
Kinesthetic Touches For a Theory of Computing Class

Judy Goldsmith
University of Kentucky

329 Rose St.
Lexington, KY 40509

goldsmit@cs.uky.edu

Radu Paul Mihail
Valdosta State Univeristy

1500 N Patterson St.
Valdosta, GA 31698

rpmihail@valdosta.edu

ABSTRACT
Theory of computing courses do not usually evoke mem-
ories of fun for most students. Instead, fragments of for-
malisms from automata theory and memories of the exis-
tence of rigorous proofs come tomind. In this paper we bring
arguments from educational psychology and pedagogy that
movement and fun can be a part of the teaching and learning
process in theory of computing courses. Kinesthetic Learn-
ing Activities (KLAs) consist of physical interactions be-
tween the students and their environment in order to achieve
or optimize an educational objective. We propose a set of
KLAs and performances to assist teachers with topics that
most students find hard to grasp. Our hope is to inspire
CS educators to not only adopt and modify these KLAs,
but to create new ones. Our greater hope is that words like
“fun” and “games,” along with more accurate understanding
of important results in theoretical computer science, come
to mind when students are asked to describe their theory
course.

1. INTRODUCTION
This is a paper about real practices in real Theory of Com-
puting classes that bring motion into the teaching and/or
learning process. We argue that there are pedagogical rea-
sons to involve motion in what has often been taught in the
best formal mathematics tradition.

Our university offers theory of computing courses at the un-
dergraduate and graduate level. The syllabi for both in-
clude regular languages, deterministic and nondeterministic
automata, and their equivalence, as well as proofs that there
are non-regular languages; context-free grammars and push-
down automata, and their equivalence; Turing machines and
their variants, a brief introduction to decidability, and to
computational complexity. Our undergraduate course is con-
sidered part of the discrete math sequence, and also includes
a section on logic, at the cost of depth and rigor in the other
topics. For the undergraduate course, student learning out-
comes include:

• Fluency in the elements of automata theory

• Basic understanding of properties of formal languages
and associated concepts including grammars and reg-
ular expressions

• Basic understanding of models of computation includ-
ing Turing machines

The undergraduate course is required for computer science
majors; the graduate course is a core course, and can be
replaced by an algorithms course. Thus, the graduate course
is usually taken by students who are more comfortable with
mathematical formalisms. The undergraduate course is an
oft-postponed challenge for many of our students.

1.1 Order Matters
The standard order for a traditional theory of computing
course is based on the Chomsky hierarchy of formal lan-
guages. It starts with regular languages (and automata
theory), then introduces context-free languages, with their
corresponding grammars and pushdown automata. Some
courses then cover context-sensitive languages, but many
have traded that topic for more time for Turing machines
and their model variants, computability, and then a brief
introduction to computational complexity, ending with NP-
completeness.

It is common to end the course with NP-completeness in
the last week of classes, and the halting problem soon be-
fore that, although anyone who has taught for a few years,
or has recently been a student, knows that those last few
weeks are the time when students are least likely to absorb
and understand hard concepts. In other words, computabil-
ity and complexity often go flying past even the better stu-
dents while those students are busy with major program-
ming projects, emergency extra-credit assignments, and gen-
eral end-of-semester panic.

We have taken to introducing the course with Turing ma-
chines. This has two major advantages. First, it eases
them into the notion of formal models of computation with
something that is “Turing complete,” meaning that it can
compute whatever their laptops/watches/supercomputer ac-
counts can compute. Secondly, it introduces the hard parts
of the course (undecidability and NP-completeness) before
their brains are full from the rest of the semester.

One side effect of ending the course with CFLs and push-
down automata is that the students can make connections
to courses on compiler design, parsers, and other basic com-
puter science concepts, so they go out believing that this
is a relevant course for the curriculum. A secondary effect
is that the beliefs that they can master the (recent) mate-
rial, and that it is relevant, seem to have a positive effect on
teaching evaluations (at the end of the semester).

