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Abstract— This paper describes an approach that uses prob-
abilistic logic reasoning to compute subjective interestingness
scores for classification rules. In the proposed approach domain
knowledge is represented as a probabilistic logic program which
encodes information incoming from experts and statistical data.
Computation of interestingness scores is supported by a rea-
soning procedure that uses linear programming to calculate the
probabilities of interest. An application example illustrates the
utilization of the described approach in evaluating classification
rules on UCI Wisconsin Cancer data set. As it is shown this
scheme provides a mechanism to estimate probability based
subjective interestingness scores.

I. INTRODUCTION

Searching patterns in databases has been a useful strategy

for acquiring the knowledge that is required to perform tasks

involving decision making and problem-solving in areas such

as medicine, agriculture, biology, environmental research

and many others. In this context, knowledge discovery in

data bases (KDD), the field of computer science, intends to

develop the theoretical basis and computational frameworks

to transform raw data into useful and comprehensive infor-

mation. In practice, KDD process can be abstracted in three

basic steps: preprocessing data to make it ready for analysis,

running data mining algorithms to find out relationships

among the variables of the application domain and then,

evaluating how interesting are the detected patterns.

A common application in KDD is mining classification

rules that aiming to finding logical implications which relate

the features of an object to a label that informs its category

(or class) by examining cases in a data set. The main criteria

for evaluating rule mining results is the accuracy, the overall

correctness of the model in predicting object class in a test

data set. Basically, if the discovered rules are sufficiently

accurate it is possible to use them to classify new object

instances given the evidence.

However, depending on application objectives, accuracy is

not the only relevant criterion in classification rule mining.

In some situations, it might also be important to estimate the

usefulness, consistency or novelty of the learned patterns in

the light of domain knowledge. It is the aim of subjective

interestingness analysis, a KDD procedure that explores do-

main knowledge to calculate scores that try to quantify how

much a pattern meets a criterion of interest. For example,
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by verifying if the obtained rules are consistent with the

background knowledge [1], [2]. - that is, if they are expected

given the available information.

To perform this task, data analysts usually make use of a

knowledge-based system which provides the functionalities

required to compare the data mining results to previous

expectations. Such approach demands the implementation of

a knowledge base that encodes all relevant information and

thus, involves carrying out a knowledge engineering process

to acquire the background information and then writing the

elicited sentences using an appropriated formalism. However,

domain knowledge is, frequently, incomplete and imprecise

and, in this case, the selected formalism must provide the

mechanism to proceed reasoning under uncertainty.

Probability theory has been widely employed to represent

uncertain beliefs about the statements in a knowledge base

and perform inferences about expectations. However, as

observed by Walley [3] [4], domain experts do not always

feel comfortable to assign exact probabilities to the sentences

of a knowledge base. In other terms, sometimes it can be

the case that the information provided by the experts is

not enough to the elicitation of point probability estimates.

Since this situation can also arise during the development

of a knowledge base for subjective interestingness analysis,

the use formalisms which allow to handle with imprecise

probability statements can be very useful in practice.

Considering it, this work presents an approach that ex-

plores the formalism of probabilistic logic to encode the prior

knowledge and uses a linear programming-based procedure

to compute interestingness scores for classification rules. The

main objective underlying the proposal is to provide a basic

framework which allows to integrate domain knowledge from

different sources and also to execute the needed inferences.

In particular, the proposed approach is able to deal with

information from probabilistic distributions defined on the

attributes which appear in a classification rule, statistics about

correlation data and imprecise beliefs elicited from experts.

The paper is organized as follows. Section 2 brings a

review on classification rule mining and an interestingness

measure called level, proposed by Gay and M. Boullé [5].

This section also describes some concepts in probabilistic

logic. Section 3 presents the proposed approach. Section 4

illustrates the utilization of the described approach with a

simple application in which the level of interest of classifica-

tion rules generated by the JRIP algorithm on the UCI Breast

Cancer Data Set is calculated. Section 5 discusses the main

issues related to the employment of the proposed approach

in interestingness analysis. The last section presents the final
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remarks of this study.

