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Abstract - This paper presents a short term forecasting of 
stock market using Feed Forward Multilayer Perceptron 
(FMP) with an adaptive learning algorithm. Business 
people often attempt to anticipate the market by interpreting 
external parameters, such as economic indicators, public 
opinion, and current political climate. However, the neural 
network is used in purpose of discovering trends in data that 
humans might not notice, and successfully use these trends 
in their predictions. Traditionally, the neural network 
training process takes trial and error for different values of 
learning factors. In work [1, 2], the analysis of convergence 
of learning process based on the Backpropagation
algorithm leads to conditions that the learning factors
satisfy to guarantee the convergence. In this paper, the 
conditions are further extended to a feasible formula that 
can be calculated to define an adaptive learning factor at 
iteration of learning process. The result of simulations using 
stock market data sourced from Yahoo! demonstrates that 
errors steadily decrease in training with the adaptive 
learning factor starting at different initial value and errors 
behave volatile with constant learning factors with different 
values.  Once the neural network is trained, it provides 
predication for future market performance. The network is 
modified or retrained for every future data set starting with 
trained weights and learning factor. Performance of such 
network learning with adaptive learning factors are 
presented and demonstrated that the adaptive learning 
factor enhance the performance of training while avoiding 
oscillation phenomenon.  
.
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1. INTRODUCTION
The idea to predicate stock market is not new. It has been 

for many years the focus of many researchers to seek 
methods that achieve accurate forecasting using historical 
data [8, 9, 10]. Business people often attempt to anticipate 
the market by interpreting external parameters, such as 
economic indicators, public opinion, and current political 
climate. The question is, though, if neural networks can 
discover trends in data that humans might not notice, and 

successfully use these trends in their predictions. The 
Artificial Neural Networks (ANNs) have been proven in 
many real world applications to be useful in various tasks of 
modeling nonlinear systems, such as signal processing, 
pattern recognition, optimization, weather forecasting, to 
name a few. It has drawn many researchers in financial 
market because neural networks may be easy to use once the 
network is set up, but the setup and training of the network 
requires skill, experience, and patience. It's not all hype, 
though; neural networks have shown success at prediction of 
market trends. There are number of commercial software as 
well as free software that offer neural network simulation.

The ANN is a set of processing elements (neurons or 
perceptrons) with a specific topology of weighted 
interconnections between these elements and a learning law 
for updating the weights of interconnection between two 
neurons. The FMP networks have been shown to obtain 
successful results in system identification and control [3]. 
The Lyapunov function approach was used to provide
stability analysis of Backpropagation training algorithm of
such network in [4-7]. However, the training process can be 
very sensitive to initial condition such as number of neurons, 
number of layers, and value of weights, and learning factors 
which are often chosen by trial and error. This paper presents 
a detailed analysis of the FMP architecture and its stability. 
The Backpropgation algorithm is used for learning – that is, 
weight adjusting. This is a simple back-propagation network 
of three layers, and it is trained and tested on a high volume 
of historical market data. The challenge here is not in the 
network architecture itself, but instead in the choice of 
variables and the information used for training. In this 
research, historical data were chosen from previous six days
open, close, high and low price as well six previous Nasdaq 
open, close, high and low. 

The Least Square error function is defined and verified 
that it satisfies Lyapunov condition so that it guarantees the 
stability of the system. In the work [1], the analysis carries
out a method that defines a range for value of learning factor 
at iteration which ensure the condition for stability are 
satisfied. In simulation, instead of selecting a learning factor 
by trial and error, author defines an adaptive learning factor 
which satisfies the convergence condition and adjust 
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connection weight accordingly. The simulation results are 
presented to demonstrate the performance.

2. BASIC PRINCIPLE OF FMP
NETWORK

A system identification problem can be outlined as 
follow: a set of data is collected from the system including
input data and corresponding output data observed, or 
measured as target output of the identification problem. The 
set is often called “training set”. A neural network model 
with parameters, called weights, is designed to simulate the 
system. When the output from neural network is calculated, 
an error representing the difference between target output 
and calculated output from the system is generated. The 
learning process of neural network is to modify the network 
to minimize the error. 

Consider a system with N inputs = { , … , }  and M 
output units Y = { , … , } . A recurrent FMP network 
combines number of neurons, called nodes, feed forward to 
next layer of nodes, illustrated in Figure 1. Suppose is 
number of nodes in lth layer, each output from the l-1th layer 
will be used as input for next layer. A system of a single 
layer with M outputs can be expressed in form of= ( ) = + ( )         (1)

where is called connection weight from input to
output ;vij is called connection weight of local feedback at 
jth node with ith delay;  ( ) is a nonlinear sigmoid function( ) =    (2)       

with constant coeficient , called slope; p = 1, …, T, T is 
number of patterns, D is number of delay used in local 
feedback. 

