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Abstract—A computer vision algorithm is proposed for 
omnidirectional bee counting in images of Langstroth beehive 
entrances captured in situ with a miniature camera connected to 
a multi-sensor, solar-powered electronic beehive monitoring 
device. The algorithm consists of three stages: pre-processing, 
landing pad identification, and omnidirectional bee counting. In 
the pre-processing stage, an approximate image region where the 
landing pad is likely to be is cropped and the brightness of the 
cropped image adjusted. The landing pad identification is 
obtained through iterative reduction of the cropped image to the 
actual landing pad. Omnidirectional bee counts are computed by 
dividing the total number of bee pixels by the average number of 
pixels occupied by individual bees. The algorithm was evaluated 
on 1,781 images from two electronic beehive monitoring devices 
deployed in Langstroth beehives with live honeybees and 
achieved an accuracy of over 80 per cent compared to the ground 
truth obtained from human evaluators. 

Keywords—computer vision; contour analysis; color analysis; 
electronic beehive monitoring; sustainable computing 

I. Introduction 
The Apis millifera, also known as the Western honeybee, is 
responsible for one out of every three daily mouthfuls that the 
average U.S. resident eats [1]. Since 2006 honeybees have 
been disappearing from amateur and commercial apiaries. This 
trend has been called the colony collapse disorder (CCD) [2]. 
Other growing threats to the health of honeybee colonies 
include Varroa mites, American and European foulbrood, and 
nosema [3].  

The high rates of colony loss threaten the world’s food 
supply chains and necessitate continuous beehive monitoring. 
Unfortunately, continuous beehive monitoring cannot be done 
by human apiarists due to obvious problems with logistics and 
fatigue. However, recent advances in sensor technologies have 
made it possible to monitor many critical variables associated 
with honeybee health in situ. There is an emerging consensus 
among researchers and practitioners that significant scientific 
and practical insights will likely come from transforming 
traditional apiaries into smart worlds monitoring their status 
through multiple sensors, recognizing bee behavior patterns, 
and notifying all interested parties about deviations and 
anomalies. For example, NASA researchers believe that 
climate changes can be investigated through pollination data 
[4], because beehive data clusters may relate location and 
pollination timings to satellite data and ecosystem models.  

Most approaches to electronic beehive monitoring (EBM), 
defined here as electronic capture and analysis of data from 
beehives over regular time intervals, depend on the grid for 
power and on the cloud for data transmission (e.g., [5, 6]). 
However, grid- and cloud-dependent EBM enlarges the 
electricity consumption and carbon footprints of cloud data 
centers which already account for two percent of overall U.S. 
electrical usage [7, 8]. According to the Smart 2020 forecast 
by the Climate Group of the Global e-Sustainability Initiative 
[9], so far quite accurate, the global carbon footprint of cloud 
data centers is expected to grow, on average, 7% per annum 
between 2002 and 2020. In 2010, McAfee, a U.S. computer 
security company, reported that the electricity required to 
transmit the trillions of spam e-mails annually is equivalent to 
powering two million U.S. homes and generates the same 
amount of greenhouse gas emissions as that produced by three 
million cars [10]. Consequently, there is a critical need to seek 
ecologically sustainable EBM solutions that use renewable 
power sources and minimally depend on the cloud for data 
transmission and analysis.  

Since electronic beehive monitoring devices (EBMDs) 
increasingly use multiple sensors [11], principled answers 
must be sought to the question of what sensors should be 
included and why. While sensor accuracy is a significant 
factor, power consumption, field reliability, and ergonomics 
must also be considered. The latter consideration is critical for 
the broader acceptance of a specific sensor by amateur and 
commercial apiarists, regionally, nationally, and 
internationally, because ease of deployment plays an important 
role in technology adoption.    

The position presented in this paper is that computer vision 
can contribute to solving various problems posed by electronic 
beehive monitoring (EBM). In particular, computer vision can 
be used to solve the bee counting problem because of recent 
advances in miniature cameras coupled with small 
computational devices such as Raspberry Pi 
(www.raspberrypi.org) or Arduino (www.arduino.cc) that are 
powered with solar.  

