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Abstract Social media proves to be a major source of timely 
information during mass emergencies. A considerable amount 
of recent research has aimed at developing methods to detect 
social media messages that report such disasters at early 
stages. In contrast to previous work, the goal of this paper is 
to identify messages relating to a very broad range of possible 
emergencies including technological and natural disasters. 
The challenge of this task is data heterogeneity: messages 
relating to different types of disasters tend to have different 
feature distributions. This makes it harder to learn the 
classification problem; a classifier trained on certain 
emergency types tends to perform poorly when tested on some 
other types of disasters. To counteract the negative effects of 
data heterogeneity, we present two novel methods. The first is 
an ensemble method, which combines multiple classifiers 
specific to each emergency type to classify previously unseen 
texts, and the second is a semi-supervised generic 
classification method which uses a large collection of 
unlabeled messages to acquire additional training data. 

Keywords: text classification, semi-supervised learning, 
social media analysis, disaster management

1 Introduction 
Social media data offer a very promising way forward as a 

mechanism for facilitating the work of first responders in 
dealing with mass emergency events. During a crisis such as a 
natural disaster or a terrorist attack, social media has become a
primary source of information, publishing eyewitness reports 
on the events in real-time. Information systems that identify 
and collate such eyewitness reports can provide critical 
situation awareness to increase the efficiency and capabilities 
of the emergency services, making them better equipped to 
detect disasters at early stages, monitor their development and 
tackle their consequences in the recovery operations.

The potential of social media analysis for mass emergency 
management has attracted many researchers in the fields of 
Data Mining over the past several years. Previous work has 
primarily focused on detecting emergency-related tweets 
using text classification. Limiting the problem to a single 
disaster type such as earthquakes or tornados has been shown 
to achieve high accuracy of classification (e.g., [4, 8, 9, 10]).
However, because mass emergency events can differ a lot in 
terms of their causes, temporal and geographical spread, 

impacted targets and the nature of damage, it would be much 
more practical to have a classification method that can cover a 
wide range of possible disasters. This will give first 
responders and emergency services personnel confidence that 
disasters with some previously unseen characteristics would 
be successfully recognized by the alerting system.

This paper is concerned with the task of recognizing mass 
emergencies unspecified for a particular type, which could 
include both natural disasters such as earthquakes, floods and 
storms, as well as man-made ones such as explosions, 
collisions and shootings. This is a non-trivial classification 
problem, as the data is non-homogeneous: the classifier is 
trained and evaluated on data covering different emergency 
types; each characterized by its own vocabulary and 
correspondingly different feature distributions. We examine 
two possibilities to counter the problem of heterogeneous 
data. The first approach views this task as multiple 
classification problems, training one classifier for each type of 
known disasters; an ensemble of the classifiers is then used to 
classify test messages that can possibly come from an 
unknown disaster type. The second approach treats the task as 
a single classification problem: in order to better capture 
commonalities that exist between different types of disasters, 
it uses a co-training method, which obtains additional training 
data from a large collection of unlabeled messages. Thus our 
main contributions are the novel methods that are specifically 
suited to the task of detecting emergency events that were 
unseen at the training stage and their comparative evaluation. 

The paper is organized as follows. In the next section we 
outline previous work on detecting mass emergencies using 
machine learning text classifiers. In Section 3 we describe the 
proposed ensemble classification method, and in Section 4 the 
co-training method. Sections 5 and 6 present the experimental 
setup, the results of the experiments and their discussion. 
Section 7 concludes and offers suggestions for future research.

2 Related work 
There is a considerable body of work on detection of new 

events in a stream of text messages, where the type of the 
event of interest is not known in advance, and some of these 
approaches were applied to detecting mass emergency events. 
Such methods primarily rely on detecting “bursty” keywords 
[13], i.e. keywords whose frequency increases sharply within 
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a short time window. However, bursty keywords are known to 
be related not only to events, but also non-events such as 
“viral” content. To separate them, Becker et al. [2] used a 
domain-independent text classifier, before applying keyword 
burstiness techniques.

Domain-specific methods generally have a greater accuracy 
than domain-independent ones, and previous work specifically 
on mass emergency detection was concerned with developing 
domain text classifiers based on machine learning. The 
classifiers aim to solve a binary classification problem, 
operating on features extracted from the entire message. Most 
of this work was concerned with specific types of disasters 
such as earthquakes [18, 22, 23], tornados [9, 11], and 
landslides [14].

