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Abstract

Self-organizing maps are artificial neural networks designed

for unsupervised machine learning. They represent powerful

data analysis tools applied in many different areas including

areas such as biomedicine, bioinformatics, proteomics, and

astrophysics. We maintain a data analysis package in R based

on self-organizing maps. The package supports efficient, sta-

tistical measures that enable the user to gauge the quality of

a generated map. Here we introduce a new quality measure

called the convergence index. The convergence index is a lin-

ear combination of map embedding accuracy and estimated

topographic accuracy and since it reports a single statistically

meaningful number it is perhaps more intuitive to use than

other quality measures. Here we study the convergence index

in the context of clustering problems proposed by Ultsch as

part of his fundamental clustering problem suite. We demon-

strate that the convergence index captures the notion that a

SOM has learned the multivariate distribution of a training

data set.

1 Introduction

Self-organizing maps are artificial neural networks designed

for unsupervised machine learning. They represent powerful

data analysis tools applied in many different areas including

areas such as biomedicine, bioinformatics, proteomics, and

astrophysics [1]. We maintain a data analysis package in R

called popsom [2] based on self-organizing maps. The pack-

age supports efficient, statistical measures that enable the user

to gauge the quality of a generated map [3]. Here we in-

troduce a new quality measure called the convergence index.

The convergence index is a linear combination of map embed-

ding accuracy and estimated topographic accuracy. It reports

a single, statistically meaningful number between 0 and 1 –

0 representing a least fitted model and 1 representing a com-

pletely fitted model – and is therefore perhaps more intuitive

to use than other quality measures. Here we study the conver-

gence index in the context of clustering problems proposed

by Ultsch as part of his fundamental clustering problem suite

[4]. In particular, we are interested in how well the conver-

gence index captures the notion that a SOM has learned the

multivariate distribution of a training data set.

Over the years a number of different quality measures for

self-organizing maps have been proposed. Nice overviews of

common SOM quality measures appear in [5] and [6]. Our

convergence index distinguishes itself from many of the other

measures in that it is statistical in nature. This is particularly

true for the part of the convergence index based on embedding

(or coverage) which is essentially a two-sample test between

the training data and the set of self-organizing map neurons

viewed as populations. The two sample test measures how

similar these two populations are. For a fully embedded map

the population of neurons should be indistinguishable from

the training data. This statistical view of embedding is inter-

esting because it makes the standard visualization of SOMs

using a U-matrix [7] statistically meaningful. That is, the

cluster and the distance interpretations of the U-matrix now

have a statistical foundation based on the fact that the distri-

bution of the map neurons is indistinguishable from the dis-

tribution of the training data.

The other part of our convergence index, the estimated to-

pographic accuracy, is an efficient statistical approach to the

usual topographic error quality measure [5] which can be

computationally expensive. In our approach we use a sample

of the training data to estimate the topographic accuracy. Ex-

periments have shown that we need only a fairly small sample

of the training data to get very accurate estimates.

The remainder of this paper is structured as follows. In

Section 2 we briefly review self-organizing maps as imple-

mented by our package. We take a look at the quality mea-

sures implemented in popsom in Section 3. In Section 4 we

define our convergence index. We discuss our case studies

in Section 5. Conclusions and further work are discussed in

Section 6

2 Self-Organizing Maps

Briefly, a self-organizing map [1] is a kind of artificial neu-

ral network that implements competitive learning, which can
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be considered a form of unsupervised learning. On the map

itself, neurons are arranged along a rectangular grid with di-

mensions xdim and ydim. Learning proceeds in two steps for

each training instance �xk , k = 1, 2, 3, . . . , M , with M the

number of training instances:

1. The competitive step where the best matching neuron

for a particular training instance is found on the rectan-

gular grid,

c = argmin
i

(||�mi − �xk||)

where i = 1, 2, . . . , N is an index over the neurons of the

map with N = xdim × ydim is the number of neurons

on the grid, and �mi is a neuron indexed by i. Finally, c
is the index of the best matching neuron �mc on the map.

