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Abstract - In this paper, a brain-actuated control of the 
wheelchair for physically disabled people is presented. The 
design of the system is focused on receiving, processing and 
classification of the brain signals and then performing control 
of the wheelchair. The number of experimental measurements 
of brain activity has been done using human control 
commands of the wheelchair. Using obtained data including 
brain signals and control commands the design of 
classification system based on fuzzy neural networks (FNN) is 
performed. The structure and learning algorithm of FNN used 
for brain-actuated control are presented. The training data is 
used to design the system and then test data is applied to 
measure the performance of the control under real conditions. 
The approach used in the paper allows reducing the 
probability of misclassification and improving the control 
accuracy of the wheelchair. 

Keywords: Brain-computer interface, wheelchair, fuzzy 
neural networks, electroencephalogram signal. 

 

1 Introduction 
  The measuring human brain signal and converting it into 

control signals needs the development of the interface 
between the brain and computer and then implementing the 
control of devices. A brain computer interface (BCI) provides 
communication between computer and mind of pupils. This 
interface can be based on brain activity during muscular 
movements or the changes of the rhythms of brain signals. 
These brain activities can be detected using 
electroencephalographic (EEG) signals. BCI transforms the 
EEG signals produced by brain activity into control signals 
which can then lasted be used for controlling the wheelchair 
without using muscles. Since the brain signals are very weak 
we need to apply some spatial and spectral filters and 
amplifiers to the EEG signals in order to extract characteristic 
features of these signals. Several EEG signals can be detected, 
resulting in different types of BCI. These signals are based on 
the change of frequencies, change of amplitudes.  For example 
during voluntary thoughts the frequencies of signals are 
modified, during movement a synchronisation/ 
desynchronisation of brain activity which involves  rhythm 
amplitude change. This relevant characteristic makes rhythm 
based BCI suitable to be used. 

Recently some research works have been done to develop 
many applications of BCI for wheelchairs. BCI is a control 

interface that translates human intentions into appropriate 
motion commands for the wheelchairs, robots, devices, etc. 
[1] considers the application of BCI and control of wheelchair 
in an experimental situation. The research considers the 
driving of a simulated wheelchair in a virtual environment 
(VE) before using BCI in a real situation. [2] describe a BCI 
system which control the wheelchair that moves in only one 
direction- move forward. In [3] a simulated robot is designed 
that performs two actions- ‘turn left then move forward’, or 
‘turn right then move forward’. [4,5] uses three possible 
commands turn left, turn right and move forward. In [6] BCI 
is designed using EEG signal captured by eight electrodes. 
Wavelet transform was used for feature extraction and the 
radial basis networks were used to classify the predefined 
movements.  In [7] controller based on the brain-emotional-
learning algorithm is used to control the omnidirectional 
robot. [8] presents the design of an asynchronous BCI based 
control system for humanoid robot navigation using an EEG. 
[10] considers a non-invasive EEG-based Brain Computer 
Interface (BCI) system to achieve stable control of a low 
speed unmanned aerial vehicle for indoor target searching. 
[10-15] consider the design of brain controlled wheelchair. 
The constraction of viable brain–actuated wheelchair that 
combines brain computer interface with a commercial 
wheelchair, via a control layer, is considered. BCI allows 
improving the quality of life of disabled patients and letting 
them interact with their environment. The processes of feature 
extraction and classification is very important in BCI design 
and has a great affect to the performance of the BCI system. 
Set of research have been done for improvement of the feature 
extraction and classification algorithms [16-19]. [16,17] 
considers feature extraction algorithms for Brain-Computer 
Interfaces.  

Recently different clustering algorithms based on support 
vector machine, linear discriminant analysis, neural networks 
are applied for classification of brain signals [18]. [19] used 
features, optimised in the sense of statistically significant and 
potentially discriminative coherences at a specific frequency 
and applied linear discriminant for classification purpose. 
SVM based classification [20] and linear discriminant analysis 
(LDA) [21] are used for classification purpose of brain 
signals. [22] uses fuzzy logic and [23] uses neural networks 
with fuzzy particle swarm optimisation for BGI design. In 
[24] continuous wavelet transform is used to extract highly 
representative features and an Adaptive Neuron-Fuzzy 
Inference System (ANFIS) is used for classification.  Fuzzy 
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Information Gain, selects a subset of the original 

representation attributes according to Information Theory 
quality metric, Information Gain. This method computes the 
value of the metric for each attribute, and rank the attributes. 
Then simply decide a threshold in the metric and keep the 
attributes with a value over it. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.3. Signal Preprocessing unit. 
 

