
REACT-R and Unity Integration

Llewyn Salt1,3, Julian Wise2,3, Charlotte Sennersten3, and Craig A. Lindley3
1ITEE, University of Queensland, Brisbane, Queensland, Australia

2CSIT, RMIT, Melbourne, Victoria, Australia
3Data61, CSIRO, Hobart, Tasmania, Australia

Abstract— This paper presents REACT-R which is a mod-
ification of an existing cognitive architecture, ACT-R, to
incorporate robot embodiment. Robot embodiment is facili-
tated by situating the cognitive architecture within the robot
and allowing it to interact with the environment through its
actuators and sensors. The REACT-R module offers flexibility
by using a UDP connection to integrate with the Robot
Operating System (ROS) allowing REACT-R to be used in
simulations or on physical models. We have successfully
integrated REACT-R with an interactive 3D Game Engine to
autonomously control a simulated quadrotor flying vehicle.
The cognitive model also contains varying levels of auton-
omy, providing a human pilot with the option of controlling
different aspects or levels of robot operation.

Keywords: UAV, Robotics, ACT-R, Cognitive Architectures, Ar-

tificial Intelligence

1. Introduction
Following great advances in robotics technology, there

has been increased interest in developing cognitive robotics.

The availability of systems like the Robot Operating System

(ROS) [1] and perception and action systems like Tekkotsu

[2] have made it possible for researchers to develop scalable

levels of robotic control, from highly manual to fully au-

tomatic. Details of low level tasks can be abstracted away,

such as moving each of a set of joints individually or rotating

a motor to "pick up a chess piece" [3]. This allows AI

researchers to concentrate upon higher level decisions rather

than being bogged down in lower level path optimisation or

fine motor control.

Robotics research has typically focused on optimising

processes to perform specific low level tasks and integrating

these lower level actions to create robots that can operate

well within small problem spaces. Cognitive science and

AI deal with more generalised tasks that are open-ended,

knowledge intensive, and span longer time intervals [3].

Robotic optimisation processes rely on computations

rather than memory for processing power and were shaped

this way by the fast CPUs but slow BUS speeds available

to access memory in standard von Neumann computer

architectures [3]. Conversely, biological brains are capable

of performing robust computations from large amounts of

memory and computing elements that are slow, inhomoge-

neous and faulty, taking advantage from having memory and

computation happening in the same location to mitigate the

bottleneck found in von Neumann machines [4].

Cognitive architectures attempt to facilitate the creation

and understanding of agents that have the same capabilities

as humans, which is a central goal of both AI from a

cognitive perspective and cognitive science [5]. Cognitive

architectures like ACT-R or Soar were initially created to

model human cognition but have been expanded to work in

AI for simulated environments or on robots [6], [7], [8], [9],

[10], [11], [12], [13], [14], [15], [16].

Cognitive embodiment as a concept focuses on the limita-

tions, affordances and features of a physical embodiment of a

cognitive processor[17]. Embodied cognition is a theory that

emphasises that conceptual representations that constitute

our knowledge are dependent on our sensory and motor

experiences.

Within the context of this paper, ACT-R is provided with

a physical embodiment in the form of a UAV both within a

simulated environment in a commercial 3D visualisation and

physics engine, and communicating via software operating

as a ROS node on a physical quadrotor. In this case, the

simulation mirrors the physical UAV.

1.1 Motivations
There are many challenges faced with directly applying a

cognitive model to robot embodiment, especially associated

with the relationship between high level symbolic models

of cognition and the meaning of computations over these

models for a physical robot situated in the physical world.