2. The update step where the training instance �xk influ-

ences the best matching neuron �mc and its neighbor-

hood. The update step can be represented by the fol-

lowing update rule for the neurons on the map,

�mi ← �mi − η�δih(c, i)

for i = 1, 2, . . . , N . Here �δi = �mi−�xk, η is the learning

rate, and h(c, i) is a loss function with,

h(c, i) =
{

1 if i ∈ Γ(c),
0 otherwise,

where Γ(c) is the neighborhood of the best matching

neuron �mc with c ∈ Γ(c). Typically the neighborhood

is a function of time and its size decays during train-

ing. Initially the neighborhood for neuron �mc includes

all other neurons on the map,

Γ(c)|t=0 = {1, 2, . . . , N}.
As training proceeds the neighborhood for �mc shrinks

down to just the neuron itself,

Γ(c)|t�0 = {c}.
Here, as before, N = xdim × ydim is the number of

neurons on the map. This means that initially the update

rule for each best matching neuron has a very large field

of influence which gradually shrinks to the point that the

field of influence just includes the best matching neuron

itself.

The two training steps above are repeated for each training

instance until the given map converges.

Figure 1 shows a scatter plot of the Tetra problem in

Ultsch’s fundamental clustering problem suite (FCPS) [4].

The data set consists of four almost touching clusters embed-

ded in three dimensional space. Figure 2 shows a SOM star-

burst plot of this data set generated with our popsom pack-

age [2] which supports statistical convergence criteria [3] and

Figure 1: The Tetra data set.

detailed cluster visualizations in terms of our starburst plots

[8].

The four clusters can easily be identified on the map by

their starbursts. Also easily visible is the fact that clus-

ters themselves are identified by their light color and cluster

boundaries are identified by darker colors. The easily identi-

fied borders mean that the clusters are indeed distinct clusters.

Their relative position is also meaningful to a point, given that

this is a 2D rendering of a higher dimensional space. All these

observations are justified due to the fact that the map has con-

verged and therefore positioning and distance amongst clus-

ters is statistically meaningful.

3 Quality Measures

3.1 Map Embedding Accuracy

Yin and Allinson have shown that under some mild assump-

tions the neurons of a large enough self-organizing map will

converge on the probability distribution of the training data

given infinite time [9]. This is the motivation for our map

embedding accuracy:

A SOM is completely embedded if its neurons appear to
be drawn from the same distribution as the training in-
stances.

This view of embedding naturally leads to a two-sample test

[10]. Here we view the training data as one sample from some

probability space X having the probability density function

p(x) and we treat the neurons of the SOM as another sample.

We then test to see whether or not the two samples appear to

be drawn from the same probability space. If we operate un-

der the simplifying assumption that each of the d features of

the input space X ⊂ R
d are normally distributed and inde-

pendent of each other, we can test each of the features sep-

arately. This assumption leads to a fast algorithm for identi-

fying SOM embedding: We define a feature as embedded if

the variance and the mean of that feature appear to be drawn

from the same distribution for both the training data and the
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Figure 2: A SOM starburst plot of the Tetra data set.

neurons. If all the features are embedded then we say that the

map is fully embedded.

The following is the formula for the (1− α) ∗ 100% confi-

dence interval for the ratio of the variances from two random

samples [10],

s2
1

s2
2

· 1
fα

2 ,n1−1,n2−1
<

σ2
1

σ2
2

<
s2
1

s2
2

· fα
2 ,n1−1,n2−1, (1)

where s2
1 and s2

2 are the values of the variance from two

random samples of sizes n1 and n2 respectively, and where

fα
2 ,n1−1,n2−1 is an F distribution with n1 − 1 and n2 − 1

degrees of freedom. To test for SOM embedding, we let s2
1

be the variance of a feature in the training data and we let s2
2

be the variance of that feature in the neurons of the map. Fur-

thermore, n1 is the number of training samples and n2 is the

number of neurons in the SOM. The variance of a particular

feature of both training data and neurons appears to be drawn

from the same probability space if 1 lies in the confidence

interval denoted by equation (1): the ratio of the underlying

variance as modeled by input space and the neuron space, re-

spectively, is approximately equal to one, σ2
1/σ2

2 ≈ 1, up to

the confidence interval.

In the case where x̄1 and x̄2 are the values of the means

from two random samples of size n1 and n2, and the variances

of these samples are σ2
1 and σ2

2 respectively, the following

formula provides (1 − α) ∗ 100% confidence interval for the

difference between the means [10],

μ1 − μ2 > (x̄1 − x̄2) − zα
2
·
√

σ2
1

n1
+

σ2
2

n2
, (2)

μ1 − μ2 < (x̄1 − x̄2) + zα
2
·
√

σ2
1

n1
+

σ2
2

n2
. (3)

The mean of a particular feature for both training data and

neurons appears to be drawn from the same probability space

if 0 lies in the confidence interval denoted by equations (2)
and (3). Here zα

2
is the appropriate z score for the chosen

confidence interval.