After frequency representation, all channels in the window 
are combined in to a single unit so as to apply classification 
on all channels at once. The filtering operation is applied in 
order to select important features of the brain signals. These 
features are used for classification purpose. The whole signal 
preprocessing stages are shown in Fig. 3. In the second 
approach the acquired brain signal after windowing, 
normalisation and combining operations are used for 
classification purpose. 
 These signals are input for the classification. After the 
classification the signals the output of classification system is 
used to activate the wheelchair. Even though during training 
system reports 100% success rate in real world conditions it 
does misclassify, a state machine is used to further increase 
safety and reduce misclassification. As an example, the 
system won’t transition from forward motion to backward 
motion without stopping in neutral.  The output of the state 
machine drives the microcontroller which controls the motors 
on the wheelchair. The number of classes is equal to the 
number of control actions. 

3 FNN Based Classification   
 The features extracted from the EEG signals are used for 

classification and determining control action. In this paper, we 
propose a novel approach for the classification of brain signals 
using FNN based classifier. The extracted features are input 
signals of the FNN based classifier. The classifier based on 
the above features classifies the signals into the six classes: 
move forward, move backward, switch on, stop, turn left and 
turn right. The fuzzy neural system combines the learning 
capabilities of neural networks with the linguistic rule 
interpretation of fuzzy inference systems. The design of FNN 
includes the generation of IF-THEN rules [25-28]. Here, the 
problem consists in the optimal definition of the premise and 
consequent part of fuzzy IF-THEN rules for the classification 
system through the training capability of neural networks, 
evaluating the error response of the system. There are two 
basic types of IF-THEN rules used in fuzzy systems. These 
are Mamdani and Takagi-Sugeno-Kang (TSK) type fuzzy 
rules. The first one consists of rules, whose antecedents and 
consequents parts utilize fuzzy values. The second type fuzzy 
system uses the rule base that has fuzzy antecedent and crisp 
consequent parts. The second type of fuzzy system 
approximates nonlinear system with linear systems and has 
the following form. 
 
If x1 is A1j and x2 is A2j and … and xm is Amj   Then    

1

m

j j ij i
i

y b a x
=

= +                          (1) 

Here xi and yj are input and output signals of the system, 
respectively, i=1,...,m is the number of input signals, j=1…r is 
the  number of rules. Aij are input fuzzy sets, bj and aij are 
coefficients. 

The structure of fuzzy neural networks used for the 
classification of EEG signals is based on TSK type fuzzy rules 
and is given in Fig. 4. The FNN includes six layers. In the first 
layer, the xi (i=1,…,m) input signals are distributed. The 
second layer includes membership functions. Here each node 
corresponds to one linguistic term. Here for each input signal 
entering the system, the membership degree to which input 
value belongs to a fuzzy set is calculated. To describe 
linguistic terms, the Gaussian membership function is used. 

2

2

( )

1 ( ) ,     1,..., ,   1,...,
i ij

ij
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j ix e i m j rσ

μ

−

−
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where m is a number of input signals, r is a number of fuzzy 
rules (hidden neurons in the third layer). cij and σij  are centre 
and width of the Gaussian membership functions, 
respectively. 1j(xi) is membership function of i-th input 
variable for j-th term.  

The third layer is a rule layer. Here number of nodes is 
equal to the number of rules. Here R1, R2,…,Rr represents the 
rules. The output signals of this layer are calculated using t-
norm min (AND) operation. 

,  i=1,..,m, j=1,...,r                    (3) 

Input Data 

Split Data into Windows 
Having 2 sec. time interval 

Applying FFT to the window 
data 

Normalize each window 

Combine all channels 

Reduce the number of 
features 
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where  is the min operation. 
These j(x) signals are input signals for the fifth layer. 