Verma et al. [21] conducted experiments on how well a 
classifier trained on one type of emergency would perform on 
messages representing a different emergency type. They ran 
all pairwise comparisons between four datasets, which 
represented two flood events, one earthquake and one 
wildfire, and found that testing on an emergency type other 
than the one used for training results in worse classification 
accuracy; the F-measure ranging between 29 and 83 
depending on a specific pair. Ashktorab et al. [1] trained one 
generic classifier on data from twelve different emergency 
events, achieving the F-measure between 50 and 65 depending 
on the learning method; the evaluation was done however by 
randomly splitting all the data into a test and train sets, i.e., 
the train and test data contained data representing different 
disasters in similar proportions. Pekar et al. [17] showed that 
if a classifier is trained on some disaster types, but evaluated 
on others, the performance of the classifier drops by up to 
70%, when compared with training and testing on the same set 
of disasters.

3 Ensemble classification 
Ensemble or committee-based classification methods aim to 

leverage advantages of different models trained on the same 
dataset, in order to improve on performance of individual 
models [6]. The different models in the ensemble can be 
learned using different subsets of the training data, different 
classification parameters of the same learning algorithm, or 
using different learning algorithms. For a review of ensemble 
methods applied to text classification, see e.g. [7].

In the context of detecting disaster-related text messages, we 
create a classifier ensemble through dividing the training 
instances by disaster type. We then trained one classifier 
specific to each type, using the same learning algorithm. Each 
of the classifiers is thus expected to be more effective at 
classifying just its own disaster type, than a classifier trained 
on other types or a generic classifier. Test instances 
representing an unknown disaster would then be classified 
more effectively by some classifiers than others. This is 
because the unknown disaster will be more similar to some of 
the disaster types observed during training than others.  

Majority vote among classifiers is the simplest way to derive 

the eventual class label for the test instance, but in the case of 
highly heterogeneous data the majority class will seldom be 
the correct one. Our initial experiments showed that the 
negative class almost always got the majority vote. Therefore 
in our implementation the test instance is given the class label 
of the classifier that assigned it with the highest confidence.

Input:  
Training documents Dtrain

Testing documents Dtest

Emergency types E  
Class labels Y = {True, False} 

Training phase: 
For each e in E: 
 Train classifier ce on a subset of Dtrain each of which belongs 
to e 

Testing phase: 
For each d in Dtest: 
 For each ce in C = {c1, c2, … c|E|}: 
  Obtain label ye and classifier confidence score se

Assign yi to d, such that si is the maximum value in 
{se1, se2, …, s|E|} 

Algorithm 1. Ensemble classification method. 

4 Co-Training 
Co-training [3] is a semi-supervised learning technique that is 
aimed to overcome the problem of insufficient training data, if 
large amounts of unlabeled data are available. It is also 
commonly used for domain adaptation of a classifier, when 
train data available for one domain is used to obtain train data 
for a different domain, thus tuning the classifier to perform 
more effectively on the new domain. The technique was 
previously used for domain adaptation for various NLP tasks, 
including dependency parsing [20], co-reference resolution 
[15], and sentiment classification of texts [5].

The general co-training algorithm starts with choosing two 
different “views” on the data, which are disjoint subsets of the 
entire set of classification features. The subsets are created to 
satisfy two conditions: (1) each view must be able to learn the 
classification problem with sufficient accuracy and (2) the 
views must be conditionally independent of each other. Two 
classifiers are trained using each view on available labeled 
training data. They are then used to classify unlabeled data. 
Instances which either classifier labeled with high confidence 
are added to the train set, thus the classifiers help each other, 
adding one’s most confident classifications into the other’s
train set. The classifiers are then re-trained on the new dataset 
and re-applied to the unlabeled data. These steps are repeated 
until a certain stopping criterion is reached. After that, the 
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main classifier is trained on the augmented train set and 
evaluated on the test data.

In our implementation, feature subsets are created as follows. 
The first one consists of unigrams and bigrams, i.e. lexical 
features extracted from the cleaned version of the message. 
The second one includes grammatical features (part-of-speech 
tags) and features extracted from Twitter metadata (hashtags, 
mentions, presence of URLs, etc.). The two subsets were 
found to produce models of similar classification accuracy 
(for details of the features used and experiments with feature 
subsets, see Section 6). Unlabeled instances are added to the 
training set in such a way as to preserve the ratio of positive 
and negative instances that was found in the original train 
data. As a stopping criterion, we used the maximum number 
of automatically added training instances, which we set at 
25% of the original training set. 