We say that a feature is embedded if the above criteria for

both the mean and variance of that feature are fulfilled. We

can now define the map embedding accuracy for d features,

ea =
1
d

d∑
i=1

ρi, (4)

where

ρi =

{
1 if feature i is embedded,

0 otherwise.

The map embedding accuracy is the fraction of the number

of features which are actually embedded (i.e. those features

whose mean and variance were adequately modeled by the

neurons in the SOM). With a map embedding accuracy of 1 a

map is fully embedded. In order to enhance the map embed-

ding accuracy in our implementation [2], we multiply each

embedding term ρi by the significance of the corresponding

feature i which is a Bayesian estimate of that feature’s rela-

tive importance [11]. A more in-depth statistical analysis of

our map embedding accuracy can be found in [12].
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3.2 Estimated Topographic Accuracy
Many different approaches to measuring the topological qual-

ity of a map exist, e.g. [13, 14]. But perhaps the simplest

measure of the topological quality of a map is the topographic
error [15] defined as:

te =
1
n

n∑
i=1

err(�xi) (5)

with

err(�xi) =

{
1 if bmu(�xi) and 2bmu(�xi) are not neighbors,

0 otherwise.

for training data {�x1, . . . , �xn} where bmu(�xi) and 2bmu(�xi)
are the best matching unit and the second-best matching unit

for training vector �xi on the map, respectively. We define the

topographic accuracy of a map as,

ta = 1 − te. (6)

Computing the topographic accuracy can be very expensive,

especially for large training data sets and/or maps. One way

to ameliorate the situation is to sample the training data and

use this sample S to estimate the topographic accuracy. If we

let s be the size of the sample then the estimated topographic
accuracy is,

ta′ = 1 − 1
s

∑
�x∈S

err(�x). (7)

We have shown in [3] that we can get accurate values for ta′

with very small samples.

In addition to computing the value for the estimated topo-

graphic accuracy we use the bootstrap [16] to compute val-

ues for an appropriate confidence interval in order to give us

further insight into the estimated topographic accuracy in re-

lation to the actual value for the topographic accuracy whose

value should fall within the bootstrapped confidence interval.

It is easy to see from (7) that for topologically faithful maps

the estimated topographic accuracy should be close to 1. We

then say that the map is fully organized.

4 The Convergence Index
Recently it has been argued that any SOM quality measure

needs to report on both the embedding of a map in the input

data space as well as the topological quality of a map [17].

In order to have a simple interpretation of the embedding and

the topographic accuracy we introduce the convergence in-

dex, cix, which is a linear combination of the two quality

measures introduced in the previous section,

cix =
1
2
ea +

1
2
ta′. (8)

Table 1: Training results for the Tetra data set.

iter cix ea ta′ (lo-hi)
1 0.01 0.00 0.02 (0.00 - 0.06)

10 0.02 0.00 0.04 (0.00 - 0.10)

100 0.35 0.00 0.70 (0.58 - 0.82)

1000 0.61 0.33 0.88 (0.80 - 0.96)

10000 0.99 1.00 0.98 (0.94 - 1.00)

100000 1.00 1.00 1.00 (1.00 - 1.00)

The convergence index is equal to 1 for a fully embedded

and fully organized map. In our previous studies [3, 12] we

have shown that the embedding accuracy and the estimated

topographic accuracy are conservative measures and therefore

subsume many of the other SOM quality measures.

5 Case Studies
We apply our SOM algorithm to two data sets from Ultsch’s

fundamental clustering problem suite (FCPS) [4]. We are par-

ticularly interested in how the distribution of the neurons con-

verges on the distribution of the training data set as training

of the map progresses and how this relates to our convergence

index. Our experiments seem to confirm that when cix ≈ 1
then the distribution of the neurons matches the distribution of

the training data almost exactly as measured on the marginals.

5.1 The Tetra Data Set
Our first data set is the Tetra data set. As with all the data

sets in FCPS this data set is a synthetic data set with four al-

most touching clusters in three dimensions. Figure 1 shows a

scatter plot of this data set. The four clusters are clearly iden-

tifiable. We trained a 25×20 SOM using this data set stepping

the training iterations in powers of 10 from 1 to 100000. Ta-

ble 1 shows the results. We can observe that the convergence

index (cix) starts from just about 0 and grows to 1. Also in-

cluded in the table are the embedding accuracy (ea) and the

estimated topographic accuracy (ta′) together with its 95%

confidence interval (lo-hi).
In Table 2 we show the distribution of the neurons (pink)

compared to the distribution of the training data (green) in re-

lation to the cix and the number of training iterations iter.

