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Abstract— Classification on imbalanced data presents lots of
challenges to researchers. In healthcare settings, rare disease
identification is one of the most difficult kinds of imbalanced
classification. It is hard to correctly identify true positive rare
disease patients out of much larger number of negative patients.
The prediction using traditional models tends to bias towards
much larger negative class. In order to gain better predictive
accuracy, we select and test some modern imbalanced machine
learning algorithms on an empirical rare disease dataset.
The training data is constructed from the real world patient
diagnosis and prescription data. In the end, we compare the
performances from various algorithms. We find that the random
under-sampling Random Forest algorithm has more than 40%
improvement over traditional logistic model in this particular
example. We also observe that not all bagging methods are
out-performing than traditional methods. For example, the
random under-sampling LASSO is inferior to benchmark in
our reports. Researchers need to test and select appropriate
methods accordingly in real world applications.

Index Terms— imbalanced, rare disease, random under-
sampling, random forest

I. INTRODUCTION

Rare diseases have low prevalence rates and they are

difficult to diagnose and identify. The ”Rare Disease Act

2002” defines rare disease to be less than 200,000 patients,

or 1 in 1,500 [1]. By this nature, the rare disease dataset

is extremely imbalanced. To predict or classify rare diseases

from a large population is a challenging task due to low

signal-to-noise ratio. This problem is called imbalanced

learning in data mining field [2]. Classic statistical methods

or standard machine learning algorithms are biased toward

larger classes. Therefore, it is hard to positively identify rare

disease patients who are in the minority class. If not treating

and measuring properly, most of rare disease patients will be

mis-classified as the other classes albeit the overall accuracy

rate may appear to be high.

There are dedicated new algorithms and methods devel-

oped for imbalanced datasets classification. In this paper, we

explore selecting and applying imbalanced machine learning

algorithms to identify rare disease patients from real-world

healthcare data. We will study the performance improvement

from using imbalanced algorithms and compare the results

to traditional methods. The empirical application we select is

to identify Hereditary Angioedema (HAE) disease. HAE is a

rare, genetic disease that causes episodic attacks of swelling
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under the skin. The prevalence of HAE is between 1 in every

10,000 and 1 in every 50,000 [3], [4].

Because it is rare, physicians have rarely encountered

patients with this condition. On top of this, HAE attacks

also resemble other forms of angioedema. Both make HAE

hard to diagnose. Late or missed diagnosis can lead to

incorrect treatment and unnecessary surgical intervention.

Our objective in this application is to improve HAE patient

identification rate using patient historical prescription and di-

agnosis information. Given the extremely unbalanced classes

in the dataset, it is interesting to see how existing algorithms

perform in such conditions. We will test a commonly used

approach in imbalanced learning - Random Under Sampling

method for ensemble learning with LASSO or Random

Forest as element learners.

The remaining of the paper will be arranged in following

ways. Section 2 describes the data source used in this

empirical example. In section 3, we present the rules and

methodologies in anonymous patient selection and variable

construction. Next section introduces imbalanced learning

algorithms. In the last two sections, the results are presented

and discussed.

II. DATA SOURCE DESCRIPTION

To study the potential application of imbalance algo-

rithms on rare disease identification, we select Hereditary

Angioedema disease as an empirical use case. The data has

been extracted from IMS longitudinal prescription (Rx) and

diagnosis (Dx) medical claims data.

The Rx data is derived from electronic data collected

from pharmacies, payers, software providers and transac-

tional clearinghouses. This information represents activities

that take place during the prescription transaction and con-

tains information regarding the product, provider, payer and

geography. The Rx data is longitudinally linked back to

an anonymous patient token and can be linked to events

within the data set itself and across other patient data assets.

Common attributes and metrics within the Rx data include

payer, payer types, product information, age, gender, 3-digit

zip as well as the scripts relevant information including date

of service, refill number, quantity dispensed and day supply.