Input: 
Labeled documents L
Unlabeled documents U 
Data views V
Classifier confidence threshold t
Desired size of labelled documents m

Initialize: 
Augmented labeled set L' ← L

Loop: 
While |L'| < m and |U| > 0: 
 for v in V: 
  Train classifier cv on L' using features from v
 for u in U: 
  for cv in C: 
    Classify u with cv, obtaining class label yv and  
    confidence score sv 

Select yi from {y1, y2, …,  y|V|} such that si is the  
maximum in {s1, s2, …,  s|V|} 

  if si > t: 
    Assign yi to u and add u to L'
    Remove u from U

Output: 
Augmented labeled set L'

Algorithm 2. Acquisition of labeled data in the co-training 
algorithm. 

5 Experimental setup 
5.1 Labeled data 
In the experiments we use the labeled part of the 
CrisisLexT26 dataset [16], which includes tweets on twenty 
six mass emergencies that occurred between 2012 and 2013. 
The types of emergencies are very diverse and range from 
terrorist attacks and train derailment to floods and hurricanes. 
Some examples are Colorado wildfires in 2012, Venezuela 
refinery explosion in 2012, and Boston bombings in 2013. 
The dataset was created by first retrieving tweets based on a 
set of search terms relating to mass emergencies, and thus is 
representative of data that is likely to be found in real-world 
use cases after initial keyword-based filtering. 

The evaluation included three classification tasks, which are 
of different practical value for emergency responders and at 
the same time differ in terms of the difficulty of the 
classification problem: 

i. Relatedness: separating messages related to a mass 
emergency from unrelated ones, 

ii. Informativeness: separating informative messages 
(whether the message contributes to better 
understanding of the crisis situation) from 
uninformative ones (refers to the crises but involves 
sympathy, jokes, etc.), 

iii. Eyewitnesses: detecting eyewitness accounts of mass 
emergencies (first-hand descriptions of the events).  

Figure 1 shows examples of positive and negative messages 
for the three tasks (examples taken from Olteanu et al. [16]). 

Table 1 describes the size of the positive and negative classes 
in the three classification tasks in the CrisisLexT26 dataset. 

Positive Negative
Relatedness 24581 2863
Informativeness 16849 7732
Eyewitnesses 2193 22396

Table 1. The sizes of the positive and negative classes in the 
classification tasks. 

Positive Negative
Relatedness RT @NWSBoulder Significant flooding at the 

Justice Center in #boulderflood
#COstorm you are a funny guy lol

Informativeness Flash floods wash away homes, kill at least one 
near Boulder via @NBCnews

Pray for Boulder, Colorado #boulderflood

Eyewitnesses Outside sounds like it is going to shatter my 
bedroom windows any sec now #bigwet #qld

RT @RedCrossAU: Everyone affected by 
#qldfloods, let people know you’re safe: http://t.co/..

Figure 1. Examples of messages belonging to positive and negative classes of the three classification tasks. 

Int'l Conf. Data Mining |  DMIN'16  | 33

ISBN: 1-60132-431-6, CSREA Press ©



5.2 Unlabeled data 
To obtain unlabeled data for co-training experiments, we 
created 24 search terms describing different types of mass 
emergencies: avalanche, blizzard, cyclone, earthquake, flood, 
landslide, heat wave, eruption, storm, tornado, tsunami, 
wildfire, bushfire, crash, explosion, collision, disaster, 
shooting, accident, capsize, sank, stampede, collapse, 
massacre. Submitting the search terms to the Twitter Search 
API we continuously retrieved tweets that were published 
between February 23, 2016 and March 08, 2016, obtaining 
2,479,079 tweets in total. 
5.3 Preprocessing 
We apply the following preprocessing steps to the data, which 
are commonly used for Twitter messages before performing 
text classification on them in order to reduce the amount of 
noisy features (see, e.g.,[12]): 

• Text normalization. Before processing the text of 
the message with a PoS tagger, the text was 
normalized: mentions (e.g., @username) and URLs 
removed; sequences of hashtags at the start and end 
of the message removed; hashtags appearing in the 
middle of the text were kept, but the hash symbol 
removed from the hashtags; long non-alphanumeric
symbol sequences, which tend to be emotions, were 
removed; word tokens consisting of digits were 
replaced with a unique tag.