II. BACKGROUND REVIEW

Let D be a multivariate data set with m instances, n
descriptor attributes and a target attribute. Denote the descrip-

tors by X1..., Xn and the target or class by C. Each attribute

Xj symbolizes some feature of objects to be classified and its

domain1 is denoted as Ωj . The target attribute is a category

label.

Classification rule mining aims at discovering implication

patterns that can be used to classify objects into given cate-

gories based on their features [6]. It is the task of inducing,

from D, logical expressions of the form F1∧F2 · · ·∧Ft → C.

In this work, each antecedent Fi of a rule is assumed to

be a relational expression Xj � xj,k where xj,k ∈ Ωj , �
is an operator from the set {<,>,≤,≥,=} and t ∈ N

+

with t ≤ n. The consequent can be viewed as a proposition

labeling an object as a member of a particular class. There

is a finite number of classes.

As it does for other data mining procedures used in KDD,

it is necessary to verify whether the rule mining results

meet the application requirements. In this kind of analysis,

called interestingness analysis, some numerical scores, the

interestingness measures, are computed for each discovered

pattern. Good interestingness measures should indicate how

much a pattern complies with KDD goals by identifying

“valid, novel, potentially useful and ultimately understand-

able information in data” [7]. As there are many different

interestingness scores in literature it is necessary to choose

a suitable one for each application. Afterward, the selected

score can be used to filter or rank the most promising results.

Since subjective interestingness analysis explores domain

knowledge and user preferences to rank the discoveries, its

realization requires building a knowledge base as well as

providing the associated reasoning procedures. Furthermore,

its implementation often faces some issues related to the

development of knowledge-based systems. Two of them are

how to deal with uncertain and incomplete knowledge [8],

[9]. Probability theory has been a ubiquitous tool to handle

these conditions and considering it, D. Gay and M. Boullé

[5] proposed an interestingness score, named level, which is

defined as follows:

level(R) = 1− c(R)

c(R0)
(1)

In this expression, c(R) = −log(P (D|R)) − log(P (R))
is said to be the cost of the rule and c(R0) is the cost of a

default rule - it is computed from class frequencies in the data

set. As it can be seen, level(R) is a posterior probability-

based score and as such evaluates, simultaneously, whether

a rule fits to data and agrees with prior knowledge. If

level(R) ≤ 0, the rule is less than or as probable as the

default rule and it is said uninteresting. If 0 < level(R) < 1,

R is more probable than the default rule and it is more

1In this work we assume a variable can be categorical, discrete or
continuous.

interesting as its level approaches 1. If level(R) = 1, the

rule fits the observations and prior beliefs exactly.

A point to be noted here is that eliciting probabilities

from experts is difficult activity [10]. So, if previous data

or literature provides information that can be relevant for

interestingness analysis (probability distributions, descrip-

tive statistics, correlation), it should be integrated into the

knowledge base whenever it is possible. Another point is

that eliciting probabilities from experts or literature does

not always manage to obtain exact probability assignments.

In particular, in some domains, it can be the case that all

available information is formed by imprecise probabilities

[3] or qualitative beliefs [11]. From this follows that it can

be useful to select formalisms which are is able to deal

with numeric and interval-valued probabilities and qualitative

probabilities [12] [13].

A. Propositional probabilistic logic

Probabilistic logic provides a formalism that extends

propositional logic for dealing with uncertain knowledge

[14]. As propositional logic, probabilistic logic also uses

propositional variables to represent categorical statements.

Propositional variables, or atomic formulas, can assume one

of two states, true or false, and can be combined in order to

form a compound formula. A compound formula describes

a complex proposition and is obtained by connecting atomic

or other compound formulas using the logical operators. In

this work, atomic formulas are denoted by lower case letters

as p . . . , q, compound formulas are denoted by capital letters

A,B . . . , C and logic operators (∧,∨ and ¬) has the usual

semantics [15]

Let Si be a formula, atomic or not. Probabilistic logic

assumes that the agent’s belief in Si can be represented by

a probability assignment P (Si) = πi, with πi ∈ [0, 1]. If

beliefs are imprecise, they can be expressed by inequalities

as P (Si) ≥ πi or P (Si) ≤ πi or by interval probability

statements as πi ≤ P (Si) ≤ πi; here πi and πi are

the lower and upper bounds for πi. Furthermore, exact

conditional probability statements expressing the expectation

in a sentence Si given the event Sj can be written as

P (Si|Sj) = πi,j , P (Si|Sj) ≥= πi,j . As before, imprecise

conditional beliefs can be represented as inequalities.