Additionally, prescription information can be linked to office

based claims data to obtain patient diagnosis information.

The Rx data covers up to 88% for the retail channel, 48%

for traditional mail order, and 40% for specialty mail order.

The Dx data is electronic medical claims from office-based

individual professionals, ambulatory, and general health care

sites per year including patient level diagnosis and procedure
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information. The information represents nearly 65% of all

electronically filed medical claims in the US. All data is

anonymous at the patient level and HIPAA compliant to

protect patient privacy.

III. METHODOLOGY

Since HAE disease is difficult to identify, many patients

with this condition don’t have a positive diagnosis ICD-

9 code associate with them. Our objective was to build

predictive models to find such patients using their past pre-

scription records and other diagnosis histories. We extracted

our training samples from Rx and Dx data sources described

before.

A. Sample selection

HAE patients are selected as those with HAE diagnosis

(ICD-9 CODE = 277.6) and at least one HAE treatment (pre-

scription or procedure) during the selection period (1/1/2012

- 7/31/2015). The patient’s index date is defined as the

earliest date of HAE diagnosis or HAE treatment. Then

the lookback period is defined as from earliest diagnosis

or prescription date available from January 2010 till the

day before index date. Using this rule, the selected HAE

patients will have lookback periods with variable lengths.

After further data cleaning by deleting the records without

valid gender, age and region etc., we have 1233 HAE patients

in the sample data.

Non-HAE patients are selected by randomly matching 200

non-HAE patients with similar lookback period for each one

of the 1233 HAE patients. For example, if an HAE patient

has a lookback period from 1/15/2013 to 2/5/2014, then a

non-HAE patient is qualified to match and to be selected

if he/she had clinical activity (any activity of prescription,

procedure or diagnosis) from any day in January 2013 to

any day in February 2014. Then the lookback period for the

non-HAE patient will be defined as from earliest clinical

activity date in January 2013 till latest clinical activity

date in February 2014. This process of non-HAE patients

matching to HAE patients has been done in a greedy manner.

Specifically, non-HAE patient sample starts as an empty set,

then 200 non-HAE patients matched to a given HAE patient

are added to the non-HAE sample, and this approach is

repeated for each HAE patient in the sample until we find

200 distinctive non-HAE patients for each HAE patient.

The above process generates 1233 HAE patients and

246600 (200 times 1233) non-HAE patients in the final

patient sample.

B. Predictors for HAE

Literatures about HAE has been reviewed, from which

a list of numerous potential HAE predictors are prepared.

Specifically, three classes of clinical indications are derived

for the lookback period for each patient, including pre-

scriptions, procedures and diagnosis. Each clinical indica-

tion yields three predictors for the lookback period: flag

(Yes/No: whether the patient had prescriptions, procedures or

TABLE I

CONFUSION MATRIX

Actual=1 Actual=0

Predicted=1 True Positive (TP) False Positive (FP)

Predicted=0 False Negative (FN) True Negative (TN)

TABLE II

MODEL PERFORMANCE METRICS

Metric Definition
AUC Area under the ROC curve

AUPR Area under the PR curve

Recall TP/(TP+FN)

Precision TP/(TP+FP)

True Positive Rate (TPR) TP/(TP+FN)

False Positive Rate (FPR) FP/(FP+TN)

Accuracy (TP+TN)/(TP+FP+FN+TN)

diseases), frequency (how many times the event of prescrip-

tions, procedures or diseases occurred), average frequency

(frequency divided by length of lookback period). These

clinical predictors with demographic predictors (age, gender

and region) compose the final predictors list.

C. Model Performance Evaluation

In a binary decision problem, a classifier labels data

sample as either positive or negative. The decision made

by the classifier can be represented in a structure known

as a confusion matrix (Table I, ”1” for positive class and

”0” for negative class). The confusion matrix has four

categories: True Positives (TP) are examples correctly labeled

as positives; False Positives (FP) refer to negative examples

incorrectly labeled as positive; True Negatives (TN) corre-

spond to negatives correctly labeled as negative; finally, False

Negatives (FN) refer to positive examples incorrectly labeled

as negative.