The bee counting problem, well-known in apiary science, 
is the problem of obtaining accurate counts of bees entering or 
exiting a given beehive per unit of time.  One of the variables 
monitored by human apiarists as they inspect their beehives is 
forager traffic. Foraging is an indicator of honeybee colony 
health, colony age structure, honey flow, pollination, and 
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climate (e.g., [12]).  Consequently, accurate estimates of 
forager traffic levels are important not only to apiarists but 
also to growers, climate scientists, and sustainable farmers.  
Forager traffic levels can be estimated by human observers 
with stopwatches. However, since human observation cannot 
be continuous, abrupt changes in forager traffic will likely be 
missed. 

The remainder of this paper is organized as follows. In 
Section II, related work is presented. In Section III, hardware 
and software details of BeePi®, a solar-powered, multisensor 
EBMD, are presented and in situ data collection is described. 
In Section IV, a vision-based algorithm is presented for 
omnidirectional bee counting on landing pads of Langstroth 
beehives used by most apiarists in the U.S. [2, 3]. In Section 
V, the experiments are presented of evaluating the algorithm 
on over 1,781 images captured by two deployed BeePi 
EBMDs in North Logan, UT. In Section VI, the results of the 
experiments are discussed. Section VII summarizes the results 
and the findings of this investigation. 

II. Related Work 
Because of the importance of forager traffic counts, there have 
been multiple research and commercial attempts to automate 
bee counting at hive entrances. One of the first electrical bee 
counters was proposed by Lundie [13]. Lundie’s design was 
subsequently adopted and improved upon by Faberge [14] 
through the production of electrical impulses generated by 
bees tripping a balance arm. Similar electrical bee counters 
were proposed by other researchers (e.g., Ericson et al. [15] 
and Liu et al. [16]).   

In earlier electrical bee counting devices, no distinction 
was made between counting bees entering and exiting a hive. 
This problem was addressed in subsequent research through 
bi-directional bee counters. For example, Struye et al. [17] 
proposed a design for a bi-directional bee counter. This design 
was adopted by Lowland Electronics in Belgium to 
manufacture bi-directional bee counters in the 1990s. These 
devices count bees passing through special portals equipped 
with infrared (IR) sensors. Bees are counted when they cross 
infrared beams. 

Dank and Gary [18] designed a box-like extension fixed at 
the hive entrance to estimate the forager traffic. Each bee 
passes through special tubes in the box attached to the 
entrance. The tubes are coated with paraffin so that bees 
cannot only crawl through them. A mesh bag at the end of the 
tubes is used to collect the bees and weigh them. The bees can 
escape from the mesh bag. 

Bromenshenk et al. [6] designed and deployed bi-
directional, IR bee counters in their multi-sensor SmartHive® 
system. The researchers found their IR counters to be more 
robust and accurate than capacitance and video-based systems.  
Since the IR counters required regular cleaning and 
maintenance, a self-diagnostic program was developed to 
check whether all of the emitters and detectors were 
functioning properly and the bee portals were not blocked by 
debris or bees. 

In addition to IR devices, some researchers used radio 
frequency identification (RFID) to solve the bee counting 
problem. For example, Schneider et al. [19] investigated 
pesticide effects on honeybee colonies by exposing workers 
from a colony of approximately 2,000 bees to contaminated 
sugar syrup at a feeder. The effects of pesticide exposure were 

measured as the RFID-detected return rate of foragers from the 
feeder. 

 

 
Figure 1.  BeePi hardware components 

III. In Situ Data Capture 
A. Hardware 
Images for this investigation were captured through a solar-
powered, electronic beehive monitoring device (EBMD), 
called BeePi [20]. A fundamental objective of the BeePi 
design is reproducibility: other researchers and practitioners 
should be able to replicate our results at minimum cost and 
time commitments. The current BeePi hardware components 
are shown in Fig. 1: a Pi Model B+ 512MB RAM computer, a 
Pi T-Cobbler, a half-size breadboard, a DS18B20 temperature 
sensor, and a Pi camera. For solar harvesting, the Renogy 50 
watts 12V monocrystalline solar panel was coupled with the 
Renogy 10 Amp PWM solar charge controller and the UPG 
12V 12Ah F2 sealed lead acid AGM deep-cycle rechargeable 
battery.  

All hardware components fit in a shallow Langstroth super, 
except for the solar panel that is placed on top of a beehive 
(see Fig. 2). The solar panels are tied to the hive supers with 
bungee cords. The Pi camera is placed outside to take static 
snapshots of the beehive’s entrance, as shown in Fig. 3, with a 
plastic cover placed above it to protect it from the elements.  
 