A probabilistic logic knowledge base is said consistent if

its assignments agree with probability theory axioms. So, if

M denotes all possible truth assignments2 on the variables

of a consistent knowledge base, then:

P (Si) =
∑

w:M(Si,w)

P (w) . (2)

where P (w) is the probability of a truth assignment.

A probabilistic logic inference [16] aims at computing

P (S) and P (S), the lower and upper probability of a

sentence S given the constraints defined by a knowledge

base with assessments P (S∗) = π∗, P (S∗) ≤ π∗ P (S∗) ≥
2A truth assignment is a vector assigning value either true or false to each

propositional variable of an expression to the constants true or false.
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π∗. The resultant interval [P (S) , P (S)] must be consistent

with the assessments about every sentence S∗ and with the

probability theory axioms. In this scheme, the given initial

assessments compose a knowledge base which encodes the

prior information as also any relevant evidence.

Inference can be carried out by linear programming.

Basically, let S = {S1, . . . , Sm} be a set of propositional

sentences associated to a collection of probability assign-

ments Π = {π1 . . . πm} and let S be the sentence of interest

whose probability is unknown. Let ai be a row vector so that

the jthelement of ai is 1 if Si is true in wj , the jth truth

assignment, otherwise it is zero. Let also p = (p1 . . . , p2n)
T

be a vector with the probability of every truth assignment

defined on the atomic sentences in S ∪ {S}. From Equation

2 it is easy to see that P (Si) = aTi p. A similar vector a can

also be defined for S and the linear programming related to

P (S) can be written as:

min /max aTp
s.t Am×2np = π

pi ≥ 0, i = 1..2n

1p = 1

In this program, a1 . . .am are the rows of matrix A.

III. PROBABILISTIC LOGIC PROGRAMMING AND

INTERESTINGNESS ANALYSIS

Let F1 ∧ F2 · · · ∧ Ft → C be a classification rule and S
a logical variable which is equivalent to that. Let Si be a

propositional variable that stands for the antecedent Fi. As

before, Fi represents a statement in the form Xj = xj,k,

Xj ≥ xj,k or Xj ≤ xj,k. The consequent C is a sentence

S0 indicating a class labeling.

In the proposed approach, the first step for the subjective

interestingness analysis of a rule is to elicit the marginal

probabilities of rule antecedents. In this work, it is assumed

that this information can be elicited from experts [10],

obtained from previous data analysis results [17], learned

from domain literature [18] or derived by meta-analysis [11].

Alternatively, the probability of each rule component could

be calculated from the empirical or theoretical marginal

densities related to its respective attribute [19]. So, let it

be an initial assumption that p(Xj) is known for every

Xj ∈ X. In this case, it is always possible to determine the

value of πi for every Si and then to generate the constraint

P (Si) = πj . Given that, lower and upper bounds for P (S)
can be calculated by solving the next probabilistic program:

min /max P (S)
s.t. P (S1) = π1

. . .
P (St) = πt

(3)

Now, a problem can arise whether p(Xj) is unknown

or uncertain. Nevertheless, the proposed approach can be

extended in many ways to deal with this issue. For example,

a first course of action would be, as stated before, to explore

domain experts knowledge or literature. A second choice

would be to use ignorance priors [20]. A third alternative

would be to employ the imprecise probability theory [21],

[3] to obtain a probability interval [πi, πi] which could be

used to define the expression πi ≤ P (Si) ≤ πi. In any case,

the resultant equations and inequalities could be appended to

Program (3) in order to proceed the inferences.