• Part-of-speech tagging. The normalized text was 
tagged with the PoS tagger in the Pattern library [19].

• Stopword removal. The usual stoplist was used to 
remove stopwords. 

• Additional metadata. The CrisisLexT26 data 
contains the Twitter id of the message, its raw 
content, and its timestamp. We retrieve via Twitter 
Search API additional metadata fields, such as the 
retweet count. 

5.4 Classification method 

To train classifiers, we use the Maximum Entropy and the 
Linear Support Vector Machines algorithms1, which in our 
previous study on the same dataset proved to be the top 
performing algorithms[17]. Based on the same study, we use 
classification features, which were found to positively 
contribute to the precision of the MaxEnt and SVM 
classifiers, in order to maximize the quality of automatically 
added train instances. The features included: 

Unigrams: whitespace-separated word tokens (nominal: 
please, help, fire).

Bigrams: token sequences with the length of two (nominal: 
was_scary, we_complained).
                                                          
1 We use the implementation in the scikit-learn library: 
http://scikit-learn.org/stable/ 

PartOfSpeechTags: separate features are created from 
part-of-speech (PoS) categories, as assigned by a PoS tagger 
(nominal: NNS, JJ, VBD).

ContainsHashtags: whether or not the tweet contains 
any hashtags (Boolean).

RetweetCount: the number of times the message has been 
retweeted (continuous).

ContainsURL: whether the tweet contains a URL 
(Boolean).

Prior to training and classification, all features are converted 
to continuous values. 

A usual experimental setup for text classification involves 
randomly splitting labeled data into a train and a test set. 
However in our experiments, to better reflect intended real-
world use cases, the train-test split was done in a way that the 
test data contained tweets only on those disasters that were not 
included into the train data, i.e., simulating the conditions 
when a disaster needs to be detected before any manually 
labelled data relating to it are available. Thus we create nine 
train-test splits, so that in each split data on 23 disasters were 
used for training and data on 3 remaining crises were used for 
testing. The performance of the classifiers was measured in 
terms of precision, recall and F-measure rates averaged across 
the nine train-test splits. In the following sections, we report 
them only for the positive class that has main practical 
interest. 

6 Results and Discussions 
As mentioned in Section 4, we create two feature subsets to be 
used in the co-training algorithms: View 1, consisting of 
lexical features, and View 2, consisting of grammatical 
features and features derived from metadata found in the 
messages. To verify both views achieve reasonable 
performance, we evaluated them on the labelled data. Tables 2
and 3 show the results for the three classification tasks. 

The results indicate that for the first two tasks both views have 
a similar level of accuracy: the differences between them are 
no more than 4 points for either precision and recall, for both 
MaxEnt and SVM. The eyewitness detection task, however, 
seems much harder than the other two. With MaxEnt, View 1 
achieves noticeably better precision, while View 2 is better in 
terms of recall. This finding is in agreement with our 
previously published experiments [17] that showed that 
lexical features contribute to higher precision, while non-
lexical ones improve recall. For SVM, the picture is the 
opposite: View 1 has a higher recall but lower precision than 
View 2.

We then compared the results achieved by a general classifier, 
i.e. one that is training on the entire train set of labeled data, to 
the ensemble and the co-training classification methods. 
These results for the Relatedness task are shown on Figure 2 
(MaxEnt) and Figure 3 (SVM). 
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Figure 2. Performance of the general classifier, the ensemble 
method and the co-training method, Relatedness task, 

MaxEnt. 

Figure 3. Performance of the general classifier, the ensemble 
method and the co-training method, Relatedness task, SVM. 

The three methods perform very similarly, all achieving both 
precision and recall of over 90 points. The ensemble classifier 
improves on the general method by 4 points in terms of recall, 
but drops several points in precision, which results in an 
insignificant for F-measure. The co-training method fails to 
obtain any improvement on the general classifier, for both 
learning methods, trading a minor gain in precision for a 
somewhat greater loss in recall. 

On the Informativeness task (Figures 4 and 5), the picture is 
similar. Co-training results for both precision and recall are 
almost the same as for the general method, the difference 
being no more than 1 point. The ensemble method, as in the 
Relatedness task, shows a five points gain on the general 
method in terms of recall, but loses nine points in terms of 
precision. 

