
Song Genre Classification via Lyric Text Mining

Anthony Canicatti
Computer and Information Science Dept., Fordham University, Bronx, NY, USA

Abstract— Text mining is often associated with the pro-
cessing of the natural English language to formulate a
general conclusion about a body of text. In this work, this
concept is applied in an attempt to build models that classify
a song’s genre based on its lyrics. Such models must be
able to analyze the words that compose a song’s lyrics
and categorize the song as one of five genres: rock, rap,
country, jazz or pop. This work features classifiers such as
J48 decision trees, Random Forest, k-nearest-neighbor and
Naive Bayes algorithms in order to classify each song. It
also discusses the significance of data collection and pre
processing in order to ensure valid results particularly when
dealing with string values.

Keywords: song, genre, classification, text, lyrics

1. Introduction
A song’s lyrics generally hold information about what that

song is about. To perform text mining on a song’s lyrics is

to use data mining techniques to learn what this general

meaning is given the words in the song. This work attempts

to take this a step further and build a classification model that

uses the results from the text mining approach to categorize

a song as either a rock, rap, country, jazz or pop song. This

implies a certain number of assumptions were made about

songs and their genres. Firstly, it assumes that songs within

the same genre typically have similar lyrics. From a high

level, it is possible, and sometimes trivial, to read the lyrics

of two songs and conclude they belong to the same genre.

Secondly, it assumes a song’s genre is mutually exclusive.

Herein lies the importance of the careful selection of genres

to be classified. The five genres chosen are general enough

that each genre’s lyrics can be classified with high precision,

but specific enough that each genre’s lyrics are sufficiently

distant from each other. In other words, the lyrics of rap

songs are sufficiently distant from those of rock songs, but

the lyrics of heavy metal songs are not sufficiently distant

from those of rock. For the purposes of this work, it is

assumed that these five genres do not overlap.

2. Data Collection and Preprocessing
Like in all data and text mining endeavors, collecting data

and performing preprocessing techniques play a critical role

in preparing the data for building models. In this work, a

relatively large dataset containing sets of song lyrics along

with their corresponding genres is necessary to begin training

and testing a classification model.

2.1 Data Collection
The primary piece of data required in this work is the

lyrical content of a number of songs from each of the five

genres. Lists of songs from each genre were obtained using

a script that queries an online music database. The music

database1 provides tables containing artist, title, time, BPM

(beats per minute) and year information. The script creates

a connection to the URL pertaining to the web page that

contains the information above for each genre, extracts the

table values from the HTML source, and generates a list

of tuples of artists and song titles. This process is repeated

for each genre, and in some cases, genres are amalgamated

to account for the level of granularity of the genres. For

example, the database has separate entries for Rap and R&B,

two genres with differing musical qualities, but relatively

equivalent lyrical content. Once a list of song-artist tuples is

obtained for each genre, the list is fed to a Java application

which uses an open source API to retrieve each song’s lyrics

from an openly accessible lyric website, MetroLyrics, and

stores each lyric set in a CSV file. The lyrics found on this

site are all input by users, creating a few possible issues

in the dataset. The lyrics may not be correct, leading to

issues in preprocessing. They also may not exist at all, in

which case the Java application ignores the current input and

continues on with the next tuple. The result of this process

is a comma-separated data file with the attributes genre and

lyrics, formatted as a single string of text, for each instance.

2.2 Preprocessing
Preprocessing is arguably the most critical component

given the nature of this project. If data preprocessing is

done correctly, we can expect that a classification model will

produce consistent, meaningful results. Before importing

the raw data file into Weka to begin applying advanced

preprocessing techniques, some invalid patterns for each in-

stance were removed manually in Excel. The lyric sets found

on the MetroLyrics site often contained phrases indicating

repitions. For example, if a section of lyrics was repeated

twice, a lyric set may contain the string “x2" preceeding it.

Furthermore, lyric sets often contained labeled sections, such

as “[Chorus]", or “[Verse]". These phrases were removed

using Excel’s Replace feature, however, it is worth noting

1www.cs.ubc.ca/˜davet/music/

44 Int'l Conf. Data Mining | DMIN'16 |

ISBN: 1-60132-431-6, CSREA Press ©

that in instances where lyric repititions are denoted with a

phrase like “x2", the lyrics themselves are not repeated, even

though they would be in the song. This might cause for a

skew in a classification model’s results.