Int'l Conf. Frontiers in Education: CS and CE | FECS'16 | 199

ISBN: 1-60132-435-9, CSREA Press ©

2. KINESTHETIC LEARNING
Bloom’s taxonomy of educational objectives [13] remains an
important tool to improve student learning through system-
atic analysis and research of learning goals and process. This
taxonomy, and later revisions, e.g., [4], suggest that learn-
ing can be divided into three domains: cognitive, affective
and psychomotor, or kinesthetic. Anderson [4] and others
in the educational psychology community (e.g., [36, 20, 35,
23, 37]) encourage educators to consider all three domains,
and include aspects thereof, when designing lessons.

Given our physical senses, we perceive information visually
(e.g., white/black board, overhead projector with text, pic-
tures, diagrams, videos), auditorily (sounds) and kinestheti-
cally (taste, touch and smell). A growing body of literature
suggests that as people mature, the majority specialize in
one input modality (i.e., they become visual, auditory or
kinesthetic learners), though some rely on multiple input
modalities [17]. Teachers tend to focus their teaching meth-
ods on the input modality that works best for them [6].
Thus, those students whose primary modality is not in use
in the classroom are at a real disadvantage.

Kinesthetic Learning Activities (KLAs) involve physical in-
teraction between the students and their environment. Begel
et al. [7] argue that research on kinesthetic learning in higher
education is sparse, and even more sparse in engineering re-
lated fields. KLAs offer students a change to literally and
physically participate in their own education, and thus have
potential to energize an otherwise static group of learners.
For the interested reader, Begel [7] puts forward a few guide-
lines on designing KLAs, and recommends that future re-
search be directed toward assessing KLAs and building a
set of best practices.

Mathematics provokes anxiety for a variety of students. One
might think that teaching abstract, rigorous mathematical
thinking, by its nature, must be dry of artistic expression.
Karl Schaffer and Erik Stern [27] are determined to change
that. The two men perform and choreograph where mod-
ern dance intersects mathematics. Combinatorics and set
theory exhibit symmetries and structures that Shaffer and
Stern bring to life using dance. For example, one of their
routines involves attempting a hand-shake that fails numer-
ous times, resulting in the dancers falling past each other.
In a recursively defined set whose basis clause is the dancers,
and the inductive clause joins two arbitrary elements using a
hand-shake, the dance demonstrates the various possibilities
and constraints of set building.

In their book [32], Shaffer and Stern propose dance activi-
ties and practical activities for teachers to use in the class-
room. For example, distinguishing symmetries induced by
reflection, rotation and translation is practiced using simple
movements and relative positioning of a group leader and a
group of followers.

A motivated teacher, excited to explore kinesthetic learn-
ing, faces several obstacles: students’ reluctance to partic-
ipate, students’ failure to understand the point of the ex-
ercise, or the teacher’s own failure from losing control of
the activity [30]. Student reluctance to participate in gen-
eral problem-solving, according to Felder and Brent [16], is

in part due to a sudden withdrawal of a support structure
given to students by teachers from the first grade on. Pollard
et al. [30] argue that this problem can be circumvented by
adding elements of kindergarten activities such as toys and
play. The idea is simple: toys materialize abstract concepts
and playing with the toys can help build internal represen-
tations of complex ideas or algorithms.1

Attempts at enriching computer science students’ learning
through kinesthetic enhancements has been done in the past.
For example, Silviotti et al. [33] suggest KLAs for a dis-
tributed computing course, where algorithms are enacted
by people and data structures built from people. The au-
thors argue that these activities promote the understanding
of concurrency through simultaneously active agents, and lo-
cality of scope through physical limits. The authors describe
several distributed algorithms enacted kinesthetically.