After encoding relevant information in Program (3), it can

be converted into a linear program for later solving. Example

1 illustrates the process described here.

Example 1: Let X1 and X2 be two normally

distributed variables so that X1 ∼ N(1; 0.1) and

X2 ∼ N(4; 1) and let C = c1 be a class assign-

ment whose prevalence is greater or equal to 0.6.

Given a rule S ≡ (X1 ≤ ∧X2 ≤ 5 → C = c1),
it is possible to use the previous information to

build a probabilistic logic program for P (S). In

that program, P (S1) = 0.16, P (S2) = 0, 84 and

P (S0) ≥ 0, 6. The upper and lower bounds for

P (S) are obtained by solving the next:

min /max ap
s.t A× p = Π

1p
pi ≥ 0, i = 1..8.

In this program, A =

⎡⎣ a0
a1
a2

⎤⎦, p =⎛⎝ p1
. . .
p8

⎞⎠ and Π =

⎛⎝ 0.65
0.16
0.84

⎞⎠. The rows

of A and the objective function are de-

fined as a0 = (1, 0, 1, 0, 1, 0, 1, 0), a1 =
(1, 1, 1, 1, 0, 0, 0, 0), a2 = (1, 1, 0, 0, 1, 1, 0, 0) and

a = (1, 0, 1, 1, 1, 1, 1, 1).

It can also be the case that domain experts do not feel

comfortable to assign bounds to the probabilities of some

sentences but have information that allows to ascertain com-

parative probability statements. For example, let Q1, Q2 and

Q3 be three sentences defined on S1 . . . , St so that experts

know that: (a) Q1 is as probable as or more probable than

Q2 and (b) Q3 is as probable as or more probable than Q1.

This kind of statement can be incorporated to Program (3)

as P (Q1) ≥ P (Q2) and P (Q3) ≥ P (Q1).

More formally, if it is known that P (Q1) ≤ P (Q2),
P (Q1) ≥ P (Q2) or P (Q1) = P (Q2), it is possible to

use that qualitative information to generate expressions, on

the form P (R1) − P (R2) ≤ 0, P (R1) − P (R2) = 0 or

P (R1)−P (R2) ≥ 0, respectively. As before, such constraints

can be rewritten using a vectorial notation by doing b1,2 =
b1−b2� 0. b1 and b2 are the row vectors relative to P (Q1)
and P (Q2). Given a set of those constraints, grouped into a

system B × p � �, they can be appended to the inference
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program as follows:

min /max cTp

s.t

[ A
B

]
× p�

[
�
0

]
1p
pi ≥ 0, i = 1..2t.

(4)

As it can be deduced from the expression above, by

encoding the information provided by comparative prob-

abilities into the linear program, it is possible to reduce

the solution space of the optimization problem. So, it can

contribute to obtaining tighter bounds for P (S) and derived

interestingness scores.

A. Dealing with correlation data

Berleant and Jianzhong [22] and Berleant et al [23] present

a procedure that allows the calculation of envelopes for

joint probabilities from Pearson’s correlation coefficient and

marginal data. This section explores that procedure to draw

out additional probabilistic constraints for interestingness

analysis.

Initially, let Xi and Xj be two distinct continuous at-

tributes, with known densities p(Xi) and p(Xj), and linear

correlation r. Discretization of Xi and Xj into n1 and

n2 bins introduces two discrete variables, Z and Y whose

sample spaces are Ωz = {z1 . . . zn1
} and Ωy = {y1 . . . yn2

}.

In addition, let p(Z) and p(Y ) be the marginal distributions

of these new variables so that their entries are obtained from

p(Xi) and p(Xj) by doing P (zk) = P
(
xi,k < Xi ≤ xi,k

)
and P (yl) = P

(
xj,l < Xj ≤ xj,l

)
. Here xi,k and xi,k (xj,l

and xj,l) are the limits of the kth (lth) bin of Z (Y ).