Based on the confusion matrix, we will be able to further

define several metrics to evaluate model performance as

listed in Table II.

In ROC space, one plots the False Positive Rate (FPR) on

the x-axis and the True Positive Rate (TPR) on the y-axis.

The FPR measures the fraction of negative examples that are

misclassified as positive. The TPR measures the fraction of

positive examples that are correctly labeled. In PR space, one

plots Recall on the x-axis and Precision on the y-axis. Recall

is the same as TPR, whereas Precision measures that fraction

of examples classified as positive that are truly positive.

D. Imbalanced Classification

Imbalanced data sets (IDS) correspond to domains where

there are many more instances of some classes than others.

Classification on IDS always causes problems because stan-

dard machine learning algorithms tend to be overwhelmed by

the large classes and ignore the small ones. Most classifiers

operate on data drawn from the same distribution as the
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training data, and assume that maximizing accuracy is the

principle goal [5], [6].

Therefore, many solutions have been proposed to deal

with this problem, both for standard learning algorithms and

for ensemble techniques. They can be categorized into three

major groups [7], [8]: (i) Data sampling: In which the training

data are modified in order to produce a more balanced data to

allow classifiers to perform in a similar manner to standard

classification [9], [10]; (ii) Algorithmic modification: This

procedure is oriented towards the adaptation of base learn-

ing methods to be more attuned to class imbalance issues

[11]; (iii) Cost-sensitive learning: This type of solutions

incorporate approaches at the data level, at the algorithmic

level, or at both levels combined, considering higher costs

for the misclassification of examples of the positive class

with respect to the negative class, and therefore, trying to

minimize higher cost errors [12], [13].

In this paper we implement the Random-Under-Sampling

(RUS) (majority) approach. We first randomly under-sample

the majority class data and combine them with the minority

class data to build an artificial balanced dataset, upon which

machine learning algorithms will be applied. This process is

repeated for several iterations, with each iteration generating

a model. The final model is an aggregation of models over

all iterations (See Algorithm 1, similar to bagging [14]).

In this paper, we apply RUS with LASSO [15] and Ran-

dom Forest [16] (hereby denoted as ”Bagging LASSO” and

”Bagging RF” respectively). Specifically, we firstly perform

a random under sampling of the majority pool (non-HAE)

and combine it with all HAE patients to build a artificial

balanced dataset, then LASSO or Random Forest is applied

to the balanced sampled data; models are aggregated over

iterations of random samples to learn the predictive pattern

of HAE, while accounting for possible interactions among

predictors. The conventional logistic regression (denoted by

”Logit” hereafter) is implemented as benchmark for model

performance comparison.

The usual model performance metrics such as prediction

accuracy and area under the ROC curve (AUC) are not ap-

propriate for imbalanced classification problem. For example,

the imbalance ratio is 1/200 (each one HAE patient has 200

matched non-HAE patients) in our data, a classifier which

tries to maximize the accuracy of its classification rule may

obtain an accuracy of 99.5% by simply ignoring the HAE

patients, with the classification of all patients as non-HAE.

Instead, we will use AUPR and Precision at various Recall

levels for model performance comparisons in this paper. An

important difference between ROC space and PR space is the

visual representation of the curves. Looking at PR curves can

expose differences between algorithms that are not apparent

in ROC space [17].

For validation purpose, data is split into 80% for train-

ing and 20% for testing. Model performance for five-fold

Cross-Validation on training data and further validation on

testing data are both reported. The results and validation are

presented in the next section.

IV. RESULTS

With the 80% training data, we have n = 986 HAE

patients and their 200 times matched non-HAE patients

(n = 197, 200). Then we perform five-fold cross-validation

with the training data, specifically, we split all the training

data into five folds, and for each given fold, we train a model

with the remaining four folds and calculate the performance

metrics on the given fold, the final performance outputs are

metrics averaged over the five folds. Summary of the results

are listed in Table III.