In particular, high level symbolic models of a verbal/textual

kind have arbitrary or conventional associations between the

tokens in which they are expressed and the references and

meanings of those expressions that originate in the human

use of tokens as signs. This means that the expressed rules

do not have any intrinsic meaning for an artificial cogni-

tive agent There are many challenges faced with directly

applying a cognitive model to robot embodiment, especially

associated with the relationship between high level symbolic

models of cognition and the meaning of computations over

these models for a physical robot situated in the physical

world. In particular, high level symbolic models of a ver-

bal/textual kind have arbitrary or conventional associations

between the tokens in which they are expressed and the

references and meanings of those expressions that originate

in the human use of tokens as signs. This means that the

Int'l Conf. Artificial Intelligence | ICAI'16 | 31

ISBN: 1-60132-438-3, CSREA Press ©

expressed rules do not have any intrinsic meaning for an

artificial cognitive agent /citeLindley2013; the meaning must

be engineered into the system by establishing functional

relationships between symbolic structures representing rules

and what those structures mean in the embodied context.

That is, the relationships between symbolic expressions and

sensor inputs and actuator outputs must be explicitly engi-

neered. This results in a three-strand development process:

i) crafting rules that make sense in terms of the deductive

and procedural functions that they are intended to have

for a human author, ii) creating the lower level sensor,

behaviour and control functions of the physical platform, and

iii) creating the links from high level symbolic expressions

through the engineered system of embodiment that can

assure correct denotational and functional meanings in the

situated and embodied operation of the robot in the physical

world. Hence, rule sets need to be planned, programmed, and

tested over multiple iterations to ensure successful operation

and management of sensory information being input into

the cognitive system. Inputting sensory information requires

fitting the electronics to the embodied cognitive model and

fine-tuning the electronic components, both of which add

layers of complexity to the cognitive modelling process in

the management of electrical signals, adding more areas of

potential failure to the testing and debugging process.

In the context of the project described in this paper, direct

development of autonomous rule sets within the physical

body confines the potential expression of productions to the

behavioural space of the physical body, and the levels of

abstraction provided for interfacing with the physical system.

For example, the propellers are required to be perfectly tuned

with all the sensors working correctly before the cognitive

model could perform any missions on the drone. This means

that development has an inherent bottleneck for the cognitive

architecture where the body needs to operate perfectly up to

the level of its control interface before cognitive productions

can be tested in the embedded agent.

Using a simulation environment can aid the development

process by allowing development and testing of the cognitive

level in parallel with developing the platform for its physical

embodiment.

Having an emulated virtual embodiment operating within

a simulation engine means that complex rule-sets can be

programmed and tested without the risk of bugs within

the hardware development slowing down the development

process.

The ability to test the cognitive architecture operating

on a simulated model of physical embodiment prior to

deployment into the physical embodiment minimizes bot-

tlenecks between development of the cognitive architecture

and its physical platform. The potential for developers to

be productive in programming more elaborate rule sets for

the cognitive architecture, without the risk of bugs within

the electronic circuitry or damaging the physical embodi-

ment with untested rule sets. Such a development process

shifts the emphasis to more complex cognitive products and

allows for more elaborate rule sets to be tested in a virtual

environment before being deployed onto the physical model.

2. Overview
Fig. 1 shows the REACT-R module integrating with ROS

which can then connect to the 3D/physics simulation or to a

UAV or other robot. The decision to use ROS means that the

REACT-R module has high portability and can be used with

existing robotics platforms. It also allows for users to have

access to the many of open-source ROS modules available.

This paper reports the integration of the REACT-R module

with the 3D platform simulation as a proof of concept.

Future work will involve porting this model to the UAV for

operating in an underground mine environment (see [?]).

2.1 Cognitive Architecture
The rise of cognitive architectures emerged from Allen

Newell’s attempts to develop a Unified Theory of Cognition

(UTC)[18], [19], defining the hallmark characteristics which

underlie the representation of cognition. The UTC aims to

define what a cognitive architecture includes and how it

relates to human cognition. Essentially it abstracts human

cognition into subsections that allows models to be created

and evaluated. Furthermore it seeks to explore what it means

to be cognitive and the follow on effects it has on problem

solving and decision making [3].

