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Abstract – Effectively feature matching between images is key 
to many computer vision applications. Recently, binary 
descriptors are attracting increasing attention for their low 
computational complexity and small memory requirement. 
However, most binary descriptors are based on intensity 
comparisons of grayscale images and did not consider color 
information. In this paper, a novel binary descriptor inspired 
by human retina is proposed, which considers not only gray 
values of pixels but also color information. Experimental 
results show that the proposed feature descriptor spends fewer 
storage spaces while having better precision level than other 
popular binary descriptors. Besides, the proposed feature 
descriptor has the fastest matching speed among all the 
descriptors under comparison, which makes it suitable for real-
time applications. 
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1 Introduction 
 A great number of computer vision applications, like 
image search, image recognition, object tracking and image 
classification depend on describing particular feature points 
over an image. In order to represent feature points efficiently, 
applying robust and stable feature descriptor is necessary. 
However, how to make descriptor more invariant to geometric 
and lightning transformations while requiring low computation 
complexity and small amounts of memory is a big challenge. 
Therefore, many approaches are developed over the last 
decades. 
 The most well-known descriptor is Lowe’s SIFT [1] 
feature descriptor which is floating-point based and provides 
invariance to a variety of common image transformations, but 
the disadvantages of SIFT are expensive cost of computation 
and storage. SURF [2] proposed by Bay et. al. is designed to 
improve performance of SIFT and can use less computational 
time to achieve similar matching rates compared to SIFT. 
Despite SURF is much faster than SIFT, however it is still 
impracticable in many real-time applications, such as 
embedded devices and mobile phones. 
 In recent years, several binary descriptors have been 
proposed. Unlike float-point based descriptors which need to 
represent image information with local gradient histogram, 
binary descriptors, in contrast, provide the gray value 
comparison around detected feature points in the image patch, 
and then image patch information is encoded with a fixed size 
binary string. Since binary descriptor use Hamming distance 
and XOR operation for measuring similarity between two 

 
Fig. 1. The proposed CREAK orientation pairs. The lines denote the 
orientation pairs of FREAK and the bold lines denote the additional 
pairs for the proposed CREAK descriptor. 
 
descriptors, they can significantly decrease computational time. 
The performance of binary descriptors can reach as well as 
float-points ones, while reducing computational costs and 
memory requirements. 
 For the state-of-the-art binary descriptors, such as BRIEF 
[4], ORB [6] and FREAK [3], when encoding information of 
image patch, they only perform gray value comparisons around 
feature points in the image patch. However, the important 
information of color is ignored. Besides, their sampling pairs 
take only the gray value at single pixel into account and 
therefore sensitive to noise. In order to solve this problem, 
these binary descriptors offer some alternative smoothing 
operations before the pixel value are sampled. Although 
smoothing image can reduce some of noise-sensitive problems, 
the side effect is that smoothing image will also decrease the 
details of image and lead to information loss. 
 Inspired by the above observations, in order to make 
descriptor more robust and discriminative, the color 
information is also necessary. In this paper, we propose an 
alternative binary descriptor named CREAK (Color-based 
REtinA Keypoint descriptor) which is based on the FREAK 
descriptor and inspired by the photoreceptive cells over the 
retina, by comparing pixel lightness intensity and color 
information of pixel rather than single pixel intensity to mimic 
the retina of human eye. Experiments results show that the 
proposed feature descriptor not only preserves the ability to fast 
matching but also spends only less than half size of FREAK 
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descriptor while having similar or even better matching rate 
than not only FREAK but also other state-of-the-art binary 
descriptors. 
 The rest of this paper is organized as follows. Section 2 
describes related works. Section 3 describes the proposed 
method and its implementation. Section 4 evaluates the 
performance of proposed method with other descriptors and the 
result of real matching situation. Finally, the conclusion and 
future works are given in Section 5. 
 