Most of us have seen videos of folk-dance troupes perform-
ing sorting algorithms [1]. The site csteaching tips points
out that YouTube abounds in videos of CS students doing
similar exercises, and algorithms teachers can bring these
dances to their classrooms [24].

Dr. Craig Tovey, at Georgia Tech, brings to life Dantzig’s
simplex method [14] for finding the optimal solution(s) to
linear programs,2 using students as columns of a matrix and
rubber bands for the edges of a simplex (hypertetrahedron).
He illustrates the concept of pivoting through an edge of
the rubber band simplex that remains static as one of the
simplex’s vertices moves to a better choice. This lesson is
publicly available on YouTube at: https://www.youtube.
com/watch?v=Ci1vBGn9yRc.

Friss de Kereki [15] proposes and evaluates a set of KLAs
for an object oriented (OO) flavor of CS1. The experimental
design had two control groups and one intervention group.
The author reports higher motivation, satisfaction and pass-
ing rates for the intervention group. Similarly, Adorjan et
al. [2] propose improvements to an OO CS1 using Gardner’s
taxonomy of intelligence [19], dubbed multiple intelligence
(MI). Adorjan et al. provide a list of activities suitable for
CS1, along with a mapping to MIs. For Gardener’s MI4
(bodily-kinesthetic intelligence), Adorjan proposes five ac-
tivities.

The CS Unplugged movement, started by Mike Fellows, has
accumulated a book [12] and website [22] with many ac-
tivities suitable for outreach to kids as well as for the CS
classroom. Much has been written about the use of these
and similar activities, e.g., [8, 9, 10, 11, 18, 21, 26], and some
about the efficacy thereof [34].

Peacock [29] looks at potential teacher learner style mis-
matches for English as a foreign-language instruction. He
cites Reid’s [31] hypothesis that claims such mismatches
cause learning failure, frustration and demotivation. Pea-

1One of the authors, old enough to remember the NewMath,
remembers using wooden blocks to count in various bases —
though perhaps that was after kindergarten.
2Not to be confused with Nelder and Mead’s [25] uncon-
strained optimization method based on the same geometric
simplex.

200 Int'l Conf. Frontiers in Education: CS and CE | FECS'16 |

ISBN: 1-60132-435-9, CSREA Press ©

cock gives teachers several recommendations to accommo-
date a balanced style. For example, kinesthetic learners
should be given problem-solving activities, role-play and drama,
and encouraged to actively participate in the learning envi-
ronment. He also notes that Chinese learners prefer kines-
thetic and auditory learning styles. This finding is also sup-
ported by Park [28].

Ambudkar [3] presents a dance activity to support student
learning of the interoperability and communication between
the layers in the open systems interconnections (OSI)model.
The dance team consisted of seven rows (corresponding to
the seven layers of the OSI model) and two columns (corre-
sponding to the sender and receiver). The dancer’s move-
ments indicated how data moved between layers and be-
tween the sender and receiver.

Anewalt [5] includes toys, games and the Alice program-
ming environment to foster an active learning approach for
CS0 students. Algorithmic thinking and accuracy were re-
inforced by asking students to write instructions for mak-
ing peanut butter and jelly sandwiches. The instructor later
unveiled tools and materials, then randomly paired students
were asked to modify their algorithms to use only the tools
and materials available. The students then precisely fol-
lowed their algorithms to make the sandwiches. She de-
scribes other activities related to basic programming princi-
ples, such as cookie-cutter and cut-out shapes to illustrate
difference between classes and objects, “fishing“ the argu-
ment (miming the action of fetching the argument value)
to assign a parameter during a function call and the data
transfers therein, as well as others.

Theory of computing courses tend to be devoid of physical
activity,3 and are thus optimizable by adding relevant and
purposeful dramatic, visual, and physical elements to cater
to kinesthetic learners. Our contribution to this aspect of
computer science education consists of a set of kinesthetic
learning activities, which we hope will be adopted by and
improved upon by others.