The cognitive architecture provides a top-down structure

of cognition, where manual robotic refinements can be

abstracted into decisions, which the cognitive architecture

can manually select.

3. Cognitive Architecture
3.1 ACT-R

ACT-R was developed by John Anderson at Carnegie Mel-

lon University to model human cognition and the mechanism

by which humans recall information and solve problems

given the current state of the buffers and its procedural and

declarative memory [20]. Declarative memory includes facts

like ’Sydney is in Australia’. Procedural knowledge is the

how of things, like how you would grasp a cup or how

Fig. 1: System Overview of REACT-R with Simulation

32 Int'l Conf. Artificial Intelligence | ICAI'16 |

ISBN: 1-60132-438-3, CSREA Press ©

you brush your teeth. The buffers are essentially how ACT-

R interacts with the world. ACT-R has visual, aural, goal,

motor, speech, imaginal and retrieval buffers[21]. As with

any agent ACT-R requires a goal it wishes to fulfill. The

goal buffer contains the current goal. The data type in ACT-

R is chunks, which act like structures containing information

required by the buffers. ACT-R takes an appropriate action

based on its goal and buffer values.

ACT-R learns on a structural and statistical level. That is,

the activation of declarative chunks will increase based on

how often they are used by productions. The cost and success

of productions are updated based on their observed behavior.

Productions can also merge through repeated sequences of

productions to create new ones [5].

To this end ACT-R/E was created to place the cognitive

architecture into a physical embodiment with the goal of

modeling human sensory phenomena. The cognitive archi-

tecture can accordingly have sensory phenomena as inputs

into the cognitive framework from an external environment

which would be taken into account during the decision

making process [8].

ACT-R/E is not open source and it still incorporates many

buffers that could potentially make customisation difficult.

3.2 REACT-R
The novel REACT-R variant reported in tis paper adds a

module to the ACT-R 7.0 core software package to allow for

a robot embodiment of ACT-R, Fig. 2 shows the REACT-

R software architecture. ACT-R has been expanded upon to

extend it from an abstraction of a human mind interacting

with a screen using a keyboard and mouse [22] to a model

that can function as a robot embodiment of cognition with

any number of sensors. In this instance the embodiment was

a virtual UAV sitting in a rendered model of a real mine. The

mine map was formatted as a .dxf file and then voxelised,

i.e. turned into multiple atomic cubes.

The UAV sensors consisted of:

• Four Sonar Sensors

• An Optical Flow Sensor

• An 6 DOF Inertial Motion Sensor

The REACT-R module takes in the sonar and optical flow

sensory information and leaves the lower level control of

attitude and position to the UAV control system.

REACT-R was designed to be intuitive and modular. It

is easy to integrate with robotics projects that are currently

using ROS. Fig. 1 shows how REACT-R can be interchange-

able between a simulation and a robot.

REACT-R uses only one additional buffer that communi-

cates using a UDP connection via ROS nodes. The buffer

can be easily modified to incorporate any sensor configu-

ration and send back any commands. ACT-R/E has visual,

aural, vocal, motor, configural, and manipulative modules to

emulate human cognition, as the quadrotor model requires

sensory inputs which are not human-centric (sonar, lidar and

Fig. 2: Software Architecture Diagram for REACT-R Inte-

gration

optical flow). Communication through the REACT-R module

was seen as preferable providing a centralised and modifi-

able implementation. This module consists of two buffers:

Sensors and Actuators. The inputs can be any number of

sensors and the outputs can be whatever is required: In our

case it outputs the direction the vehicle should travel in.

The REACT-R module is designed to work as a co-pilot

with a human and augment the user experience. To this end

we have created the REACT-R module with varying levels

of autonomy:

• None - REACT-R does not interfere at all with the

pilot’s flight.

• Semi - REACT-R provides hover control for the UAV

and will override user control if sonar sensors reading

less than a nominated distance from a surface.