2 Related Work 
 The feature descriptors can be generally categorized into 
two groups: one is float-point based descriptor and another is 
binary descriptor. SIFT [1] is the most popular float-point 
based descriptor in the last decade and it presents a highly 
descriptive power and powerful robustness against to a variety 
of image transformations. First, SIFT uses sequences of DoG 
(Difference-of-Gaussians) functions to identify potential 
features that are invariant to rotation and scale, then it computes 
a grid of oriented gradient histograms to store the descriptor 
into a 128-dimensional vector. Several float-point based 
approaches were proposed to improve performance of SIFT, 
SURF [2] by Bay et. al. is a successful one. The computation 
time of SURF is faster than SIFT, while its matching 
performance is close to SIFT’s by representing features with 
the responses of Haar wavelets for approximating gradient 
orientations in the SIFT. However, SURF belongs to float-
based descriptor group, it still relies on floating-point 
calculations to measure Euclidean distance between two 
descriptors, which increases time to match features across 
different images and make descriptors impracticable in real-
time applications or low-power devices.  
 Another group of descriptors is called binary descriptor 
which were proposed to overcome the shortcomings of float-
point based descriptors. Recently, binary descriptors are 
attracting increasingly attention due to their advantages. They 
calculate Hamming distance and employ fast XOR operation to 
measure of distance between two binary descriptors. This 
makes binary descriptors become more faster matching speeds 
than float-point ones. Furthermore, by using no more than 512 
bits, a single binary descriptor requires far less space than SIFT 
or SURF. BRIEF [4], the first binary descriptor to describe 
image features achieves great speed acceleration by simply 
computing the gray value comparisons of random test pairs in 
the region of interest. Unfortunately, since simple pixel-based 
test pair is highly sensitive to noise or other change in local 
appearances, BRIEF is not robust enough to geometric and 
lightning transformations especially in rotation variation. 
 According to BRIEF’s method, Rublee et. al. proposed 
the ORB [6] descriptor. By estimating first order moments 
within the patch, ORB can invariant to rotation. It also selects 
highly uncorrelated pixel pairs for binary test instead of random 
selected test pairs of BRIEF.  Another approach different from 
ORB and BRIEF is the BRISK [7] proposed by Leutenegger et. 
al. which emphasizes locality by computing intensity 
differences between two short-  

  
Fig. 2. Cells in the human retina are arrayed in discrete layers [16] 

 

   
(a)                        (b)            

Fig. 3. (a) Topography of the layer of rods and cones in the human 
retina [17]. (b) Human retina areas [16]. 
 
distance or long-distance pixels in a predefined concentric 
sampling pattern. For computing the patch orientation BRISK 
uses pixel pairs with large distances while building binary 
descriptor with short ones.  
 FREAK (Fast REtinA Keypoint descriptor) [3] is similar 
to BRISK. It also describes feature point with predefined 
concentric sampling pattern which was inspired by the retina 
patterns of human eye. Differing from BRISK, FREAK 
samples more points exponentially in the inner area to mimic 
fovea of retina. Besides, using the same learning method of 
ORB, FREAK also chooses an optimal set of sampling pairs. 
 Usually, most of binary descriptors perform serval 
smoothing operations before the pixel pairs are sampled, in 
order to handle noise-sensitive problem. However, this method 
also decreases spatial information of image patch. Recently, Gil 
Levi and Tal proposed the LATCH [8] descriptor which 
extracts more spatial information from image patch in each 
descriptor’s bit by comparing pixel patches instead of 
individual pixel value. 

Unlike the state-of-the-art binary descriptor based on 
gray-scale image, and with same concept as LATCH, our 
CREAK descriptor also extracts more spatial information in the 
image rather than single pixel value or pixel patch, and 
compares luminance as well as color information of pixel 
instead of single pixel intensity to make the descriptor more 
robust to noise.  
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(a)                      (b) 

Fig. 4. Comparison of (a) FREAK and (b) the proposed CREAK 
sampling pattern. 
 

3 The CREAK Descriptor 
 

3.1 Motivation 
According to the research of neuroscience, the retina of 

human eyes plays a key role in the human visual system (HVS). 
The purpose of the retina is to receive light, convert them into 
neural signals, and send these signals to the brain for visual 
recognition [15]. The retina contains two types of 
photoreceptive cells: rods and cones. Rod cells have very low 
spatial resolution but are highly sensitive to light, so they are 
responsible for the information of illuminance and they are not 
present in the fovea region. In contrast, cone cells have very 
high spatial resolution but are relatively insensitive to light, 
they are primarily located in the fovea region and give us the 
ability to distinguish colors. 