Given Si ≡ (Xi ≥ xi) and Sj ≡ (Xj ≥ xj), two

antecedents of a classification rule, if it is assumed that Z
has a value za so that xi,a = xi and Y has a value yb
where xj,b = xj , P (Si) and P (Sj) can be easily written

in terms of p(Z) and p(Y ). Moreover, marginalization of

p(Z, Y ) produces:

P (Si) =
∑zn1

k=za

∑n2

l=1 P (Z = zk ∧ Y = yl) = πi

P (Sj) =
∑kn2

l=yb

∑n1

k=1 P (Z = zk ∧ Y = yl) = πj

(5)

Similarly, P (Si ∧ Sj) can be formulated in terms of

p(Z, Y ) by doing:

P (Si ∧ Sj) =
∑
t∗∈t

P (Z = zt∗ ∧ Y = yt∗) = πi∧j . (6)

In this expression, πi∧j denotes the unknown value

P (Si ∧ Sj) and t is a vector of pairs of indexes so that,

for all t∗ = (k, l) ∈ t, the intervals represented by zk and yl
agree with the condition symbolized by Si ∧ Sj . As before,

Equations 5 and 6 can be represented in a vectorial form and

appended to the Program (4).

The point here is that previous equations relate the joint

distribution of p(Xi, Xj) to P (Si ∧ Sj), P (Si) and P (Sj)
- all of them are relevant to compute the probability of

the classification rule under analysis. The problem is that

integrating that information into described approach depends

on estimate or bound the value of πi∧j . It can be done by

exploring Equations 7 and 8:

n1,n2∑
k,l

zkylP (Z = zk ∧ Y = yl) ≥ μiμj + r
√
σ2
i σ

2
j (7)

n1,n2∑
k,l

zkylP (Z = zk ∧ Y = yl) ≤ μiμj + r
√
σ2
i σ

2
j (8)

As shown by Berleant and Jianzhong [22] those equations

can be used to calculate an outer envelope for p(Z, Y ) given

correlation data and some statistical measures. Basically,

beyond the correlation of Xi and Xj , their utilization requires

that outer bounds on the expected values (μ∗ and μ∗) and

variances (σ2
∗ and σ2∗) be known.

Equations 5, 6, 7 and 8 can be grouped to form a linear

system D that also stores the constraints implied by the

probability theory. Appending D to Program (4) can be

useful for two reasons. Firstly, because it provides additional

constraints to the optimization program and, from this, con-

tributes to obtaining tighter intervals for P (S). Secondly,

because it also allows the collection of information in another

way.

The last point to be discussed here is a note about the

acquisition of μj , μj , σ2
i , σ2

j , σ2
i , σ2

j . As proposed by

Berleant and Jianzhong (2004) and Berleant et al (2007), this

work assumes that those limits are entered by the analyst or

calculated by interval optimization upon P (Z) and P (Y ).

B. Evaluating interestingness

The described approach assumes that interestingness anal-

ysis is performed as a post-processing routine. That is,

interestingness analysis is performed after the data mining

step and it aims at sorting or filtering the mined rules

according to their interestingness scores.

Given that, calculating the level of interestingness of a

rule starts by computing P (S) with the model previously

described and then employing that result to determine the

numerator, c(S) = − log(P (S))− log(P (D|S)) in Equation

1. If P (S) is determined exactly, c(S) can be calculated

directly by using Equation 1. Otherwise, if the result is an

interval [P (S) , P (S)], Equation 1 can be used to derive an

interval for c(S). In this case, since c(S) = −log(P (S)) −
log(P (D|S)) and c(S) = −log(P (S)) − log(P (D|S)) are

the limits of such interval, the minimum and maximum of

level score are given by :

level(S) = 1− c(S)
c(S0)

level(S) = 1− c(S)
c(S0)

(9)

After obtaining the interval for level(S), the interesting-

ness analysis continues by inspecting its lower and upper

bounds. if level(S) is greater than 0, it means that the

rule appears to be interesting given prior knowledge as also

effective in describing data, even if it was computed on the

lower bound for P (S). On the other hand, level(S) < 0 is
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an indicative that, in the light of background information,

the rule is not interesting even if the analysis considers an

upper bound for P (S). Finally, if 0 ∈ [level(S), level(S)]
no direct conclusion can be drawn.