• Functional - REACT-R will move autonomously to a

goal location avoiding obstacles as it goes. The operator

is still able to take control if they believe REACT-R is

not operating as desired.

REACT-R operates as a high level decision maker, being

capable of perceiving phenomena and performing a decision

making process. Given the architectural topology of REACT-

R within its environmental context, commands can be output

through the module to a lower level language operating on

the robot embodiment platform.

Int'l Conf. Artificial Intelligence | ICAI'16 | 33

ISBN: 1-60132-438-3, CSREA Press ©

The newly created REACT-R module does not discrimi-

nate between whether the Cognitive Architecture inhabits a

simulated environment, such as our 3D simulator, or whether

the cognitive processor exists in the physical world relating

to its surrounding environment over the module connection

to ROS.

4. Simulation
We created a simulation of a UAV to test the REACT-R

module. This was done using Unity, a 3D game engine that

uses NVidia’s PhysX physics calculations.

The UAV was modelled in BlendR and then put in the

Unity simulation. Forces are added depending on inputs

to influence UAV motion. The sensors are also simulated

by taking measurements that would be provided by these

sensors using either ray casting or rigid body mechanics.

A Computer-aided design (CAD) mesh rendering of an

underground mine was imported into Unity as a simulated

environment. A UAV was modelled with kinematics as

an object within the simulated environment for ACT-R to

embody.

The simulated embodiment of ACT-R is placed within a

surrounding environment with virtual sensors programmed

on the UAV within Unity to provide an input to ACT-R of

spatial sensory recognition, passed through the REACT-R

module.

For example, if the operator is operating in semi or

functional autonomy, sensors on the UAV will detect the

distance that it is from other objects and this data will be

made available to the REACT-R module and subsequently

the ACT-R productions.

Within the context of a Unity environment, the kinematics

and sensory inputs of the UAV were programmed C#, using

a UDP connection to REACT-R for the top level decision

making process. REACT-R receives relational positional

information and tells a positional control system how to

move in the virtual space.

4.1 Kinematics
It was desired that the UAV be as realistic as possible,

therefore a kinematics model was created. This was done

by relating the roll, φ, pitch, θ, yaw, ψ, and desire thrust

to motor speeds. To be at equilibrium, stable hovering, the

kinematics must satisfy these equations:

4∑
i=0

Ti = −mg (1)

T1−4||g (2)

4∑
i=0

Mi = 0 (3)

(ω1 + ω3)− (ω2 + ω4) = 0 (4)

Fig. 3: X Configured Quadrotor with Propeller Labeling

Where m is the mass of the UAV, g is gravity, and Ti
represents the thrust generated, Mi is the moment generated,

and ω is the rotational velocity of each propeller, Fig. 3

shows which the X configuration and the labeling convention

of each propeller.

To move the UAV these equilibrium values must be

disturbed. That means that the sum of the thrust is greater

than −mg to go up and less than −mg to go down.

To obtain the rotational rates we calculate:

ψ̇ = kY ((ω1 + ω3)− (ω2 + ω4)) (5)

φ̇ = kR((ω1 + ω4)− (ω2 + ω3)) (6)

θ̇ = kP ((ω1 + ω2)− (ω3 + ω4)) (7)

F = kF (ω1 + ω2 + ω3 + ω4) (8)

Where kY , kR, kP , and kF are proportional constants

and F is the lift force generated. If we assume common

proportionality, that is k = kY = kR = kP = kF , and that

F =
√∑4

i=0 Ti then we obtain:

⎡
⎢⎢⎣
ψ̇

φ̇

θ̇
F

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
k −k −k k
k k −k −k
k −k k −k
k k k k

⎤
⎥⎥⎦

⎡
⎢⎢⎣
ω1

ω2

ω3

ω4

⎤
⎥⎥⎦ (9)

The inputs from the controller of the operator give the

desired T , ψ̇, φ̇ and θ̇. Therefore to get the motor speeds,

we calculate: ⎡
⎢⎢⎣
ω1

ω2

ω3

ω4

⎤
⎥⎥⎦ = K−1

⎡
⎢⎢⎣
ψ̇

φ̇

θ̇
F

⎤
⎥⎥⎦ (10)

Where K−1 is the inverse of the proportional gain matrix

in equation 9 [23].