2.2.1 Nominal to String

Weka provides a good deal of tools to clean raw data,

particularly for use in text mining applications of traditional

data mining learners. The first of which required in the

dataset used in this work is the Nominal to String filter. The

result of data collection is a raw CSV file of lyric and genre

values. Weka parses all attributes in CSV files as nominal

values, so the Nominal to String filter is used to transform

the lyric attribute into a string (genre is already a nominal

attribute, so it can be left as is).

2.2.2 String to Word Vector

The next step is vital: the String to Word Vector filter.

This filter performs three critical operations all at the same

time:

1) Split each string by the whitespace character so that it

is transformed into a list of words

2) From the list generated above, eliminate any ‘stop’

words which would have no impact on a learner’s

classification

3) Stem each word’s ending in order to preserve only

the root

In the first step, each string of words is transformed into

a list and each word becomes an attribute. For example,

if a lyric set is the set “hello world”, the attributes ‘hello’

and ‘world’ are created. The second step is a common text

mining technique where any stop words are eliminated

completely from the dataset. Stop words include basic,

meaningless words that have no impact on classification,

for example ‘a’, ‘and’, ‘the’, etc. Weka provides a default

list of stop words, which is used in this work. The third

step is also a common text mining technique. In this

operation, word endings are trimmed such that their tense

is not a factor in determining the meaning of the word.

For example, the words “jumping”, “jumped”, “jumps”,

“jumper”, etc. all mean the same thing, jump, so all these

words should be trimmed so that only “jump” remains,

and they all become the same word. Weka provides several

different stemming algorithms that perform this stemming.

In this work, the IteratedLovins Stemmer is used. Previous

to applying this filter, the data consists of two attributes

and a list of instances. By splitting the strings into words,

the filter turns the list of attributes into a unique list of the

words contained in all instances, creating a master word list

for the entire dataset. The instances are turned into counts

of how many times each word, or attribute, appears in the

instance’s song. Take the following as a simple illustration

of how this works. Suppose there are two instances of lyric

sets. Table 1 displays how the dataset would look before

applying the String to Word vector filter.

Lyrics Genre
The quick brown fox jumped over the lazy dog Rock
I have a dog and a cat, the dog is a boy and the cat is a girl Pop

Table 1: A sample dataset prior to running String to Word

Vector

After running String to Word Vector, the words in

these lyrics are extracted, stemmed and stop words

are eliminated. Each instance becomes a count of how

many times each word appears in the lyric set. Table 2

displays how the dataset would look after applying the filter.

quick brown fox jump over laz dog two cat boy girl Genre

1 1 1 1 1 1 1 0 0 0 0 Rock

0 0 0 0 0 0 2 1 2 1 1 Pop

Table 2: The same dataset after running String to Word

Vector

As shown in Table 2, the String to Word Vector filter

converts the data to numerical data, making it easier for a

classification learner to deal with. The three operations it

performs on the raw data are the key factors in determining

the consistency and meaningfullness in a model’s results.

2.2.3 SMOTE
The dataset collected using the procedure described in

the previous section was originally very heavily class-

imbalanced, due to the very nature of the means of collecting

the data. The music database contains significantly more

rock, pop and rap songs than it does country or jazz. After

the initial pass of data collection, the largest class, rock,

contained over 1700 entries, while the smallest class, jazz,

contained about 200. Weka provides a means of handling

such a problem from within the preprocessing stage, the

SMOTE filter. This filter balances a given class value by

producing instances in an intelligent way. SMOTE uses an

adaptation of a k-nearest-neighbor algorithm which analyzes

instances within a class, and creates new ones based on

its closest neighbors. Ultimately, the dataset was balanced

into sets of 500 instances for each class, meaning 500 song

entries for each genre.

2.2.4 Principle Component Analysis
The final piece of preprocessing is by far the most

mathematically intensive, as well as computationally heavy.