3. KINESTHETIZING THE THEORY OF
COMPUTATION CLASS

For this section, we assume that the reader has seen a theory
of computing class, though details may have been forgotten.
While the statement of the pumping lemma is destined to
be forgotten, we speculate that drawing smiley faces for ac-
cept states on finite automata and frowning faces for reject
states might make basic finite automata definitions more
memorable.

3.1 Power Set Construction
In many classes labeled “Theory of Computing” or “Finite
Automata and Formal Languages,” regular languages are in-
troduced early on. They might be defined by determinis-
tic or (equivalently) nondeterministic finite automata, regu-
lar expressions, and/or regular grammars. Eventually, most
classes claim or prove that whichever of those models were

3Here we discount the vigorous writing of mathematical for-
malisms with chalk or dry-erase markers that some instruc-
tors do, and the physical acts of note-taking in which we
wish students would engage.

introduced are equivalent. The proof that any nondeter-
ministic finite automaton N has an equivalent deterministic
finite automaton D is referred to as the power-set proof.
The construction starts by defining the start state of D, sD0 ,
to be the set containing the start state, sN0 , of N and any
states reachable from sN0 by ε-transitions (where ε is the
empty string). Then, for each state sD in D corresponding
to a set S of states of N , and each element σ of the alphabet
Σ, we create a state (if it isn’t already in D) consisting of
the set of states reachable from any state in S via σ followed
by ε-transitions. We label the transition by σ.

We then might prove that the two automata compute the
same language. What we hope is that the students under-
stand the construction, and we might ask them to perform
it on a homework or exam.

Dr. Craig Tovey, at Georgia Tech, has his students enact
the construction. First, they simulate a deterministic finite
automaton. He writes each character of the string on a sep-
arate sheet of paper. Students holding one sheet each line
up as the input string on one side of the room. Once a stu-
dent’s character is “read” the student throws the sheet into
a trashcan and has to sit on the floor on the other side of
the room. This conveys the one-time read process.

For the power set construction, he brings in cardboard squares
with state numbers, and draws a nondeterministic automa-
ton on the board. Students volunteer to “be” the states of
the nondeterministic automaton.

Tovey then asks the start state to climb onto a table. For
each symbol in the string, for each student on the table,
the student points out those states that are reachable from
himself via that symbol. The reachable states then take
their place on the table and the others climb down.

“Does it get crowded on the table?” we asked.

“Yes.”

“Isn’t there a danger that the table will flip over?”we asked.

“That’s what makes it so exciting,” he said.

We have tried this exercise. to the amusement of the class.
Tovey also simulates a pushdown automaton in class. It’s
the same except for an extra line of people to be the elements
in the stack.

3.2 Proving a Language is not Regular
There are two approaches to showing that a language is not
regular. The more commonly taught one is the Pumping
Lemma, which says that a language L is regular iff there is
an n [the size of the minimal deterministic finite automaton
for L] such that for all strings s ∈ L of length > n, there
are x, y, z such that |xy| ≤ n and |y| > 0 such that for all
i ∈ N , xyiz ∈ L.

Got that? The quantifier sequence after the “iff” is

∃n∀s∃x, y, z∀i.
This is really hard for most students to grasp, much less

Int'l Conf. Frontiers in Education: CS and CE | FECS'16 | 201

ISBN: 1-60132-435-9, CSREA Press ©

apply. However, the underlying idea is a simple application
of the pigeonhole principle: if we have a finite automaton
with n states, and a string with more than n symbols, then
when the automaton processes the string, at least one state
must repeat. Therefore, the path from that state back to
itself can be repeated arbitrarily many times (or excised,
when i = 0) before the string leads to an accept state.

In order to cement the idea of a repeated loop, we ask all the
students in the class to draw a circle in the air with their fin-
gers. Since we have not yet tried the Power Set Construction
exercise, this is usually our first class participation exercise.
At first many are reluctant, but are willing to humor the
crazy teacher.