Current understanding that cones also can be subdivided 
into blue cones, green cones, and red cones based on three 
different response curves. The topography of the layer of rods 
and cones in the human retina is shown in Figs. 2 and 3. 
Consequently, the proposed descriptor is designed by 
simulating the topology and photoreceptive cells distribution of 
the retina to describe the features of an image, as described in 
the next subsection. 

  
3.2 Sampling pattern 

In order to design a sampling pattern of binary descriptor 
which is similar to the human retina, we referenced and 
modified the FREAK’s sampling pattern which is also inspired 
by the human retina. The characteristic of FREAK’s sampling 
pattern is that the size of its receptive fields (the size of circles 
in Fig. 4(a)) mimics the density of ganglion cells, which grows 
exponentially with the distance toward the center of the retina. 
Furthermore, it also makes receptive fields of the pattern 
overlapping each other, this can increase spatial redundancy 
and bring descriptor more discriminative power. 

FREAK performs Gaussian smoothing on the sampling 
points with variable blur kernels according to its receptive field 
size, however, it is designed for gray level. For color 
information, the density of the cone cells which have a higher 
spatial resolution, is higher close to the center of retina than 
elsewhere, as shown in Fig. 3(a). But large receptive fields  

 
Fig. 5. The same feature point will correspond to three different 
sampling points (for RGB channels) after orientation estimation. 
 
adopted in FREAK will decrease the spatial resolution due to 
the large smoothing area. In order to support color information 
in the proposed descriptor, we resize each blur kernel to be 
smaller, especially for the respective fields corresponding to 
fovea and foveola areas [16] as shown in Fig. 3(b), to simulate 
the photoreceptive cells distribution of the retina [17]. The 
comparison of sampling patterns adopted in FREAK and the 
proposed CREAK is shown in Fig. 4(b). 

 
3.3 Orientation pairs 
 Since we reduce the receptive field sizes considering the 
newly added color information, it may decrease the descriptor 
tolerance for some homographic transforms, such as rotation 
and scaling. After investigating the orientation pairs in FREAK, 
we observe that: (i) the angles between feature point center and 
the orientation pairs are limited to several specific angles, (ii) 
there are less pairs in perifovea area than fovea and foveola 
areas, and (iii) the pairs are linked in the same layers. Therefore, 
we proposed to add 12 cross-layer orientation pairs in the 
perifoveal area, making the proposed CREAK descriptor 
having 57 pairs, while FREAK have 45 pairs, as shown in Fig. 
1. These pairs can not only generate more angles to improve 
the tolerance of rotation, but also utilize the inter layer 
information of receptive fields to improve the tolerance of 
scaling. 

For the orientation estimation, we use the same method as 
that of FREAK which estimates local gradients over selected 
pairs 

 

O      (1) 

 
where M is the number of pairs in the set of all the pairs used 
to compute the local gradients G and  is the 2D vector of 
the spatial coordinates of the center of receptive field. 

We perform the orientation computation separately for 
each color channel because even with the same orientation pairs, 
different color channels could have different gradients and that 
means the same feature point will correspond to three different 
sampling points after orientation estimation. By doing this, 
more spatial information can be retrieved for same feature point 
to increase the performance. An example is shown in Fig. 5. 
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3.4 Building the Descriptor 
We construct our descriptor by performing tests for the 

intensities of the predefined test pairs, which is a common 
binary descriptor construction process. Let ,  
denote the smoothed intensity of the pair , the 
binary test function T( ) is formulated as 

 

 T           (2) 

For the proposed CREAK descriptor which consists of 
three color channels, the binary tests are performed for each 
channel. Then, the complete binary descriptor D of size N is 
formed by concatenating three N/3 binary test results and 
defined as 

 

  (3) 

 
where B, G, R represent color channels blue, green, and red, 
while , ,  are color test pairs of receptive fields with 
their corresponding channels, respectively. For example, if the 
total descriptor size N = 192, then the number of bits used by 
each color channel will be N/3 = 64. 
 