To obtain the desired thrust, we obtained available data

from Cobra CM-2217-20 Kv = 950 from [24]. This data

allowed us to relate throttle to thrust and then propeller

34 Int'l Conf. Artificial Intelligence | ICAI'16 |

ISBN: 1-60132-438-3, CSREA Press ©

Fig. 4: Control Flow

speeds to thrust. The relationships were formalised through

polynomial regression.

4.2 Control
To fully simulate how a drone would perform in a real en-

vironment it is not suitable to adjust anything other than the

torque and moments created by the motors. This means that a

control system has to be used rather than directly specifying

the UAV’s position and attitude in the environment. Fig. 4

shows the control system as it stands; positional and attitude

control will be explained in the following subsections.

4.2.1 Attitude
The attitude of a UAV is the difference in the rotation of

the UAV’s reference frame relative to the world reference

frame; Fig. 5 shows both of these reference frames. To

control the attitude of the UAV a proportional and derivative

(PD) control system was implemented. A PD control was

chosen because it is guaranteed to be exponentially stable

for most rotations [25]. The PD control system is given by:

R =

⎡
⎣φ̇θ̇
ψ̇

⎤
⎦ (11)

E = Rd −Ra (12)

Ṙc = −(KPE +KD
δE

δt
) (13)

Where Rd is the desired attitude given by the user, Ra is the

actual UAV attitude, Ṙc is the required rotational velocities

to make the actual and desired attitudes the same. KP and

KD are the proportional and derivative constants, and t is

time.

To simulate the UAV that is anticipated to go into the

mine, the rotation for roll and pitch was limited to 30◦, which

is equivalent to stabilised mode, with the option to go into

acrobatic mode to perform advanced aerial acrobatics such

as flips and barrel rolls, if necessary.

4.2.2 Position
An external control loop was added to create the ability for

the quadrotor to move to a desired position. The positional

controller acts as an external loop to the attitude control.

The user or cognitive model feeds the desired position to

the positional controller which outputs the desired attitude

that is required to achieve this position. This controller is

a proportional, integral, and derivative (PID) controller and

this was given by:

Fig. 5: UAV and World Reference

P =

⎡
⎣xy
z

⎤
⎦ (14)

ε = Pd − Pa (15)

Pc = −(KPP +KD
δP

δt
+KI

∫ t

0

Pdt) (16)

Ṙd =

⎡
⎣−Pc(z) sin(ψ) + Pc(x) cos(ψ)
Pc(x) sin(ψ) + Pc(z) cos(ψ)

Rd(y)

⎤
⎦ (17)

Where Pa is the actual position of the UAV, Pd is the desired

position of the UAV, and Pc is the initial controller output.

Pc gives the desired roll and pitch rotations and throttle

required to correct the x, y, and z offset. Ṙd is the rotations

desired to be put into the attitude controller. The positional

controller does not affect the yaw. The yaw is used to rotate

the required roll and pitch in the UAV’s reference frame

relative to the world reference frame. Fig. 5 shows how

the UAV’s and world reference frame can differ within the

voxelised mine model.

4.3 Communication
Prior research into interfacing ACT-R with Unity saw

messaging passing over TCP through JSON associative

arrays [13], [6].

REACT-R communicates to the robot embodiment

through a UDP connection. The reasoning behind using the

UDP protocol is that it is faster than TCP, and error checking

can be a hindrance to the real time flow of information. There

is a constant stream of packets being sent to the cognitive

model and for it to react appropriately: the most recent piece

of information is crucial. TCP will repeat packet requests

when transmission is lost, which can create a backlog. This

effectively creates a time lag between what is going on in

the real world and what the cognitive model is receiving.