In the example used above to illustrate the String to Word

Vector filter, a dataset of 2 entries is used. The original

Int'l Conf. Data Mining | DMIN'16 | 45

ISBN: 1-60132-431-6, CSREA Press ©

attribute set is of size 2, where the resulting attribute set

after running the filter is of size 11, the number of unique,

non-stop, stemmed words. Moreover, these two lyric sets

are very small. Realistically, a single lyric set is about ten

times the size of the ones used in the example. Therefore,

the number of attributes when running the filter against the

actual dataset is overwhelming. After obtaining a dataset

of 2500 instances, the String to Word Vector filter created

8922 attributes. The Curse of Dimensionality is precisely

this problem: as the number of dimensions, or attributes,

grows, so too does the complexity of any model, and,

typically, accuracy and meaningfullness of results declines.

The remedy for such a problem is Principle Component

Analysis (PCA). PCA involves dimensionality reduction

by transforming the matrix of data using linear algebra

techniques. First, the data is centered and its covariance

matrix is obtained. The trace of the covariance matrix

is known as the total variance (the diagonal entries of

a covariance matrix are simply the variances of each

attribute). A theorem of linear algebra states that the sum

of the eigenvalues of a matrix equals its trace. Therefore,

each eigenvalue of the covariance matrix corresponds to

some percentage of the total variance. The eigenvalue with

the highest percentage of the total variance is called the

first principle component; the eigenvalue with the second

highest percentage is the second principle component, and

so on. PCA reduces dimensionality by eliminating lesser

order principle components (small percentage eigenvalues)

until a desired portion of the variance is maintained. Weka

defaults this percentage to 95%. Therefore, eigenvalues of

the covariance matrix will be removed until 5% of the total

variance has been eliminated.

PCA transformed a dataset with 8922 attributes into

a weighted dataset with 1339 attributes, a significant

reduction, and, though not perfect, much more reasonable

than the original attribute set.

3. Experiments
For all experiments, a percentage split was used to sep-

arate training data to build models on and testing data to

evaluate them. 66% (1650 instances) of the data was used

to train the model, and the remaining 34% (850 instances)

to test it.

3.1 J48 Decision Trees
The first experiment performed on the preprocessed

dataset was building a model using J48 decision trees, with

pruning. Decision trees are popular methods of building

classification models because of their ease of interpretation

and clarity, but may not always be the best option depending

on the type of data and attribute set. In this work, the dataset

contains 1339 attributes, so a decision tree generated would

be so large it would be impractical to try and scan it for

suspicious nodes or meaningless splits, though its results

may look plausible. Nonetheless, it is interesting to use

this method regardless and examine how its results differ

from those of other methods that try to account for these

weaknesses.

3.2 Random Forest
The next experiment performed is building a Random

Forest model. This method generates a number of decision

trees at random and uses them in conjunction with each other

when testing the model. Using this model typically generates

a higher accuracy than a single decision tree because it

allows for more specific splits, though may lead to a higher

chance of overfitting data because of the higher number of

splits. The initial run of the Random Forest algorithm was

done generating 100 random trees, then 500 random trees.

In the next section a comparison of the results from these

two runs is given.

3.3 k-Nearest-Neighbor
The k-nearest-neighbor algorithm is sometimes called a

lazy learner, as it’s means of classifying an instance boils

down to evaluating the k closest instances to it and picking

a class based on those k instances, as opposed to building

some rule set to follow when testing. There are various

parameters that allow for customizing this kind of learner.

First and foremost, k itself, the number of neighbors to

consider when classifying an instance. However, another

interesting parameter that can be experimented with is the

means of evaluating distance. Two popular methods are

classic Euclidean distance and Manhattan Distance. In these

experiments, k was tested with values of 1 through 5, and

both distance methods were tested.