Figure 1. Feed-Forward Multi-Layer Network

The back-propagation algorithm has become the standard 
algorithm used for training feed-forward multilayer 
perceptron. It is a generalized the Least Mean Square 
algorithm that minimizes the mean squared error between the 
target output and the network output with respect to the 
weights.  The algorithm looks for the minimum of the error
function in weight space using the method of gradient 

descent. The combination of weights which minimizes the 
error function is considered to be a solution of the learning 
problem. A proof of the Backprpagation algorithm was 
presented in [10] based on a graphical approach in which the 
algorithm reduces to a graph labeling problem. 

The total error E of the network over all training set is 
defined as =  ( )                                  (3)     

where ( ) is the error associated with pth pattern at the 
kth node of output layer,( ) = ( ( ) ( ))                           (4)  

where ( ) is the target at kth node and ( ) is the output 
of network at the kth node. The learning rule was chosen 
following gradient descent method to update the network 
connection weights iteratively, = ; = 1, … ,                          (5)

= ; = 1, … ,                             (6)

where = , … ,  = , … , are 
weight vectors in jth node; μ is a constant called learning
factor. 

3. ADAPTIVE LEARNING FACTOR FROM 
STABILITY ANALYSIS
There are no inclusive general concepts of stability for 

nonlinear systems. The behavior of a system may depend 
drastically on the inputs and the disturbances. However, 
Lyapunov theory has been used in many researches to 
examine the stability of nonlinear systems.

The definition of the Lyapunov function and the 
Lyapunov theorem are quoted below [11]:

Definition 1 (Lyapunov function): A scalar function V(x) is 
a Lyapunov function for the system ( + 1) =  ( ) , (0) = 0           (7) 

if the following conditions hold:

1. (0) = 0 and  (0)  is continuous in x 
2. ( ) is positive definite, that is, ( ) 0 with ( ) = 0 only if = 0 
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3.  ( ) = ( ( ) ( ( )) is negative
definite, that is, ( ( ) ( ( )) 0 with ( ) = 0 only if = 0; 

Theorem 1 (Lyapunov Theorem): The solution ( ) = 0
for the system given by (7) is asymptotically stable if there 
exists a Lyapunov function of the system in x.

The stability of the learning process in an identification 
approach leads to better modeling and a convergent process. 
According to the Lyapunov theorem, determination of 
stability depends on selection and verification of a positive 
definite function. For the systems defined in (1) – (2), 
assume that the Backpropagation learning rule is applied and 
the error function and weights updating rule are defined in 
(5) - (6), then define   ( ) =   ( )                            (8)

The proof is given in the following theorem that the V (t) 
satisfies the Lyapunov conditions. 

Theorem 2: Assume that the nonlinear sigmoid function  ( ) defined in equation (2) is continuous and differentiable, 
the network is defined in (1)-(2) with learning rule (5) - (6), 
then the system is stable under the condition: <                            (9)

Proof: It is give in [1].

  Theorem 3. Assume that the system with one hidden 
layer can be represented in the form of:  =  =  + ( )  (10)= = ( + ( ))    (11)

the gradient descent rule= ,   = 1, … ,                    (12) 

= ,   = 1, … ,                        (13) 

= ,   = 1, … ,                     (14) 

= ,   = 1, … ,                        (15) 

where

= ( , … , ) ,   = ( , … , )   = ( , … , ) ,   = ( , … , )
are weight vectors in jth node in output layer and hidden 
layer respectively. H is the number of nodes in hidden layer. 
The system is stable when the learning factor in (18) - (21)
satisfies the condition given below:

<                         (16)  

Proof: Similarly, given in [1].  

In general simulation, the learning factor was predefined 
constant whose value was selected by trial and error. The 
simulation performance differs from different values of 
learning factor. The learning process may converge or may 
not reach a satisfactory threshold with different learning 
factors. From the result of above theorem, the convergence is 
guaranteed if an adaptive learning factor is selected at
iteration of the learning which satisfies the stability 
condition. For purpose of simplifying the simulation, instead 
of calculating all  and for l = 1, … L;  j = 1, … , 
the following corollary will  provide a more restrictive but
easier calculated condition.

Consider infinite norm notation for any vector = { , , … , } that = max { }, for simplicity, use 
notation in this paper representing ). Applying
infinite norm in (16) and notation = , 
calculation of   lead to

1 +    1 +   

then

, and                 (17)

Further calculation of   lead to  ( + )(| | + ) 

| | , and   | |               (18) 
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Add the (26) and (27), and result in the following Corollary.