 
Figure 2. Solar panels on hive tops 

 

 
Figure 3. Pi camera looking down on landing pad 
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Four BeePi EBMDs were assembled in 2015 and deployed 
at two Northern Utah apiaries to collect 28GB of audio, 
temperature, and image data in different weather conditions 
[20]. Except for drilling narrow holes in inner hive covers for 
temperature sensor and microphone wires, no structural 
beehive modifications were done to the hives prior to 
deployment.  

B. Software 
All data collection is done in situ on the raspberry pi 
computer. The collected data are saved on a 16GB sdcard 
inserted into the pi computer. In situ data collection software is 
written in Python 2.7.  

When the system starts, three data collection threads are 
spawned. The first thread collects temperature readings every 
10 minutes and saves them in a text log. The second thread 
collects 30-second wav recordings every 15 minutes. The  
third  thread  saves  PNG  pictures  of  the beehive’s landing 
pad every 15 minutes.  The size of the image captured for the 
camera is 550KB with a resolution of 720 480 pixels. 

A cronjob, i.e., an automated task that runs at specific 
intervals, monitors the threads and restarts them after hardware 
or software failures. For example, during a field deployment 
the camera of one of the EBMDs stopped functioning due to 
excessive heat. The cronjob kept periodically restarting the 
picture thread until the temperature went down and the camera 
started functioning properly again. 
 

 
Figure 4. Sample captured image 

IV. Vision-Based Bee Counting 
The vision-based bee counting algorithm is omnidirectional in 
that it does not distinguish incoming and outgoing bee traffic. 
The reason why no directionality is integrated is two-fold. 
First, a robust vision-based solution to directionality will likely 
require video processing. Since the BeePi relies exclusively on 
solar power, in situ video capture and storage will reduce 
device operation times and make EBM less continuous. 
Second, omnidirectional bee counting can still be used as a 
valuable estimate of forager traffic so long as it accurately 
counts bees on landing pads.  

The algorithm is implemented in JAVA with JDK 1.7 and 
the OpenCV 2.4.4 (www.opencv.org) bindings. The algorithm 
consists of three stages: pre-processing, landing pad 
identification, and omnidirectional bee counting. In the pre-
processing stage, an approximate image region where the 
landing pad is likely to be is cropped and the brightness of the 
cropped region adjusted. The landing pad identification is 
obtained through iterative reduction of the cropped image to 

the actual landing pad. Omnidirectional bee counts are 
computed by dividing the total number of bee pixels by the 
average number of pixels occupied by individual bees obtained 
from camera calibration experiments.

A. Pre-Processing 
Several in situ camera calibration experiments were conducted 
to estimate the coordinates of the image region where the 
landing pad is likely to be. The coordinates of the region are 
set in a configuration file and used in the algorithm to crop the 
region of interest. The lower image in Fig. 5 shows the output 
of the cropping step. Note that there may be some grass in the 
cropped image. The dimensions of the cropped region are 
intentionally set to be larger than the actual landing pad to 
compensate for camera swings in strong winds. 

Image brightness varies greatly with the weather. When the 
sun is directly above the beehive, brightness is maximal. 
However, when the sun is obscured by clouds, captured 
images tend to be darker. Both cases have a negative impact 
on bee counting. To compensate for these two conditions, 
image brightness is dynamically adjusted to lie in (45, 95), i.e., 
the brightness index should be greater than 45 but less than 95. 
This range was experimentally found to yield optimal results. 
Fig. 6 illustrates how brightness adjustment improves 
omnidirectional bee counts. The upper image on the right in 
Fig. 6 shows a green landing pad extracted from the cropped 
image on the left without adjusted brightness. The lower 
image on the right in Fig. 6 shows a green pad extracted from 
the same image with adjusted brightness. Only four bees were 
identified in the upper image on the left whereas in the lower 
image eight bees were identified, which is closer to the twelve 
bees found in the original image by human counters. 
 

 
Figure 5. Cropping a landing pad region 

 

 
Figure 6. Adjusting image brightness 
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B. Landing Pad Identification 
The three steps of the landing pad identification are shown in 
Fig. 7. The first step in identifying the actual landing pad in 
the approximate region cropped in the pre-processing stage is 
to convert the pre-processed RGB image to the Hue Saturation 
Value (HSV) format, where H and S values are computed with 
Equation (1). 
 