The second approach to showing a language is not regular
is via the Myhill-Nerode Theorem. This begins by defining
an equivalence relation RL for a language L. We say xRLy
iff for all strings z, [xz ∈ L ⇔ yz ∈ L]. It is difficult to
show this, but not so difficult to show that x and y are not
equivalent. For instance, for the language L = {1n0n| n ∈
N}, consider x = 1i and y = 1j for i �= j, and let z = 0i.
Then xz ∈ L but yz /∈ L.

The Myhill-Nerode Theorem states that L is regular iff RL

has finitely many equivalence classes. (These correspond to
states in a minimal finite automaton that accepts L.) To
show that L is not regular, one shows (as in the previous ex-
ample) that there are infinitely many non-equivalent strings.
In the previous paragraph, we have argued that for any two
distinct natural numbers i and j, 1i is not L-equivalent to
1i.

Dr. Mike Fellows says that he explains the notion [xz ∈
L ⇔ yz ∈ L] by starting his hands in different places (repre-
senting x and y), making the same series of moves (z), and
ending up in the same place. We conjecture that having
the students do this, and also have them end up in differ-
ent places, might help make the equivalence relation more
memorable, if not clearer.

3.3 Formal Grammars and Buffalo
It is well known that the word “buffalo” can be a noun, verb,
and adjective. For instance, “Buffalo buffalo Buffalo buffalo”
might be parsed as“Bovines harass other bovines from a city
in upstate New York.” Thus, one can illustrate a parse tree
for English without having to resort to complex vocabulary.
However, one might rightly be concerned about shorter sen-
tences, since this verb is transitive: the subject of the sen-
tence must have someone or something to buffalo. However,
there is a tap dance sequence called a buffalo, because the
rhythm of the taps matches that of the word. Thus, “Buffalo
buffalo” is a valid sentence.

Teachers eager to learn the step are advised to consult YouTube
or their local tap dance instructor. It is worth noting that
(a) the move involves a shuffle step, and (b) it is often used
in tap routines as an exit. Thus, one can shuffle off with
buffalos.

3.4 Enacting Turing Machines
When we teach about Turing machines, we often start by
writing a TM program to decide the language of palindromes

over a small alphabet, say, {0, 1}. This is convenient because
the language of palindromes is not regular, and also (as we
later mention) can be recognized in time O(n2) with a one-
headed, one-tape TM, but in time O(n) by a two-tape or
two-headed TM. We later show that there’s a simulation of
a 2-tape TM by a 1-tape TM with an O(n2) time blowup;
the language of palindromes is an example where we see the
quadratic speedup directly.

In order to describe the TM, we act out the states: “I’m
remembering I saw a 1. Is this a blank? No. Move right. I
saw a 1. Is this a blank?....” (This is said while moving in
the same direction, one step per “Move right”. Ideally, that
direction should be to the students’ right, rather than the
instructor’s.)

We have found, over the years, that having students at-
tribute such statements to states and state/symbol/action
tuples cuts down on the instances of students randomly writ-
ing down states and transitions just to write something.

3.5 The Infinite Loop Dance
One of the central concepts in teaching about Turing ma-
chines (or your favorite sequential model of computation) is
the notion of an infinite loop. For instance, to show that
a decidable language L is semi-decidable, one can modify
the Turing machine that decides L by replacing every “No”
output by an infinite loop. But if a professor asks students,
“can you write an infinite loop,”a surprising number of them
refuse to admit that they can — meaning that they won’t
admit that they have done so.

The two simplest Turing machine infinite loops are the one-
state loop that ignores the input and moves the read head
right, and the one that ignores the input and moves right,
left, right, left, etc.