For example, in relation to visual perception, sometimes

we fail to see or become aware of an object when it

first comes into our field of view. This could be seen as

Int'l Conf. Artificial Intelligence | ICAI'16 | 35

ISBN: 1-60132-438-3, CSREA Press ©

some failure of our visual processor to identify the object.

However, we are not concerned with where the object was

when it first came into the field of view, but where it is

now that we are aware of it and can make a decision about

how to react to it. Similarly, current information should take

precedence within the decision making process, and as a

constant feed of packets is being sent from all sensors the

most recent packet is the most relevant.

The cognitive model’s REACT module has two buffers,

a sensor and an actuator buffer, the sensor buffer receives

information from the robot embodiment and the actuator

buffer relays information to the robot embodiment.

The UAV simulator uses sonar sensors to understand rel-

ative distances from it to collidable objects. These distances

are sent to the cognitive model for evaluation along with

a user specified status packet that determines the level of

autonomy. The packet that is given to the model in this

specific scenario is six bytes: one for status and five for sonar

sensors. The model will then make a decision about what

direction or combination of directions it should move in. The

directions are up, down, left, right, forwards, and backwards.

The packet that it returns to the simulation is: status and

which directions it wants to move in. This also takes into

account the goal destination if it is in full autonomy mode.

For a physical embodiment a ROS node is used to

facilitate this communication so that it may integrate easily

with other robotics platforms already using ROS. The ROS

node can also be bypassed and directed by UDP connection

between REACT-R and any platform to be used.

5. Discussion
5.1 Reusable Module

One of the overarching objectives within the scope of the

research was to create an interchangeable ACT-R module

capable of interfacing with multiple external applications.

The REACT-R module programmed for this purpose requires

an IP address and port over which information can be

sent to any external interface receiver. When an IP address

and computer port are specified, ACT-R will send and

receive packets over the stream regardless of whether the

embodiment is virtual or physical thus allowing for modeling

scenarios, flight tests and simulated missions. The ability

to first simulate before testing on a physical embodiment

ensures the productions are accurate and easily testable prior

to testing REACT-R productions on a physical UAV. The

same rule sets of productions used by REACT-R in one

scenario of embodiment can be interfaced with a simulated

embodiment, or extended to physical embodiment, given the

sensory input is modelled in all embodiments to reflect the

same sensory phenomena. For example, the same REACT-R

production set can be tested and fine-tuned on a simulated

drone flight before being implemented on a physical drone.

Through the use of the REACT-R module, sensory inputs

and reactive outputs from ACT-R are easily modifiable, with

the requirement that the external interfacing software can

communicate over a UDP connection with a known port

and IP address to which packets are sent and received.

5.2 Future Development
Future scope within the development of the REACT-R

module will focus on the elaboration of productions within

the UAV model and furthering the complexity of interfacing

with the physical world through ROS.

5.2.1 Production Elaboration
Within the context of autonomous UAV surveying, pro-

ductions and rule sets will be further established to provided

the cognitive architecture with a greater sense of autonomy.

Currently the cognitive A.I has programmed responses to

allow for positional control, obstacle detection and obstacle

avoidance. As time and research progresses into interfacing

the physical UAV with Unity, the complexity of productions

given the sensory inputs into the cognitive architecture

can expand. These would include productions to allow for

optimal path recognition, flight surveying with additional

sensory inputs, mapping of terrain and a further refinement

of responsive rule sets to sensory inputs.

5.2.2 Long Term Memory
As ACT-R’s declarative memory chunks are fired in pro-

ductions to complete tasks, the success rate of productions

is updated in such a way that frequently coupled produc-

tions are automatically merged. The automatic merging of

processes allows ACT-R to optimise the decision making

process by minimising cost of time for decision calculation.