In order to choose a set of test pairs that is best for 
describing the feature point, we employ the same training 
method in FREAK, but separately applied for each color 
channel. The training process consists of the following steps: 

 
1) For each feature point, compute a descriptor composed 

of all possible test pairs. Create a matrix M whose rows 
are associated to the feature point and columns are 
associated to all the possible test pairs.  

2) Compute the means of each column in M. 
3) According to ORB [6], a higher variance is desired in 

order to produce a discriminant feature, and the mean 
value of 0.5 will have the highest variance for a binary 
distribution. Therefore, the matrix columns are sorted 
by the absolute value minus 0.5. 

4) Keep the best column and iteratively add columns 
having low correlation with the selected columns. 

 
In the proposed descriptor, test pairs are selected by 

training from approximately 500k feature points which are 
drawn from images in the PASCAL 2006 dataset [14] 

 
4 Experimental results 

The proposed CREAK descriptor have been implemented 
in C++ and integrated into OpenCV 3.1 for performance 
evaluations. The experiments are conducted following the 
evaluation framework presented in [12]. The framework 
consists of applying Gaussian blur, brightness change, rotation, 
and scale change to each image from the Oxford datasets 
proposed by Mikolajczyk and Schmid [11]. All the experiments 

are executed using a Desktop PC with an Intel i7 3.4 GHz 
processor and 12 GB of RAM.  

 
4.1 Color Space Selection 

Firstly, we measure the performance of using different 
commonly used color spaces, including YCrCb, Lab, and RGB. 
The image graffiti [11] with 12 different levels of blur, 85 
levels of brightness, 73 levels of rotation degree, and 71 levels 
of scales are adopted in the experiments and the results in terms 
of matching correctness ratio (i.e., # of correct matches divided 
by # of matches) are shown in Table. 1. It is observed that when 
using the same bit-length of descriptors, RGB color space 
obtains the best performance on average. We also compare 
different descriptor lengths for RGB color space, and observe 
that a descriptor with length more than 192 bits does not make 
apparent improvement. Therefore, 192 bits (24 bytes) of 
descriptor length and the RGB color space are recommended 
and used for the proposed CREAK descriptor in the later 
experiments of this paper. 

 
TABLE 1. Average matching correctness ratio comparison 
for various color spaces 

 Blur Brightness Rotation Scale 
Lab-192 69.86% 97.63% (2nd) 93.98% 93.76% 

YCrCb-192 69.21% 96.09% 92.66% 95.13% 
RGB-192 70.60% (1st) 97.54% 94.07% (2nd) 95.38% (2nd) 
RGB-384 70.54% (2nd) 97.66% (1st) 94.57% (1st) 96.84% (1st) 

 
4.2 Comparison with different descriptors 

In this section, the performance of the proposed CREAK 
descriptor is compared with a wide range of binary feature 
descriptors available in OpenCV, including BRIEF [4], BRISK 
[7], ORB [6], FREAK [3], and LATCH [8], with their default 
parameters. The same feature point (keypoint) detector is 
employed for a fair comparison of descriptor performance. The 
feature detector proposed in ORB is adopted in our experiments, 
due to its good performance and high speed. The experiment 
results are shown in Figs. 6-9 for test case “graffiti 1”. It is 
observed that except for the blur transformations, in all testing 
conditions the proposed CREAK descriptor presents the most 
robust performance, compared to other binary competitors. For 
blur transformations, CREAK has lower performances than 
BRIEF and LATCH, and has comparable performances to ORB. 
However, both BRIEF and LATCH have extremely low 
performances for scale transformations, while ORB and BRIEF 
have bad performances for rotation transformations. A real 
matching case example is provided in Fig. 10. 

 
Furthermore, we also compare the proposed CREAK 

descriptor with state-of-the-art floating-point based descriptors 
including SIFT and SURF with their default feature detectors, 
as shown in Figs.11-14. The experiment results show that 
CREAK achieve the better performance among all. 
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Fig. 6. Performance comparison of binary descriptors under blur 
transformations. 

Fig. 7. Performance comparison of binary descriptors under 
brightness transformations. 

 

 

Fig. 8. Performance comparison of binary descriptor under rotation 
transformations. 