Both can be demonstrated in choreography. The first should
involve the professor side-stepping at least as far as the door,
if not out into the hallway. The second, which does not
require leaving the room, is to step right, then left, then
right, then left, then right, then left, then involves a moue
and a vocalization of the “etc.” It doesn’t hurt to explain out
loud that the “etc.” is part of the Infinite Loop Dance.4

3.6 Undecidability
The proof that the Halting Set is undecidable is both elegant
and, at first introduction, usually baffling. We feel strongly
that the students should see it, but we don’t think that it is
terribly persuasive. In fact, to many students, it looks like a
conjuring trick. We spend some time setting up another ar-
gument that not all languages are decidable. The argument
is as follows.

1. There are at least two sizes of infinity, countable and
uncountable.

4For one of us, there is a soundtrack to this dance. It is the
Romanian folkdance tune Alunelul. The pattern, if you in-
clude stamps in the step count, is 7,7,7,7,4,4,4,4,2,2,3,2,2,3.
Or, to the right 5 steps, stamp stamp, to the left 5 steps,
stamp stamp, repeat; to the right 3 steps, stamp, to the left
3 steps, stamp, repeat; to the right 1 step, stamp, to the left
1 step stamp, to the right 1 step, stamp stamp, to the left
1 step, stamp, to the right 1 step, stamp, to the left 1 step,
stamp stamp.

202 Int'l Conf. Frontiers in Education: CS and CE | FECS'16 |

ISBN: 1-60132-435-9, CSREA Press ©

2. The set of finite strings over a finite alphabet Σ of size
|Σ| > 1 is countable, but the set of infinite sequences
over Σ is uncountable.

3. Turing machines can be encoded as strings over a finite
alphabet. Therefore there are countably many TMs,
and thus, countably many decidable languages.

4. There are uncountably many infinite binary sequences,
and thus uncountably many languages. Therefore, not
all languages are decidable.

To set this up, we start with questions about Hotel Infin-
ity.5 First, “One dark and stormy night, you arrive at Hotel
Infinity. It’s at the edge of the universe. You are told that
all the rooms are full, but you need a room to sleep in. Can
you find a room without making anyone leave?”

Each question is left hanging until the next class period, or
until someone asks (sometimes several classes later). After
they get the idea that everyone can move from room n to
room n+1 and still have a room, they usually find a way to
house “you, and infinitely many of your friends” by sending
folks in room n to room 2n. They often get stuck on “and
each of your friends has a disjoint set of infinitely many
friends,” but you can remind them that powers of primes
form infinitely many disjoint sets. (There are many proofs
that there are infinitelymany primes. The one where you as-
sume there are only finitely many, {p0, p1, . . . , pq} and then
consider the number (Πi≤qpi) + 1 — a number not on that
list, and not divisible by any prime — allows us to dissect
a proof by contradiction. It’s useful to set up that struc-
ture, from “Spoze not” to the ⇒⇐ contradiction mark, as a
template.)

By this time, the students are reasonably comfortable with
infinity. They have shown that ℵ0 × ℵ0

∼= ℵ0.
6

That’s when we prove that the set of subsets of N, or the
set of infinite binary sequences, or ... is uncountable.

This is usually in the second week of class. We promise that
this is as hard a concept to wrap one’s head around as any
in the class. They disbelieve, but hope.

Later, when we introduce the notion of a universal TM, we
introduce the notion of a TM as a (finite) string. We stop
and ask how many TMs there are. After some discussion,
they usually conclude that the answer is“countably infinitely
many”. They are often pleased to be using this notion that
they thought was just introduced, earlier in the semester, to
amuse and/or baffle them.

When we have completed the standard Halting Problem
proof by contradiction, we say, “But you already knew that
not all languages are decidable.”We walk them through the
proof that there are uncountably many languages (the same
proof by diagonalization that we gave to show that there
was an uncountable set), and remind them that there are
only countably many decidable languages.

5This is not original to us, and we are not sure of the origin.
6ℵ0 is the cardinality of N, the set of natural numbers; ℵ0

is the size of any countably infinite set.