IV. AN APPLICATION EXAMPLE

This section shows an application that uses the proposed

approach to calculate the level of interestingness of classi-

fication rules induced by JRIP algorithm [24], [25] for the

Breast Cancer Wisconsin Data Set [26]. The 569 cases in

data set were split into two partitions, the training data with

2/3 of the instances and a test data set with the rest. The

JRIP algorithm generated the following rules:

• rule (a): (concave points n1 ≥ 0.05182) and (perimeter

n3 ≥ 113.9) → Diagnosis=malign;

• rule (b): (concave points n1 ≥ 0.05839) and (texture n3

≥ 23.75) → Diagnosis=malign;

• rule (c): (radius n3 ≥ 15.65) and (texture n3 ≥ 28.06)

and (smoothness n3 ≥ 0.1094) → Diagnosis=malign.

The attributes on the left side of these rules refer to some

features of cellular nucleous. The right side indicates positive

diagnostic of malignancy.

As prescribed by the proposed approach, the first rule was

associated with a sentence Sa ≡ S1 ∧ S2 → S0 where

S1 and S2 symbolize the conditions concave points n1 ≥
0.05182 and perimeter n3 ≥ 113.9, respectively. S0 denotes

the sentence Diagnosis=malign. The prior probabilities of

S1 and S2 were set as P (S1) = π1 = 0.41 and P (S2) =
π2 = 0.36 and the conditional probability P (S1|S0) was also

entered as π1,0 = 0.82. In the example it was assumed that

those values were informed by an hypothetical expert3. The

prevalence of breast cancer incidence4 in US was defined as

P (S0) = π0 = 0.001. Next, the following probabilistic logic

program was written as:

min /max P (Sa)
s.t P (S0) = 0.001

P (S1) = 0.41
P (S2) = 0.36
P (S1|S0) = 0.82

Similarly, Rule (b) was associated with a sentence rule

Sb ≡ S3 ∧ S4 → S0 where S3 and S4 represent the

propositions concave points n1 ≥ 0.05839 and S4 and

texture n3 ≥ 23.75. The input probabilities were fixed as

P (S3) = 0.34, P (S4) = 0.58 and P (S4|S0) = 0.85. Rule

(c) was related to sentence Sc ≡ S5 ∧ S6 ∧ S7 → S0 where

S5, S6 and S7 indicate radius n3 ≥ 15.65, texture n3 ≥
28.06 and smoothness n3 ≥ 0.1094, respectively. The input

probabilities were π5 = 0.4987, π6 = 0.3398, π7 = 0.8452
and π6,0 = 0.4425.

After that, the revised simplex algorithm was used to

calculate intervals for P (Sa), P (Sb) and P (Sc), the obtained

results were [0.64, 1], [0.66, 1] and [0.66, 1], respectively.

3For practical reasons, P (S1), P (S2) and P (S1|S0) were estimated
from a random sample extracted from the original data set.

4See http://www.cdc.gov/mmwr/preview/mmwrhtml/00043942.htm.

Next, the calculated probability intervals were combined with

the likelihoods (see [5]) of Sa, Sb and Sc in order to calculate

lower and upper bounds for the level score. The results were

level(Sa) ∈ [0.65, 0.75], level(Sb) ∈ [0.026, 0.026] and

level(Sc) ∈ [0.023, 0.023]. These results indicate that only

the first rule seems to have a considerable degree of interest

when confronting data and background knowledge.

In the sequence, it is supposed that the analyst has two

additional pieces of information he wants to take into account

when evaluating the first rule. The first one informs a

qualitative constraint P (S1 ∧ S0) ≥ P (S2 ∧ S0). The second

one, supplied by an expert, declares that the expected value

of concave points n1 and perimeter n3 are bounded by the

intervals [75.22, 138.8] and [0.05; 0.08] while their variances

pertain to intervals [28, 34] and [0.032, 0.044].
By solving the linear program updated with this infor-

mation, a new belief interval for Sa is P (Sa) ∈ [0.99, 1].
It makes that the lower bound for level(Sa) be updated to

0.66.