TABLE III

MODEL PERFORMANCE (FIVE-FOLD CROSS-VALIDATION)

Metric Logit Bagging LASSO Bagging RF
AUC 79.81% 83.03% 82.52%

AUPR 9.59% 9.21% 11.61%
Precision (Recall=50%) 4.49% 5.84% 5.99%
Precision (Recall=45%) 6.33% 7.23% 7.55%
Precision (Recall=40%) 7.86% 8.85% 10.04%
Precision (Recall=35%) 10.67% 10.10% 13.44%
Precision (Recall=30%) 13.61% 11.74% 16.98%
Precision (Recall=25%) 15.11% 13.81% 21.74%
Precision (Recall=20%) 18.46% 15.27% 24.69%
Precision (Recall=15%) 22.82% 18.95% 30.25%
Precision (Recall=10%) 29.02% 27.90% 31.83%
Precision (Recall=5%) 36.60% 34.02% 38.63%

We can see that Bagging RF has an improvement of 21%

in terms of AUPR compared to Logistic Regression. And

particularly for Recall level at 25%, Logistic Regression has

a Precision of 15.11% while that of Bagging RF is 21.74%,

which is more than 40% improvement over that of Logistic

Regression.

And we can see PR curve (Figure 1) differentiates the

algorithms better than ROC curve (Figure 2) (The dashed

lines in two figures reflect the performance of a random

classifier).

We further validate the model performances by applying

the models trained from all training data to testing data,

which has n = 247 HAE patients and their 200 times

matched non-HAE patients (n = 49, 400). A summary of

the testing results are listed in Table IV. It further validates

that Bagging RF outperforms Logistic Regression in this

imbalanced classification problem.

The Bagging LASSO is inferior to Logistic Regression

in our case. The reason could be that the high dimensional

features have much correlation and in this case less sparse

model is preferred.

In searching for better performance, we also test cost-

sensitive learning methods such as weighted SVM and

weighted LASSO on the same training data. Both of the

results don’t show improvement over the standard or random-

under-sampling ensemble methods.

V. CONCLUSION AND DISCUSSION

In this rare disease identification problem, we test under-

sampling and cost-sensitive learning algorithms on a real
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PR curve of 5−fold Cross−Validation
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Fig. 1. Five-fold Cross-Validation PR curve

TABLE IV

MODEL PERFORMANCE (TESTING)

Metric Logit Bagging LASSO Bagging RF
AUC 82.77% 84.33% 85.12%

AUPR 13.02% 11.37% 14.09%
Precision (Recall=50%) 6.09% 5.63% 7.17%
Precision (Recall=45%) 8.35% 8.35% 8.43%
Precision (Recall=40%) 9.71% 9.02% 11.19%
Precision (Recall=35%) 12.63% 10.36% 14.48%
Precision (Recall=30%) 16.78% 12.85% 20.16%
Precision (Recall=25%) 21.91% 16.76% 22.55%
Precision (Recall=20%) 24.50% 20.00% 30.82%
Precision (Recall=15%) 24.03% 20.67% 37.76%
Precision (Recall=10%) 44.64% 37.31% 38.46%
Precision (Recall=5%) 54.55% 63.16% 57.14%

world patient data case. The training sample contains only

0.5% positive patients and it is a good real world example

to demonstrate imbalanced learning challenge. We find that

in this empirical example, random-under-sampling random

forest method can boost precision at various recall levels

compared to standard models. In the reported table, it has

40% improvement in AUPR over the benchmark model.

In real world application, due to the data high dimension-

ality and case complexity, it is not guaranteed that random-

under-sampling Random Forest always to be the recom-

mended method. Researchers should try various methods and

select most appropriate algorithm based on performance.
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