Fourth layer is a consequent layer. It includes n linear 
systems. Here the values of rules output are determined.  

1

1
m

j j ij i
i

y b a x
=

= +                                          (4) 

 
In the fifth layer, the output signals of the third layer are 

multiplied by the output signals of the fourth layer. The output 
of j-th node is calculated as  

( ) y1j j jy xμ= ⋅

 
In the sixth layer, the output signals of FNN are determined as

 
      

1

1

( )

r

jk j
j

k r

j
j

w y

u
xμ

=

=

=                                              (5) 

 
Here uk are the output signals of FNN, (k=1,..,n). After 
calculating the output signal, the training of the network starts. 

Fig. 4. FNN based identifier 

4 Parameter Learning 
 The design of FNN (Fig. 4) includes determination of the 

unknown parameters that are the parameters of the antecedent 
and the consequent parts of the fuzzy if-then rules (1). In the 
antecedent parts, the input space is divided into a set of fuzzy 
regions, and in the consequent parts the system behaviour in 
those regions is described [25-28]. In this paper, the fuzzy 
clustering is applied to design the antecedent (premise) parts, 

and the gradient algorithm is applied to design the consequent 
parts of the fuzzy rules. Fuzzy c-means clustering is applied in 
order to partition input space and construct antecedent part of 
fuzzy if-then rules.  In the results of partitioning the 
determined cluster centers will correspond to centers of the 
membership functions used in input layer of FNN. The width 
of the membership function is determined using distance 
between cluster centers. After the design of the antecedents 
parts by fuzzy clustering, the gradient descent algorithm is 
applied to design the consequent parts of the fuzzy rules. At 
the beginning, the parameters of the FNN are generated 
randomly. To generate a proper FNN model, the training of 
the parameters has been carried out. For generality we have 
given the learning procedure of all parameters of FNN using 
gradient descent algorithm. The parameters are the 
membership function of linguistic values in the second layer 
of the network and the parameters of the fourth and fifth 
layers. Training includes the adjusting of the parameter 
values. In this paper, we applied gradient learning with 
adaptive learning rate. The adaptive learning rate guarantees 
the convergence and speeds up the learning of the network. In 
addition, the momentum is used to speed-up the learning 
processes. 

At first, on the output of the network, the value of cost  

 
function is calculated. 
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Here n is the number of output signals of the network, 

 are desired and current output values of the 
network (k=1,..,n), respectively. The parameters  wjk, aij, bj, 
(i=1,..,m,  j=1,..,r, k=1,..,n) in consequent part of network and 
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the parameters of membership functions cij a
j=1,..,r) of in the premise part of FNN struc
using the following formulas. 
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Here  is the learning rate,  is the mom
number of input signals of the network (inpu
is the number of fuzzy rules (hidden neurons)

Using equations (7) and (8) the co
parameters of FNN is carried out. 

Convergence is very important problem in
model. The convergence of the learning 
gradient descent depends on the selection of 
of the learning rate. The derivation of the
given in [33, 34]. 

5 Experiments and Results 
The BCI system is simulated and used in real
The EEG signals are measured with Signal 
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Fig. 6. Training of FNN 
 
 
Table 1. Classification results. 

Number 
of Rules 

Correctly 
Classified 
Instances 

Incorrectly 
Classified 
Instances 

Training  
RMSE        

Eva
RM

5 92% 3 0.465492 0.4

6 100% 0 0.223264   0.24

9 100% 0 0.152714   0.1

16 100% 0 0.047268   0.04

 
Table 2. Classification results 

 
Method 

Correctly 
Classified 
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Incorrectl
y 
Classified 
Instances 

Mean 
absolute 
error       

SVM 96% 4% 0.2424 

MLP (NN) (6 
hidden 
neurons) 

100% 0 0.048 

Bayesian  94%  6% 0.024 

Random tree  74%  26% 0.104 

FNN  100% 0 1.824 
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64918 0.476516 

41625 0.257986   

53688 0.153874   

48324 0.048262   
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error               

0.32 

0.0958 

0.1549 

0.3225 

0.258022   
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