 

Fig. 9. Performance comparison of binary descriptors under scale 
transformations. 

 
(a) FREAK     

 
(b) CREAK 

Fig. 10. A real matching case example. (a) FREAK fails for the simple 
upright matching test while (b) the proposed CREAK matches 
successfully even for the object under 90-degree rotation with view 
point change. 

 

 

Fig. 11. Comparison of float-point based descriptors under blur 
transformations. 
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Fig. 12. Comparison of float-point based descriptors under brightness 
transformations. 

 

Fig. 13. Comparison of float-point based descriptors under scale 
transformations. 

 

Fig. 14. Comparison of float-point based descriptors under rotation 
transformations. 

TABLE 2. Performance comparison of computation times (in 
milliseconds) for different feature descriptors 

Descriptor Description Matching Total 
SIFT 0.553 4.14 4.69 
SURF 0.089 2.04 2.13 
BRIEF 0.005 1.24 1.25 
BRISK 0.013 1.53 1.54 
ORB 0.024 1.17 1.19 

FREAK 0.018 0.62 0.64 
LATCH 0.048 1.31 1.36 
Proposed 0.026 0.32 0.35 

 
TABLE 3. Performance comparison of storage requirements 
(in bytes) for different feature descriptors 

Descriptor Storage 
SIFT 512 
SURF 256 
BRIEF 64 
BRISK 64 
ORB 32 

FREAK 64 
LATCH 32 
Proposed 24 

 
Tables 2 and 3 show the comparison of computation time 

and storage requirement, respectively, for the descriptors. It is 
observed that the proposed CREAK descriptor not only 
requires the least storage space, but also achieves the least total 
processing time. Considering the computation time and storage 
requirement, we believe that the proposed CREAK descriptor 
will be more suitable than other descriptors for the applications 
requiring real-time feature matching. 

In summary, compared to our predecessor, FREAK, 
CREAK achieves apparent improvements for both blur and 
brightness transformations, having comparable performances 
for rotation and scaling, running at about two times faster, 
while saving more than half of the storage spaces. 
 
4.3 Extremely matching case examples 

 Moreover, we also display two extremely matching case 
examples using the graffiti image from [11] with homography 
matrices to verify inlier matches, as shown in Table 4. 
Comparing with ORB, CREAK can match two more features 
whereas FREAK matched none in pair 1|5. It also brings us a 
great accomplishment that when we apply the most harder 
image pair 1|6, CREAK matched two features correctly, 
however, for other descriptors, even the SIFT and SURF, there 
is no match obtained. The matched feature points by using 
CREAK are shown in Fig. 15(a) for pair 1|5 and Fig. 15(b) for 
pair 1|6.  
 
TABLE. 4. Number of match features for graffiti 1|5 and 1|6 

 #Match(1|5) #Inlier(1|5) #Match(1|6) #Inlier(1|6) 
ORB 18 2 16 0 

FREAK 5 0 10 0 
CREAK 12 4 7 2 
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(a) Viewpoint change pair 1|5 (5th strength) 

 

 
(b) Viewpoint change pair 1|6 (6th strength) 

 
Fig. 15. Matched points generated by the proposed CREAK descriptor 
for the test case “graffiti” under different view changes. 

5 Conclusion 
In this paper, a novel binary descriptor is presented, 

which is inspired from human retina. According to the 
distribution of photoreceptive cells over the retina, more 
precisely, rods and cones, we comparing color values of the 
pixels around the feature point instead of the pixel gray value 
with our sampling pattern based on FREAK’s retina sampling 
pattern. Experimental results show that, the proposed 
descriptor has better recognition rate than other widely-used 
binary descriptors even compared with SIFT or SURF, while 
having low requirements especially in storage. Besides, the 
matching time of the proposed method outperforms other 
descriptors due to it have only 192 test pairs, that makes it more 
suitable for visual algorithm requires real-time performance. 
Our future work will continue make improvement of feature 
descriptor based on the principle of the human retina. Last but 
not least, there are still space for improvement for the blur 
transformation case for the proposed descriptor. We will also 
make more effort to study how to improvement the 
performance for blur transformation. 
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