Corollary 1: The system defined in (16) – (17) converges 
if the learning factor in (18) – (21) satisfies the following 
conditions: 2  | | > 0 ,                                       (19) 

.  < ( (| |                                     (20)  

4. SIMULATION

Many researches provide analysis that what historical data 
are adequate for training of the neural network system as the 
market can be influenced by many business or political 
factors. However, the research of neural network learning is 
to build a system that learned from only previous data and 
required less human inputs. Human never fully understand 
the complicated correlation of factors that might have 
influenced the market a high accuracy. This simulation 
mainly demonstrates that the enhanced learning algorithm 
may avoid many trial and error for selection of learning 
factors. 

In traditional neural network training, the initial weights 
are randomly selected, a learning factor is predefined. The 
performance of the learning can sometime very volatile due 
to the selection of the learning factor. To find the optimal fit, 
the trial and error is common practice that runs the 
simulation with different values of learning factors. In this 
research, an upper boundary of learning factors (20) is 
derived from the theory of convergence. At iteration of 
network training, the norm of weights is calculated following 
(17), and a learning factor is defined to satisfy the 
convergence condition (20). 

A three layer neural network structure was selected with 
24 inputs, 10 and 7 nodes in the hidden layer, and two 
outputs.  The data are sourced from Yahoo! Finance. The 
daily price of stock IBM including open, high low and close 
price in 2015 is selected for demonstration. Two outputs are 
daily high and low. 24 inputs are selected as follows: high 
and low of the IBM stock from previous six days; high and 
low of Nasdaq from previous six days. Input and output data 
are normalized to range from 0 to 1.                  

Figure 2. IBM Stock Daily High and Low Price as Training Points

With the constant learning factor, several values were used 
for the learning trials: 0.2, 0.15, 0.1, and 0.05. After number 
of attempts, with slope set as 0.7, learning factor set as 
constant 0.05, momentum term set as 0.1, and random 
generated initial weights, the system reached to absolute 
error 0.028 after 100000 iterations. The error behaviors are 
shown respectively in Figure 3 – Figure 6. 

Figure 3.  Error Behavior of Neural Network Training with 
Constant Learning Factor 0.2
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Figure 4.  Error Behavior of Neural Network Training 
with Constant Learning Factor 0.15

Figure 5.  Error Behavior of Neural Network Training with 
Constant Learning Factor 0.1

Figure 6.  Error Behavior of Neural Network Training with 
Constant Learning Factor 0.05

  
With initial learning factor 0.2, 0.15, 0.1 and 0.05, the errors 
steadily decreases at iteration when an adaptive learning 

factor was applied at iteration, Figure 7 – Figure 10 
demonstrate the error behaviors of learning with initial 
learning factors, 0.2, 0.15, 0.1 and 0.05 respectively. It is 
observed that error behaviors do not differ with different 
initial values of learning factors.  However, the constant 
learning factor could cause volatile performance of training. 

Figure 7.  Error Behavior of Neural Network Training with 
adaptive Learning Factor with initial 0.2

Figure 8.  Error Behavior of Neural Network Training with 
adaptive Learning Factor with initial 0.15

The Figure 11 presents the comparison of IBM daily high 
and ANN model of 100 days and 9 days prediction of the 
trained neural network. Figure 12 presents comparison of 
IBM daily low and ANN model of 100 days and 9 days 
prediction of low from the trained neural network. 
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Figure 9.  Error Behavior of Neural Network Training with 
Adaptive Learning Factor with initial 0.1

   

Figure 10.  Error Behavior of Neural Network Training with 
adaptive Learning Factor with initial 0.05

Figure 11.  ANN Model and predication of IBM high

  

Figure 12.  ANN Model and predication of IBM low

5. SUMMARY

This research focused on improvement of learning 
algorithm. A condition was derived from the proof of 
convergence of neural network system learning process 
using Backpropagation algorithm. The condition provides an 
upper boundary of the learning factor. Instead of select a 
constant learning factor by trial and error, an adaptive 
learning factor is calculated at iteration satisfying the 
convergence condition. Furthermore, a more simplified 
condition was used to provide a feasible implementation of 
the adaptive learning factor. At iteration of the learning 
process, an adaptive learning factor was selected satisfying 
the stability condition to avoid unstable phenomena. 
Simulation results of the IBM stock prices demonstrated that 
a learning factor arbitrarily chosen out of the predefined 
stability domain leads to an unstable identification of the 
considered system; however, an adaptive learning factor 
satisfying the conditions chosen for this study ensures the 
stability of the identification system.    
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