 

 

(1) 

 
In (1),  are the R, G, B values normalized by 255, 

 and  
The value of V is set to . In the actual implementation, the 
format conversion is done with the cvtColor() method of 
OpenCV. The inRange() method of OpenCV is subsequently 
applied to identify the areas of green or white, the two colors 
in which the landing pads of our beehives are painted.  Noise 
is removed through a series of erosions and dilations. The 
white pixels in the output image represent green or white color 
in the actual image and the black pixels represent any color 
other than green or white.  

To further remove noise from the image and reduce it as 
closely as possible to the actual landing pad, contours are 
computed with the findContours() method of OpenCV and a 
bounding rectangle is found for each contour. The bounding 
contour rectangles are sorted in increasing order by the Y 
coordinate, i.e., increasing rows. Thus, the contours in the first 
row of the image will be at the start of the list. Fig. 7 shows 
the bounding rectangles for the contours computed for the 
output image of step 3 in Fig. 7. 
 

 
Figure 7. Landing pad identification steps: 1) HSV conversion; 2) 

color range identification; 3) noise removal 
 

 
Figure 8. Bounding rectangles of found contours 

 

Data analysis indicates that if the area of a contour is at 
least half the estimated area of the landing pad, the contour is 
likely to be part of the actual landing pad. On the other hand, if 
the area of a contour is less than 20 pixels, that contour is 
likely to be noise and should be discarded. In the current 
implementation of the algorithm, the estimated area of the 
green landing pad is set to 9,000 pixels and the estimated area 
of the white landing pad is set to 12,000 pixels. These 
parameters can be adjusted for distance.  

Using the above pixel area size filter, the approximate 
location of the landing pad is computed by scanning through 
all the contours in the sorted list and finding the area of each 
contour. If the area is at least half the estimated size of the 
landing pad of the appropriate color, the Y coordinate of the 
contour rectangle is taken to be the average Y coordinate and 
the scanning process terminates. If the contour’s area is 
between 20 and half the estimated landing pad area, the Y 
coordinate of the contour is saved. Otherwise, the current 
contour is skipped and the next contour is processed.  When 
the first contour scan terminates, the average Y coordinate, 

, is calculated by dividing the sum of the saved Y 
coordinates by the number of the processed contour rectangles.  

After  is computed, a second scan of the sorted 
contour rectangle list is performed to find all contours whose 
height lies in , where H is half of the 
estimated height of the landing pad for the appropriate color. 
While the parameter H may differ from one beehive to 
another, as the alignment of the camera differs from one hive 
to another, it can be experimentally found for each beehive. 
For example, if the camera is placed closer to the landing pad, 
then H will have a higher value and if the camera is placed far 
from the landing pad, H will have a lower value. In our case, H 
was set to 20 for green landing pad images and to 25 and for 
white landing pad images. 

A bounding rectangle is finally computed after the second 
scan to enclose all points in the found contours. To verify 
whether the correct landing pad area has been identified, the 
area of the bounding rectangle is computed. If the area of the 
bounding rectangle is greater than the estimated area of the 
landing pad, the bounding rectangle may contain noise, in 
which case another scan is iteratively performed to remove 
noise by decreasing H by a small amount of 2 to 4 units. In 
most of the cases, this extra scan is not needed, because the 
landing pad is accurately found. Fig. 9 illustrates the three 
steps of the contour analysis to identify the actual landing pad. 

 

 
Figure 9. Contour analysis: 1) 1st contour scan; 2) 2nd contour 

scan; 3) pad cropping 
 

Foreground and background pixels are separated on color. 
In particular, for green landing pads, the background is green 
and the foreground, i.e., the bees, is yellow; for white landing 
pads, the background is white and the foreground is yellow. 
All pixels with shades of green or white are set to 255 and the 
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remaining pixels are set to 0. Three rows of border pixels of 
the landing pad image are arbitrarily set to 255 to facilitate bee 
identification in the next step. Fig. 10 shows the output of this 
stage. In Fig. 10, the green background is converted to white 
and the foreground to black. Since noise may be introduced, 
the image is de-noised through a series of erosions and dilation 
with a 2 x 2 structuring element. 