While production merging can aid ACT-R in the process of

self optimisation, the drawback of its current implementation

is that when the program is terminated all self-created

productions and optimisations are lost. Every time ACT-

R is restarted, the declaration merging for optimisation

needs to rediscovered within the uninterrupted software run

time. Providing ACT-R with a long term memory module

which saves self-established productions alongside human-

programmed productions would ensure that knowledge at-

tained from past experience within an embodiment could aid

in the current and future decision making of the cognitive

architecture. Future research will see ACT-R retaining self

created productions through a long term memory buffer to

utilise previously stored experience which would be added to

the production rule set on start up and saved when ACT-R is

shut down. From a research perspective it will be fascinating

to see how ACT-R’s self-created rule sets vary from those

programmed by humans over an extended period of time.

5.2.3 ROS Optimsation and Elaboration
Within the current state of implementation, ACT-R suc-

cessfully operated as a node within the Robot Operating

36 Int'l Conf. Artificial Intelligence | ICAI'16 |

ISBN: 1-60132-438-3, CSREA Press ©

System suite, both sending and receiving packets to a

physical UAV operating on a ROS system. Future research

will include ACT-R performing the decision making process

as an autonomous UAV within the physical world. As a

cognitive architecture, ACT-R could perform the high level

decision making for ROS, selecting which algorithms would

be best to apply depending on context-based scenarios.

Flight productions and rule sets would first be tested and

refined within the virtual environment on the virtual UAV

embodiment before being applied to the physical drone

embodiment. The REACT-R module provides a streamlined

method of passing messages between any client-server based

architecture with the hope of modeling behaviour in a

simulation before applying the cognitive architecture to a

physical embodiment that can meet real world challenges.

6. Conclusion
We have developed a physics simulation of a UAV that

validates the use of REACT-R as a simple and easily

customisable platform for use on a robotic platform. Using

ROS provides ease of integration with currently standing

projects.

We have also demonstrated a simulated UAV embodiment

of REACT-R that is capable of navigating to a position

and avoiding obstacles, as well as assisting pilots in flight

by providing hover control and obstacle avoidance. It is

anticipated that AI will not replace human operators but

rather augment their experience, and we have demonstrated

the facilitation of this.

Since REACT-R is anticipated to be used in conjunction

with other robots in a multi-agent system, as well as humans,

using the core ACT-R cognitive architecture is justified

because it is designed with the intent of modeling human

behaviour to give robot embodiments better understanding

of their human counterparts or team mates.

The elaboration of future work was done in the hope that

the logical expansion of the model outlined in this paper can

be realised so that we may have harmonious co-operation

between human and robot workers in the future.

References
[1] M. Quigley, K. Conley, B. Gerkey, J. FAust, T. Foote, J. Leibs,

E. Berger, R. Wheeler, and A. Mg, “ROS: an open-source Robot
Operating System,” Icra, vol. 3, no. Figure 1, p. 5, 2009.

[2] E. Tira-thompson and A. D. S. Touretzky, “Tekkotsu : A Rapid
Development Framework for Robotics,” Robotics, 2004.

[3] U. Kurup and C. Lebiere, “What can cognitive architectures do for
robotics?” Biologically Inspired Cognitive Architectures, vol. 2, pp.
88–99, 2012.

[4] G. Indiveri and S.-c. Liu, “Memory and Information Processing in
Neuromorphic Systems,” Proceedings of the IEEE, no. 612058, 2015.

[5] P. Langley, J. E. Laird, and S. Rogers, “Cognitive architectures :
Research issues and challenges,” Cognitive Systems Research, vol. 10,
no. 2, pp. 141–160, 2009.

[6] R. M. Hope, M. J. Schoelles, and W. D. Gray, “Connecting ACT-
R to the World with JSON over TCP,” Proceedings of the 12th
International Conference on Cognitive Modeling, no. rm 108, pp.
354–355, 2013.