We show the distributions of the three marginals X, Y, and Z

at training iterations 10, 1000, and 100000, respectively. It is

striking to see how precisely the neurons model the training

data distribution when cix = 1. At least in the case of the X

and Y marginals. In the Z marginal we can see some discrep-

ancy and we are wondering if that is due to the fact that we are

making the simplifying assumption of a normal distribution

when testing for embedding accuracy. One of our research
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Table 2: Distribution of the neurons and training data (Tetra data set).

iter cix X Y Z

10 0.01

1000 0.61

100000 1.00

Figure 3: The Chainlink data set.

goals is to replace the parametric embedding test with a dis-

tribution free test. Figure 2 shows the resulting SOM starburst

of the Tetra set after 100000 training iterations. As expected,

the clusters are well defined and separated given cix = 1.

5.2 The Chainlink Data Set
The second data set we look at is the Chainlink data set. The

interesting aspect of this data set is that the two classes de-

fined by this data set are not linearly separable. Figure 3

shows a scatter plot of this data set. We proceeded in the

Table 3: Training results for the Chainlink data set.

iter cix ea ta′ (lo-hi)
1 0.31 0.61 0.00 (0.00 - 0.00)

10 0.33 0.61 0.04 (0.00 - 0.10)

100 0.12 0.00 0.24 (0.14 - 0.38)

1000 0.39 0.00 0.78 (0.66 - 0.90)

10000 0.57 0.19 0.94 (0.84 - 1.00)

100000 0.89 0.81 0.96 (0.90 - 1.00)

same way as we did for the first data set in that we trained

a 45 × 40 SOM in powers of 10 from 1 to 100000. Table 3

shows the results of this training. What is perhaps striking

is that the embedding accuracy ea is fairly large initially and

then drops off to 0 only to then increase back to something

close to 1. A look at Table 4 perhaps explains this in that

the randomly generated initial population of neurons happens

to model the distribution of the Y marginal quite well even

without a lot of training. Notice however that the estimated

topographic accuracy for these initial maps is equal to zero.

That means this distribution is generated by neurons that are

not properly organized on the map. This explains why once
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Table 4: Distribution of the neurons and training data (Chainlink data set).

iter cix X Y Z

10 0.33

1000 0.39

100000 0.89

a larger number of training iterations is applied to the map

the embedding accuracy drops down to 0 before properly or-

ganized neurons model the distribution. At 100000 iterations

we have cix = 0.89 and we can see that the distributions on

the marginals are modeled quite well. However, for this non-

separable data set we do not expect to reach a convergence

index of 1 since from a topological point of view it is very to

difficult to have a sheet model two interlocking rings.

Figure 4 shows the SOM starburst plot of the Chainlink

data set after 100000 iterations. The clusters are well defined

and separated with one exception. As suspected, given a con-

vergence index of less than 1, we have a strange fold in the

center of the map where the SOM tried to accommodate the

interlocking rings. In our experience, even when training is

restarted with a different set of initial conditions some sort of

anomaly will always emerge while the SOM tries to accom-

modate the interlocking rings. These anomalies prevent the

convergence index to become 1. In some sense this is satisfy-

ing, since now we can view the convergence index as a way

to also measure the difficulty of the input space.

6 Conclusions and Further Work
Self-organizing maps are powerful data analysis tools applied

to many different areas such as biomedicine, genomics, and

physics. We maintain a data analysis package in R based on

self-organizing maps. The package supports efficient, statisti-

cal measures enabling the user to gauge the quality of a given

map. Here we introduced a new quality measure called the

convergence index and demonstrated that it captures the no-

tion that a SOM has learned the multivariate distribution of a

training data set. The advantages of this new quality measure

is that it is intuitive and easy to interpret.

Because the SOM algorithm is a constrained learner in the

sense that neurons are not able to freely move around the

space spanned by the training data it is sufficient to test the

marginals for convergence. Our next step is to make this

argument statistically rigorous. We also would like to dis-

pense with the normality assumptions in our tests. The one-

dimensional Kolmogorov-Smirnov test [18] seems to be suit-

able here.
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