 

 
Figure 10. Background and foreground separation 

C. Bee Counting 
To identify bees in the image, the image from the previous 
stage is converted to grayscale and the contours are computed 
again. Data analysis suggests that the area of an individual bee 
or a group of bees vary from 20 to 3,000 pixels. Therefore, if 
the area of a contour is less than 20 pixels or greater than 
3,000 pixels, the contour is removed. 
 

 
Figure 11. Omnidirectional bee counting 

 
The area of one individual bee is between 35 and 100 

pixels, depending on the distance of the pi camera from the 
landing pad. The green landing pad images were captured by a 
pi camera placed approximately 1.5m above the landing pad 
with the average area of the bee being 40 pixels.  On the other 
hand, the white landing pad images were captured by a pi 
camera placed approximately 70cm above the landing pad 
where the average area of an individual bee is 100 pixels.  To 
find the number of bees in green landing pad images, the 
number of the foreground pixels, i.e., the foreground area, is 
divided by 40 (i.e., the average bee pixel area on green landing 
pads), whereas, for the white landing pad images, the 
foreground area is divided by 100 (i.e., the average bee pixel 
area on white landing pads). The result is the most probable 
count of bees in the image. In the upper image in Fig. 11, five 
bees are counted by the algorithm. The lower image in Fig. 11 
shows the found bees in the original image. 

V. Experiments 
A sample of 1,005 green pad images and 776 white pad 
images were taken from the data captured with two BeePi 
EBMDs deployed at two Northern Utah apiaries [20]. Each 
image has a resolution of 720 x 480 pixels and takes 550KB of 
space.  To obtain the ground truth, six human evaluators were 
recruited. Each evaluator was given a set of images and asked 
to count bees in each image and record his or her observations 
in a spread sheet. The six spread sheets were subsequently 
combined into a single spread sheet. 

Table I gives the ground truth statistics. The human 
evaluators identified a total of 5,770 bees with an average of 
5.7 bees per image in images with green landing pads. In 
images with white landing pads, the evaluators identified a 
total of 2,178 bees with a mean of 2.8 bees per image. 

Table II summarizes the performance of the algorithm ex 
situ on the same green and white pad images. The algorithm 
identified 5,263 bees out of 5,770 in the green pad images with 
an accuracy of 80.5% and a mean of 5.2 bees per image. In the 
white pad images, the algorithm identified 2,226 bees out of 
2,178 with an accuracy of 85.5% and an average of 2.8 bees 
per image. The standard deviations of the algorithm were 
slightly larger than those of the human evaluators. 
 

Table I. Ground Truth 
Pad Color Num Images Total Bees Mean STD 

Green 1,005 5,770 5.7 6.8 
White 776 2,178 2.8 3.4 

 
Table II. Accuracy (%) of the Algorithm 

Pad Color Num Images Total Bees Mean STD ACC 
Green 1,005 5,263 5.2 7.6 80.5 
White 776 2,178 2.8 4.1 85.5 

 
 

 
Figure 12. False positives 

VI. Discussion 
Our analysis of the results identified both true negatives and 
false positives. There appear to be fewer true negatives than 
false positives. The main reason for true negatives is the 
algorithm’s conservative landing pad identification, which 
causes some actual bees to be removed from the image. The 
bees on the sides of the landing pad are also typically removed 
from the image. Another reason for true negatives is image 
skewness due to wind induced camera swings. If the landing 
pad is skewed, then a part of the landing pad is typically 
cropped out during the bounding rectangle computation. In 
some images, some actual bees were removed from images 
during image de-noising, which resulted in lower bee counts 
compared to human counts.  

False positives were primarily caused by occasional 
shades, leaves, or blades of grass wrongly counted as bees. 
Fig. 12 gives an example of false positives. A human evaluator 
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counted 9 bees in the upper image whereas the algorithm 
counted 28 bees on the landing pad (lower image in Fig. 12) 
cropped out of the upper image.  The shade pixels on the right 
end of the cropped landing pad were counted as bees, which 
resulted in a much higher bee count than the human 
evaluator’s count. 

VII. Summary 
A computer vision algorithm was presented for 

omnidirectional bee counting at Langstroth beehive entrances. 
The algorithm was evaluated on a total of 1,781 images and 
achieved an accuracy of over 80 per cent compared to the 
ground truth obtained from six human evaluators. The 
performance of the algorithm can be further improved through 
a more accurate identification of the landing pad’s skew and 
image rotation before actual bee counting. 
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