[7] W. G. Kennedy, M. D. Bugajska, M. Marge, W. Adams, B. R. Fransen,
D. Perzanowski, A. C. Schultz, and J. G. Trafton, “Spatial Represen-
tation and Reasoning for Human-Robot Collaboration,” Architecture,
vol. 22, pp. 1554–1559, 2007.

[8] J. G. Trafton, A. M. Harrison, B. R. Fransen, and M. D. Bugajska, “An
embodied model of infant gaze-following,” International Conference
of Cognitive Modeling, no. 2003, 2009.

[9] T. Deutsch, C. Muchitsch, H. Zeilinger, M. Bader, M. Vincze, and
R. Lang, “Cognitive decision unit applied to autonomous biped
robot NAO,” IEEE International Conference on Industrial Informatics
(INDIN), pp. 75–80, 2011.

[10] P. Langley, “Intelligent Behavior in Humans and Machines,” Aaai,
2011.

[11] J.-Y. Puigbo, A. Pumarola, C. Angulo, and R. Tellez, “Using a
cognitive architecture for general purpose service robot control,”
Connection Science, vol. 00, no. 00, pp. 1–14, 2008.

[12] F. E. Ritter, D. Van Rooy, R. St. Amant, and K. Simpson, “Providing
user models direct access to interfaces: An exploratory study of a
simple interface with implications for HRI and HCI,” IEEE Transac-
tions on Systems, Man, and Cybernetics Part A:Systems and Humans,
vol. 36, no. 3, pp. 592–601, 2006.

[13] P. R. Smart, T. Scutt, K. Sycara, and N. R. Shadbolt, “Integrating
ACT-R Cognitive Models with the Unity Game Engine,” no. 2000,
2012.

[14] P. Smart, K. Sycara, and C. Lebiere, “Cognitive Architectures and
Virtual Worlds : Integrating ACT-R with the XNA Framework.”

[15] F. Tanaka and S. Matsuzoe, “Children Teach a Care-Receiving Robot
to Promote Their Learning: Field Experiments in a Classroom for
Vocabulary Learning,” Journal of Human-Robot Interaction, vol. 1,
no. 1, pp. 78–95, 2012.

[16] C. Wei and K. V. Hindriks, “An agent-based cognitive robot architec-
ture,” Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
vol. 7837 LNAI, pp. 54–71, 2013.

[17] R. A. Wilson and L. Foglia, “Embodied Cognition,” 2016.
[18] J. R. Anderson and C. Lebiere, “The Newell Test for a theory of

cognition.” The Behavioral and brain sciences, vol. 26, no. 5, pp.
587–601; discussion 601–648, 2003.

[19] A. Newell, Unified Theories Of Cognition. Harvard University Press,
1990.

[20] J. R. Anderson, “A Simple Theory of Complex Cognition,” pp. 355–
365, 1996.

[21] J. Whitehill, “Understanding ACT-R âĂŞ an Outsider ’ s Perspective,”
Mplab.Ucsd.Edu, pp. 1–12, 1993.

[22] J. R. Anderson, M. Matessa, and C. Lebiere, “ACT-R: A Theory of
Higher Level Cognition and its Relation to Visual Attention,” pp.
439–462, 1997.

[23] C. Santoro, “How does a Quadrotor fly? A journey from physics,
mathematics, control system and towards a "Controllable Flying
Object",” Catania, pp. 1–64, 2014.

[24] L. Miller, “How to use the Multirotor Motor Performance Data
Charts,” Innov8tive Designs, Inc., Vista, Tech. Rep.

[25] R. Mahony, V. Kumar, and P. Corke, “Multirotor Aerial Vehicles:
Modeling, Estimation, and Control of Quadrotor,” IEEE Robotics &
Automation Magazine, vol. 19, no. 3, pp. 20–32, 2012.

Int'l Conf. Artificial Intelligence | ICAI'16 | 37

ISBN: 1-60132-438-3, CSREA Press ©