3.4 Naive Bayes
The Naive Bayes algorithm is perhaps the most popular

classification model used in text mining applications. It is

fundamentally grounded in Bayes’ Theorem, as follows:

P (A|B) =
P (B|A)P (A)

P (B)
(1)

where P (A|B) is the probability of an event A, given the

event B. This theorem provides an excellent relationship be-

tween prior and posterior probabilities, and therefore makes

for an effective technique in classification. This theorem

can be extended in the following way. Suppose a vector

x = (x1, ..., xn) represents n attributes, and some event C
is to be predicted. According to Bayes’ Theorem:

P (C|x) = P (x|C)P (C)

P (x)
(2)

This probability is most likely a more manageable value

to compute. The Naive Bayes classification model uses this

46 Int'l Conf. Data Mining | DMIN'16 |

ISBN: 1-60132-431-6, CSREA Press ©

approach to classify instances. The term ‘Naive’ reflects

that the algorithm assumes all attributes are statistically

independant. In the example above, this implies that all xi

in the vector (x1, ..., xn) are uncorrelated with each other.

4. Results
For each experiment, the primary metrics evaluated are

correctly classified instances, incorrectly classified instances,

kappa statistic, mean absolute error as well as confusion

matrices for each method. The kappa statistic is defined as:

κ =
p0 − pe
1− pe

(3)

Also known as Cohen’s kappa, this statistic compares ob-

served accuracy with expected accuracy, where p0 is ob-

served accuracy and pe is expected. A kappa value close to

1 indicates that observed accuracy is very high (some basic

algebra shows that a kappa value of 1 denotes an observed

accuracy of 100%). This can be a useful metric in deter-

mining the accuracy of the specific model built compared to

the actual classification. Each entry in a confusion matrix is

the number of times the class in the row is classified as the

class in the column. In other words, the (i, j)th entry in the

matrix is the number of times the ith class was classified as

the jth class. Entries along the diagonal are the number of

times a class was classified as itself. In a model with high

accuracy, these numbers are expected to be the largest.

4.1 J48 Decision Trees
Table 3 displays general statistics for the results of build-

ing a J48 decision tree to classify the data, and Table 4

displays this model’s confusion matrix.

Correctly Classified Instances 340
Incorrectly Classified Instances 509
Kappa Statistic 0.2509
Mean Absolute Error 0.2427

Table 3: General statistics for J48 Decision Tree

Country Jazz Pop Rap Rock �Classified As
58 6 35 21 45 Country
26 105 13 7 22 Jazz
57 8 52 27 38 Pop
27 7 29 76 18 Rap
47 20 31 25 49 Rock

Table 4: J48 Decision Tree Confusion Matrix

This model was built in 57.22 seconds, contained 319

leaves, and was of total size 637. It generated an overall

accuracy of 40.05%.

4.2 Random Forest
Table 5 displays general statistics for running Random

Forest with generating 100 and 500 random decision

trees.Table 6 displays this model’s confusion matrix for

running Random Forest with 100 and 500 random decision

trees.

Correct Incorrect Kappa Mean Abs. Err
100 trees

368 481 0.2916 0.2565
500 trees

402 447 0.3412 0.256

Table 5: Random Forest General Statistics

100 trees:
Country Jazz Pop Rap Rock �Classified As

73 0 30 16 46 Country
29 101 12 7 24 Jazz
56 0 75 21 30 Pop
37 0 38 70 12 Rap
63 0 44 16 49 Rock

500 trees:
74 0 37 15 39 Country
23 101 14 5 30 Jazz
38 0 87 20 37 Pop
18 0 44 78 17 Rap
64 0 30 16 62 Rock

Table 6: Random Forest Confusion Matrices

Running the Random Forest with 500 random trees yields

about a 4% increase in accuracy, as 100 trees generated

an accuracy of 43.35% while 500 generated an accuracy

of 47.35%.

4.3 k-Nearest-Neighbor
Figure 1 displays a plot of the accuracy of the k-Nearest-

Neighbor algorithm with respect to k ranging from 1 to 5.

As shown in the plot, the accuracy of the model is highest

at k = 1 for both distance methods. As k increases, the

accuracy tends to decline and stabilize around 30%. This

phenomena is somewhat expected; it is likely that instances

further away from the instance to be classified are not good

predictors of the instance. In other words, it is more likely

that one or two of the closest neighbors to an instance are

better classifiers of that instance than its four or five closest

neighbors.

