. After that it signals the
Agv by “Resume” to continue its independent part of the

24 Int'l Conf. Modeling, Sim. and Vis. Methods | MSV'16 |

ISBN: 1-60132-443-X, CSREA Press ©

process: driving to an ASC. At the ASC, the processes are
synchronized in an analogous way.

Table 2. Informal process descriptions

The “Process Description Language (PDL)” as presented in
the table above, is being used to communicate on the behavior
of the model. It is very useful both in teaching environments
and practical design projects for the verification of the model.
The big advantage of PDL is its simplicity and clarity, without
the need of a special syntax and constructions that would be
imposed by programming environments, I case we would try
to describe the model’s behavior immediately in some
programming language or package.

We used to describe situations in this way interactively with
the students, but noticed they had difficulties to reproduce it
for other situations. The majority managed to define the
elements correctly, but not all students were capable of
reproducing this way of thinking on behavior in other
situations. Many students stranded in an attempt to re-invent
the basic provisions already available in the simulation
toolbox. We apparently have to prevent that students consider
the technical needs of a simulation environment as
“modeling”; Instead they should focus on the synchronization
needs of a modeling situation with the tools available.

We decided to adopt the agent based approach of
programming and to replace each element with its
corresponding agent, a straightforward conversion. An agent is
the natural owner of a process and differs in nothing with a
general simulation element.

4 Synchronization

Synchronization can be achieved in many different ways. First
of all one could use a general type of semaphore that turns
green or red to show “continue” or “stop”. The disadvantage
of this general approach is the loss of readability /
understandability of the model.
We prefer to use the already available facilities of any
simulation platform: attributes of elements and/or queues.
If the model contains an element “Fence” with a Boolean
attribute Closed, one could easily make another element
waiting for the Fence until it is open, by specifying ”Wait
while Fence.Closed = True” in its process description. It
makes the use of semaphores very clear and natural in the
descriptions. Even more powerful is the use of queues for
synchronization. Many situations can be covered by one single
queue status; it can be empty, it can be full, it can contain or
just not contain one specific element. Depending on this status
it is easy to stop or continue a process when one (or more) of
these conditions is met.

We used to explain synchronization in this way, it seems
trivial however when someone else is telling you how to
implement it. Real difficulties arise when students have to
construct it themselves.

In order to get the synchronization points clear, each student is
assigned an agent of the model and together they should
proceed in time as a system, a team of cooperating agents.

Each active time-consuming statement is assumed to take 5
seconds. In our example it concerns the statements Drive, and
Put/Lift Container. Passive time-consuming statements should
be solved with synchronization; it concerns the Wait
statements in this case of which the time duration is unknown
beforehand and depends on actions of other agents.

At the start of the role-play, each student is asked what his/her
first action will be. The first question for each student should
be: “Where am I?” Immediately followed by “ What is my
state?”. Most of the students start mentioning actions, but
forget these questions. They already assume implicitly that
everybody knows where they are and in what state. This
should be made explicit however, because it determines the
starting point of the processes of other agents. It is also very
important to decide on the starting state, because the behavior
of most agents is repetitive and it should be easy to start the
process in any way from this state. We assume an AGV is
empty and starts waiting at the Quay crane by entering the
QcQ.

When it is inside the QcQ, an AGV can only proceed after it
has received a container from the quay crane. The Quay crane
is the only one who determines this moment, so the only thing
an AGV has to do is waiting; it doesn’t have to stay looking
(actively) until a container has been placed, it will get a signal
from the Quay crane. The AGV agent waits until the Quay

Quay crane Repeat
…
Wait While QcQ is empty
Remove first AGV from QcQ
Put Container on AGV
Resume AGV
…

AGV Repeat
Enter QcQ
Wait
Drive to ASC
Enter ASCQ
Wait
Drive to Quay crane

ASC Repeat
…
Wait While ASCQ is empty
Remove first AGV from ASCQ
Lift Container from AGV
Resume AGV
…

Int'l Conf. Modeling, Sim. and Vis. Methods | MSV'16 | 25

ISBN: 1-60132-443-X, CSREA Press ©

crane agent tells it may continue. This is different from
actively waiting like the Quay crane agent does. This agent
waits until an AGV arrives in the QcQ, and after any “event”
the agent should check this condition. It is very illustrative for
the student to be asked by the lecturer every time to check this
condition.

Now other students should start their process. The Quay crane
will wait for a ship; after arrival it will start unloading
container by container. When it has unloaded one container it
will wait until an AGV arrives. If it is already there then it will
put the container on the AGV, remove the AGV from AGVQ
and wake up the waiting AGV by “Resume”. The AGV-agent
can proceed now. The lecturer may interrupt the agents of
resources now and explain that Quay crane and AGV were
synchronized by using a queue QcQ. Many times it happens
that the agent Quay crane already proceeds without signaling
the AGV etc.