V. DISCUSSION

The probabilistic approach presented in this work provides

a basic scheme to encode into a knowledge base informa-

tion acquired from experts, literature or statistical reports

aiming to make advances in the interestingness analysis of

classification rules. In particular, it allows using information

elicited from experts or descriptive statistical data to assess

the marginal or joint probabilities for the propositions which

compose a classification rule. Once this kind of information

is often available in several domains [11] [22], the proposed

approach can be useful in many situations.

Additionally, by exploring the probabilistic logic language,

the presented approach implements two facilities which are

inherent to that logic. A first facility stems from the fact

that probabilistic logic reasoning is able to deal with uncer-

tain and incomplete knowledge [27], [28], [29], qualitative

probabilities [30] and imprecise beliefs [31] using the same

inference engine - linear programming. A second one is that

probabilistic logic modeling does not require the construction

of a complete probabilistic model in order the encoding

sentences involving many domain variables. This way, since

the statements in the knowledge base comply with the

axioms of probability theory [32], the declaration of any

statement (with few or several terms) does not depend on

prior statements.

Many other authors have used probabilistic reasoning

methods in subjective interestingness analysis [33] [34][35]

[36]. In particular, the present proposal bears some similari-

ties with those described by Jaroszewicz and Simovici [37]

and Malhas [8]. Those authors show schemes for subjective

interestingness analysis of association rules where they ap-

ply the formalism of Bayesian networks [38] to represent

the domain knowledge and proceed the computation of an

interestingness score. That design choice allows them to

take advantage from the expressiveness of the language

and efficiency of reasoning algorithms provided by the

Bayesian network formalism. However, Bayesian networks
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reasoning assumes that model probabilities are precise and

the treatment of imprecise probabilities often demands the

employing of extended formalisms [39] [40] [41]. Give that,

the present approach can be viewed as an alternative for

domains which are well represented by rule-based systems

and the development team does not have time or resources

to specify a complete probabilistic model.

Finally, it must be noted that: (a) probabilistic logic

inference is a time-consuming task [16]; (b) depending on

the application and the learning strategy, rule miners can

generate too many patterns [42]; and (c) it is desirable that

interestingness analysis tools have a pleasing time perfor-

mance. So, given (a) and (b), it could be argued that the

presented scheme would be ineffective to achieve (c) if it

is necessary to reason on a very large knowledge base or

if there are too many rule patterns to process. However, a

further scrutiny shows that rule mining algorithms, usually,

implement a kind of Occam’s razor or strategy for rule

pruning. So, for some applications, the mined rules will

not have many components (propositions). In such cases, it

is expected that the inference problem does not have too

many elements to process and, therefore, it can be solved

quickly. Additionally, empirical results described in Cozman,

de Campos and da Rocha [43], Jaumard, Hansen and Aragão

[14] and Hansen et al [31], shows that the use of column

generation technique [44] allows to solve the linear programs

related to probabilistic logic programs with a few dozens of

variables and two hundred of sentences in less than a minute

(few seconds). This time performance can be acceptable for

a number of real world tasks.

VI. CONCLUSION

This work presented a propositional probabilistic logic-

based approach for subjective interestingness analysis of

classification rules. An advantage of the proposed approach

is that it allows to integrate domain knowledge from experts,

literature and statistical reports to compute probability based-

interestingness measures. Another advantage is that it is

possible to carry out valid probabilistic reasoning even if

available knowledge is uncertain or incomplete and elicited

beliefs are imprecise.

As a future work it is intended to extend the proposed

approach to integrate independence assumptions into the

inference step by combining probabilistic logics and graph

based representations (see [45] and [43]). Another objective

is to investigate the possibility of using the proposed scheme

to validate or review prior beliefs, given the mined rules

(similar to the soft belief analysis described by Silberschatz

and Tuzhilin [36]). Finally, the development of an extended

approach for dealing with interestingness analysis of associ-

ation rules is also intended.
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