Table 7 below displays accuracies as well as correctly

classified instances for k from 1 to 5.

Int'l Conf. Data Mining | DMIN'16 | 47

ISBN: 1-60132-431-6, CSREA Press ©

1 2 3 4 5
25

30

35

40

k

A
cc

u
ra

cy
(%

)

k-Nearest-Neighbor Accuracy

Euclidean Distance

Manhattan Distance

Fig. 1: Plot of kNN accuracy with respect to k

k 1 2 3 4 5
Accuracy (%) 36.04 30.62 31.8 31.45 31.15

Correctly Class. 306 260 270 267 256

Table 7: kNN accuracies and correctly classified instances

4.4 Naive Bayes
Table 8 displays general statistics for the results of a Naive

Bayes classification model, and Table 9 displays this model’s

confusion matrix.

Correctly Classified Instances 263
Incorrectly Classified Instances 586
Kappa Statistic 0.1357
Mean Absolute Error 0.276

Table 8: General statistics for Naive Bayes

Country Jazz Pop Rap Rock �Classified As
25 66 15 12 47 Country
21 121 6 3 22 Jazz
35 69 29 13 36 Pop
20 67 12 32 26 Rap
33 49 19 15 56 Rock

Table 9: Naive Bayes Decision Tree Confusion Matrix

The Naive Bayes classifier yielded an overall accuracy

of 30.98%.

Table 10 below displays an overview of all models

used. The parameters for each are those which yielded the

highest accuracies. In the table, Random Forest refers to

the model using 500 random decision trees and k-Nearest-

Neighbor refers to the model with k equal to 1 using

Euclidean distance.

J48 RandomForest kNN NaiveBayes
40.05% 47.35% 36.04% 30.98%

Table 10: Accuracies of all models

4.5 Results without Rap Genre
As discussed in the Data Collection and Pre Processing

sections, one of the pressing issues pertaining to the dataset

collected is the unreliability of the text data contained in

each lyric set. Words are often misspelled, or unformatted,

leading to non-distinctness in the String to Word Vector filter,

as well as failure in the stemming algorithm. The rap genre is

the foremost contributor to these instances of malformed or

incorrect pre-processed data. To observe this genre’s impact

on the models’ results, the genre was removed altogether

and the previous experiments were performed on the data,

now containing 2000 instances with 1157 attributes (after

PCA). Table 11 displays accuracy results for J48 Decision

Trees, Random Forest with 500 trees, k-Nearest-Neighbor

with k=1 using Euclidean distance, and Naive Bayes.

J48 RandomForest kNN NaiveBayes
39.32% 51.69% 34.16% 34.46%

Table 11: Accuracy of Models without Rap Genre

As shown in the table above, Random Forest and Naive

Bayes perform better with the rap genre removed, while

J48 and kNN perform slightly worse. In the previous ex-

periments, the per class error rates for the rap genre were

0.214 for kNN, 0.081 for Random Forest, 0.116 for J48

and 0.062 for Naive Bayes. Interestingly, Random Forest

and Naive Bayes, the two models with the lowest error

rate for the rap class, performed better after removing the

genre, while the two with the higher rap error rates, J48

and kNN, performed slightly worse. However, it is worth

noting that accuracy should expect to increase, regardless of

any particular complexity within a specific class, whenever

decreasing the number of class values. Considering a ZeroR

approach, a simplistic model in which for each instance the

most common class value is selected, the baseline accuracy

is 20% for 5 class values and 25% for 4 class values, an

increase in 5%. The increase in accuracy observed in the

Random Forest model was just over 4%, so this increase

nearly matches the expected increase when removing the

class value.

5. Related Work
Music streaming services such as Pandora, Spotify,

Google Play Music, etc. make use of data mining as a

48 Int'l Conf. Data Mining | DMIN'16 |

ISBN: 1-60132-431-6, CSREA Press ©

means of providing subscribers personal playlists which

are tailored specifically based on a user’s preference in

music. This is done by selecting songs a user listens to

often, collecting metrics that quantify each song’s musical

qualities, using data mining to build a model that accurately

captures the user’s taste in music and providing the user with

different songs that fit the model. Much work has been done

using metrics that quantify things such as musical intensity,

tempo, beat frequency, etc., but less have experimented with

using lyrical text mining to perform a similar task. In one

such work, the use of lyrics is provided in addition to the

traditional methods to classify songs based on categories of

moods (X. Hu, J. Downie, A. Ehmann). This work exhibits

similar pre-processing techniques, including the removal of

non-lyric text, but makes use of the lyrics in different ways.