5 Sequencing the processes of agents

Now both Quay crane and AGV proceed with their actions
simultaneously (Quay crane unloading another container,
AGV driving to ASC). The lecturer is keeping track of the
time, and gives turn to the student that has a first activity. To
make the picture complete one could pay attention to the fact
that the teacher actually performs the role of “sequence
mechanism”.
The sequencing mechanism takes care of all state transitions
and progress of time. During time an agent can be in one of
three states:

1. Suspended or sleeping state. No moment in time has
been defined for the agent to take action. It actually
“sleeps” or plays the role of data element.

2. Scheduled state. A moment in time or a condition has
been defined on which the agent should start or
resume its actions.

Fig. 3 Agent-states and transitions

3. Active state. The agent is actively executing actions

(statements) until it tells the clock to proceed. The
agent itself becomes scheduled or suspended then.

The question mark in the figure above shows that there is a
mystery guest that changes states from “Scheduled” to
“Active”. This mystery guest is the core of the simulation
toolbox that operates according the real process oriented
approach.

The lecturer should explain which of the transitions is being
used at any moment when another agent becomes active.
He/she could also illustrate what happens if two agents
become Active at exactly the same moment. It will then be
immediately clear that there is no real simultaneity, because
only one processor is available for executing the statements of
the active agent; only one agent can be active at any time.
Both ways of synchronization, attributes (e.g. fence closed)
and queues (e.g. QcQ is empty) are sensitive for the order of
activation by the simulation toolbox.

6 Conclusions and recommendations

In most cases simulation of logistic systems is explained from
the viewpoint of an observer who has to construct the model.
He is supposed to have the necessary knowledge of the system
and describes the system in terms of events, activities and/or
processes.
The real process-interaction approach is a method that can
represent the real system and its dynamics in a very natural
way. To teach students to apply this method we used agent
based role playing in which students are asked to identify
themselves with or, in other words, to step into the shoes of
the various elements in the system and to live their lives
(process) as a function of time. In this approach difficult issues
like element interactions and synchronisation appear in a clear
natural way. This leads to more insight of the operation of the
real system and a more deeply understanding of the simulation
model.

We recently started to use this approach in practice. A first
course has been completed with this type of role-playing and
the results seem to be promising. The students seem to
understand the synchronization of simulation modeling better
and used queues and attributes of agents in a natural way when
developing their own models. Roleplaying works very
explanatory.

Now we will apply this method also in our research projects
with industrial partners in order to construct and verify
simulation models of design situations, and clearly focus and
decide on problematic synchronization cases.

Fig. 3 Agent-states and transitions
Fig. 3 Agent-states and transitions

Suspended

Active

Scheduled

Proceed(T)
Proceed(Cond)

Proceed
Finish

Start(T) / Resume(T)

Create Destroy

?

26 Int'l Conf. Modeling, Sim. and Vis. Methods | MSV'16 |

ISBN: 1-60132-443-X, CSREA Press ©

7 References

[1] Fishman, G.S., “Discrete-Event Simulation”, Springer-
Verlag New York Inc.,, ISBN 0-387-95160-1, 2001
[2] Kleijnen, J.P.C., Groenendaal, W.J.H. van, “Simulatie:
technieken en toepassingen”,Academic Service, Schoonhoven,
ISBN 90 6233 322 2, 1988
[3] Veeke, H.P.M., Ottjes, J.A., “TOMAS: Tool for Object-
oriented Modelling And Simulation”, Proc. Of Business and
Industry Simulation Symposium, Washington, Ed. Maurice
Ades, pp. 76 – 81, 2000
[4] in ‘t Veld, Prof. J., “ Analysis of organisation problems”,
Wolters-Noordhoff bv, Groningen, 8th edition, ISBN 90-207-
3065-7, 2002
[5] Veeke, H.P.M., Ottjes, J. A., Lodewijks, G., “ The Delft
Systems Approach”, Springer,
ISBN 978-1-84800-176-3, 2008
[6] Zeigler, B.P., H. Praehofer, and T.G. Kim. 2000. “Theory
of Modeling and Simulation”, Academic Press, San Diego
[7] Sierenberg, R.W., de Gans, O.B., “PROSIM text book”,
lecture notes Delft University of technology, Delft, 1982
[8] Veeke, H.P.M., Ottjes, J.A., Lodewijks, G., “Experiences
with process interaction based simulation in education and
research” Proc. of the 2012 International Conference on
Modeling, Simulation and Visualization Methods MSV 2012,
Las Vegas, Ed. Hamid R. Arabnia, pp.109-113
[9] Duinkerken, M.B., Ottjes J.A., “A simulation model for
automated container terminals”, Proc. of the Business and
Industry Simulation Symposium (ASTC 2000).
April 2000. Washington D.C. [SCS]. ISBN 1-56555-199-0

Int'l Conf. Modeling, Sim. and Vis. Methods | MSV'16 | 27

ISBN: 1-60132-443-X, CSREA Press ©