4. CONCLUSIONS
We have not done controlled experiments to see whether
tracing a loop with their fingers helps students comprehend
or remember the pumping lemma. We can, however, say
with great confidence that the students woke up when asked
to do so. We can also say that our own students reference
the infinite loop dance during and after class. In fact, when
we taught it to a colleague’s class, the colleague put it into
his final exam. (“For 1 point, get up and do the infinite loop
dance.”) Not only did all the students, one by one, do it, but
they asked their professor to do it as well. For those students
with math (or formalism) anxiety, the performance aspect
of choreographed theory, and the chance to move around in
goofy ways in the class, gives them a reason to come to class.

5. REFERENCES
[1] Algo-Rythmics. http://algo-rythmics.ms.sapientia.ro/

and https://www.youtube.com/user/AlgoRythmics,
2013. Accessed August 2, 2015.

[2] A. Adorjan and I. Friss de Kereki. Multiple
intelligence approach and competencies applied to
computer science 1. In Frontiers in Education
Conference, 2013 IEEE, pages 1170–1172. IEEE, 2013.

[3] B. Ambudkar. Introducing network design to students
via a dance activity. In Technology for Education
(T4E), 2013 IEEE Fifth International Conference on,
pages 123–126. IEEE, 2013.

[4] L. W. Anderson, D. R. Krathwohl, and B. S. Bloom.
A taxonomy for learning, teaching, and assessing: A
revision of Bloom’s taxonomy of educational
objectives. Allyn & Bacon, 2001.

[5] K. Anewalt. Making CS0 fun: an active learning
approach using toys, games and alice. Journal of
Computing Sciences in Colleges, 23(3):98–105, 2008.

[6] W. B. Barbe and M. N. Milone Jr. What we know
about modality strengths. Educational Leadership,
38(5):378–80, 1981.

[7] A. Begel, D. D. Garcia, and S. A. Wolfman.
Kinesthetic learning in the classroom. In ACM
SIGCSE Bulletin, volume 36, pages 183–184. ACM,
2004.

[8] T. Bell, J. Alexander, I. Freeman, and M. Grimley.
Computer science without computers: new outreach
methods from old tricks. In Proceedings of the 21st
Annual Conference of the National Advisory
Committee on Computing Qualifications, 2008.

[9] T. Bell, J. Alexander, I. Freeman, and M. Grimley.
Computer science unplugged: School students doing
real computing without computers. The New Zealand
Journal of Applied Computing and Information
Technology, 13(1):20–29, 2009.

[10] T. Bell, P. Curzon, Q. Cutts, V. Dagiene, and
B. Haberman. Introducing students to computer
science with programmes that don’t emphasise
programming. In Proceedings of the 16th Annual Joint
conference on Innovation and Technology in Computer
Science Education, pages 391–391. ACM, 2011.

[11] T. Bell, F. Rosamond, and N. Casey. Computer
science unplugged and related projects in math and
computer science popularization. In The Multivariate
Algorithmic Revolution and Beyond, pages 398–456.
Springer, 2012.

Int'l Conf. Frontiers in Education: CS and CE | FECS'16 | 203

ISBN: 1-60132-435-9, CSREA Press ©

[12] T. Bell, I. H. Witten, M. Fellows, R. Adams,
J. McKenzie, M. Powell, and S. Jarman. CS
Unplugged. Lulu.com, 2015.

[13] B. S. Bloom. Taxonomy of Educational Objectives:
The Classification of Education Goals. Cognitive
Domain. Handbook 1. Longman, 1956.

[14] G. B. Dantzig, A. Orden, P. Wolfe, et al. The
generalized simplex method for minimizing a linear
form under linear inequality restraints. Pacific Journal
of Mathematics, 5(2):183–195, 1955.

[15] I. F. de Kereki. Incorporation of kinesthetic learning
activities to computer science 1 course: Use and
results. CLEI Electronic Journal, 13(2), 2010.