For example, it explains that function words (called stop-

words in this work) actually exhibit predictive power in

terms of text style analysis, and are used as an independent

feature set, though yield worse results than other methods

used. Furthermore, the work describes an approach called

Bag-of-Words, in which lyrics are transformed into a set

of unordered words, and features represent frequencies of

each word, which is primarily how this work transforms

lyrics into a feature set. Another approach is Part-of-Speech,

in which words are grouped together based on their gram-

matical function in sentences. This approach provides more

expressive power in that it may be helpful to analyze what

type of words significantly impact classification, though may

not necessarily yield better results. In another work, lyrics

are used to find underlying emotional meanings in songs (D.

Yang, W. Lee). This work uses 23 emotion categories such

as power/strength/dominance vs. weak, active vs. passive,

understatement vs. exaggeration, etc, in which songs are

grouped into. Therefore, the approach used to generate a

feature set is an adaptation of Part-of-Speech; rather than

grouping words based on their grammatical function, they

are grouped based on a pre-defined, arguably subjective,

emotional function. Nonetheless, this work achieved an

accuracy of 67% using an ensemble method in Weka.

6. Conclusions
The bulk of the work needed to begin performing any

type of data mining experiments is contained in the pre-

processing stage. As a result, the consistency and meaning-

fullness of the results obtained from the experiments is very

much so contingent on the success of pre-processing. The

results displayed in the previous section look poor at first

glance, and it is without question they could be improved.

6.1 Future Work
The most glaring pre-processing error stems from the

inconsistency of the lyrics contained in the rap genre

(there is also a good deal of inconsistency in the rock and

pop genres, but more so in the rap genre). One example

of inconsistency is an instance where a word is spelled

differently in two places, though each spelling neet not be

‘correct’. The String to Word Vector filter only requires

words to be spelled the same way, be it the correct spelling

or not. In fact, as is true with text mining in general, the

meaning and spelling of words is irrelevant - a model does

not require a human understanding of the words in order to

classify each instance. Nevertheless, it is obvious that these

problems create issues for each model, and, as expected,

accuracy jumps when removing the rap genre altogether. In

future work, this kind of approach is optimal in attempting

to achieve higher accuracies. In all experiments performed,

Random Forest with 500 trees generated the highest

accuracy at just over 50%. In order for all accuracies to

improve, a more careful tweaking of the dataset needs to

be performed. One such tweaking would be to remove all

words not contained in the English dictionary (assuming

the lyrics are all written in English). This approach is

a bit extreme, and may not be necessary as the models

themselves do not consider word meanings, but it would

ease the pre-processing stage and create less inconsistency.

Another approach would be to re-evaluate the method

of data collection altogether. The data is taken from an

openly accessible lyric site, MetroLyrics. Given the high

number of lyric sets required, it would be nearly impossible

to verify the validity of each set of lyrics taken from

the site and clean them to remove unwanted characters,

misspellings, etc. Lastly, Principle Component Analysis

clearly plays a critical role in the dimensionality reduction

of text data, so it is also likely that a tweaking of this

process may lead to better results. Nevertheless, it is

clear that as the pre-processing of the dataset becomes

more refined, the accuracies of each classification model

improves.

References
[1] Xiao Hu, J. Stephen Downie, and Andreas F. Ehmann Lyric Text Mining

in Music Mood Classification. American music, 2009.
[2] Dan Yang and Won-Sook Lee Music Emotion Identification from Lyrics.

Multimedia, 2009. ISM ’09. 11th IEEE International Symposium on,
San Diego, CA, 2009

Int'l Conf. Data Mining | DMIN'16 | 49

ISBN: 1-60132-431-6, CSREA Press ©