[16] R. M. Felder and R. Brent. Navigating the bumpy
road to student-centered instruction. College Teaching,
44(2):43–47, 1996.

[17] R. M. Felder and L. K. Silverman. Learning and
teaching styles in engineering education. Engineering
Education, 78(7):674–681, 1988.

[18] M. Fellows, T. Bell, and I. Witten. Computer science
unplugged. Computer Science Unplugged, 2002.

[19] H. Gardner. Multiple Intelligences: The Theory in
Practice. Basic books, 1993.

[20] T. F. Hawk and A. J. Shah. Using learning style
instruments to enhance student learning. Decision
Sciences Journal of Innovative Education, 5(1):1–19,
2007.

[21] P. Henderson. Computer science unplugged. Journal of
Computing Sciences in Colleges, 23(3):168–168, 2008.

[22] S. Jarman, T. Bell, and I. Freeman. CS Unplugged.
Accessed August 2, 2015.

[23] G. P. Krätzig and K. D. Arbuthnott. Perceptual
learning style and learning proficiency: A test of the
hypothesis. Journal of Educational Psychology,
98(1):238, 2006.

[24] C. Lewis, T. McKlin, T. Berry, and A. Schlesinger.
csteachingtips.
http://csteachingtips.org/tip/use-physical-

activities-demonstrate-sorting-algorithms-and-

help-students-build-intuition-about. Accessed
August 2, 2015.

[25] J. A. Nelder and R. Mead. A simplex method for
function minimization. The computer journal,
7(4):308–313, 1965.

[26] T. Nishida, Y. Idosaka, Y. Hofuku, S. Kanemune, and
Y. Kuno. New methodology of information education
with “computer science unplugged”. In Informatics
Education-Supporting Computational Thinking, pages
241–252. Springer, 2008.

[27] S. Ornes. Math dance. Proceedings of the National
Academy of Sciences of the United States of America,
110(26):10465, 2013.

[28] C. C. Park. Learning style preferences of Asian
American (Chinese, Filipino, Korean, and
Vietnamese) students in secondary schools. Equity and
Excellence in Education, 30(2):68–77, 1997.

[29] M. Peacock. Match or mismatch? learning styles and
teaching styles in EFL. International Journal of
Applied Linguistics, 11(1):1–20, 2001.

[30] S. Pollard and R. C. Duvall. Everything I needed to
know about teaching I learned in kindergarten:

bringing elementary education techniques to
undergraduate computer science classes. In ACM
SIGCSE Bulletin, volume 38, pages 224–228. ACM,
2006.

[31] J. M. Reid. The learning style preferences of ESL
students. TESOL Quarterly, 21(1):87–111, 1987.

[32] K. Schaffer, E. Stern, and S. Kim. Math dance.
MoveSpeakSpin, Santa Cruz, 2001.

[33] P. A. Sivilotti and S. M. Pike. The suitability of
kinesthetic learning activities for teaching distributed
algorithms. ACM SIGCSE Bulletin, 39(1):362–366,
2007.

[34] R. Thies and J. Vahrenhold. On plugging unplugged
into CS classes. In Proceeding of the 44th ACM
Technical Symposium on Computer Science Education,
pages 365–370. ACM, 2013.

[35] A. Vincent and D. Ross. Personalize training:
determine learning styles, personality types and
multiple intelligences online. The Learning
Organization, 8(1):36–43, 2001.

[36] D. T. Willingham, E. M. Hughes, and D. G. Dobolyi.
The scientific status of learning styles theories.
Teaching of Psychology, 42(3):266–271, 2015.

[37] V. Zimmerman. Moving poems: Kinesthetic learning
in the literature classroom. Pedagogy, 2(3):409–412,
2002.

204 Int'l Conf. Frontiers in Education: CS and CE | FECS'16 |

ISBN: 1-60132-435-9, CSREA Press ©