On the Eyewitnesses task (Figure 6 and 7), both ensemble and 
co-training improve on the general method in terms of F-
measure, by 11 and 17 points, respectively. The ensemble 
method shows a particularly large increase in recall (by 62 
points), although it also loses a lot in precision (53 points). 
The co-training method gains 14 points in recall, but loses 27 
in precision. 

Thus, the experimental results demonstrate that the 
Relatedness and Informativeness tasks are not affected by the 
data heterogeneity problem; a general classifier that can 
separate positive and negative classes with a high accuracy 
levels (F-measure of over 85 points) can be trained on modest 
amounts of data; ensemble or co-training methods offer no 
significant improvement over the baseline method. Although 
direct comparison with previous work is problematic, because 
previous studies used different evaluation datasets, evaluation 
metrics and slightly different definitions of “informativeness”, 
the results we have attained on these two tasks are similar to 
previous studies who also aimed to detect informative tweets. 
Verma et al. [21] classified tweets into those that contribute 
and situational awareness and those that do not, finding that 
the best classification method achieves the accuracy of 0.88. 
Imran et al (2014) classify tweets into informative and non-
informative,  reporting the AUC rate of 0.8. 

View 1 View 2
Precision Recall F-measure Precision Recall F-measure

Relatedness 90.1 99.9 94.6 90.87 97.8 94.1
Informativeness 81.8 93.2 87.1 83.4 89.7 86.3
Eyewitnesses 52.7 1.3 2.6 45.9 3.5 6.1

Table 2. Performance of MaxEnt classifiers trained on two views used in the co-training algorithm, on three classification tasks. 

View 1 View 2
Precision Recall F-measure Precision Recall F-measure

Relatedness 90.4 99.0 94.4 90.0 99.8 94.6
Informativeness 84.6 89.0 86.7 83.9 89.3 86.4
Eyewitnesses 55.9 5.3 9.4 58.8 2.3 4.4

Table 3. Performance of SVM classifiers trained on two views used in the co-training algorithm, on three classification tasks. 
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Figure 4. Performance of the general classifier, the ensemble 
method and the co-training method, Informativeness task,

MaxEnt. 

Figure 5. Performance of the general classifier, the ensemble 
method and the co-training method, Informativeness task, 

SVM. 

The Eyewitnesses task, however, proved a much harder 
problem. The baseline classifier achieves a precision rate of 
60, but also an extremely low recall (under 10 points), which 
suggests that the model overfits and is not able to generalize 
sufficiently to the test data. The ensemble method makes it 
possible to improve recall to over 60 points, at the expense of 
precision, but nonetheless improving on the baseline in the F-
measure. The co-training technique produces a similar effect, 
also beating the baseline in terms of the F-measure, which is 
also somewhat higher than that of the ensemble method. To 
our knowledge, Imran et al.’s study [8] is the only previous 
paper that evaluated the ability of a classifier to detect 
eyewitness accounts of mass emergencies. Their Naïve Bayes 
classifier achieved the F-measure of 60 points, also suggesting 
that this task is harder than that of informativeness or 
relatedness classification. These results are also higher than 
ours, but it should be noted that a direct comparison is not 
possible because of different experimental settings: 
specifically, Imran et al. [8] trained and tested their classifier 
on data representing the same mass emergency event. 

7 Conclusion 
In this paper we examined the task of detecting social media 
messages related to a mass emergency event, when the type of 

 
Figure 6. Performance of the general classifier, the ensemble 

method and the co-training method, Eyewitnesses task,
MaxEnt. 

 
Figure 7. Performance of the general classifier, the ensemble 
method and the co-training method, Eyewitnesses task, SVM. 

the event is not known at the training stage. We studied two 
ways to overcome the problem of data heterogeneity that 
affects the classifier in this situation: an ensemble classifier 
which combines predictions of classifiers specific to known 
types of disasters and a co-training method, which aims to 
reduce data heterogeneity by adding more train instances 
acquired from unlabeled messages in a bootstrapping manner. 

In our experiments we studied three problems: detection of 
messages related to a disaster, detection of informative 
messages that contribute to situation awareness of first 
responders, and detection of first-hand accounts of the mass 
emergency events. We find that the first two tasks are 
relatively easy and good classification accuracy (an F-measure 
close to 80 or higher) can be achieved by a single generic 
classifier, even if the type of the disaster of the test data is not 
known in advance; ensemble or co-training methods did not 
offer any great advantage over the general classifier. The task 
of detecting eyewitness account proves much harder, but this 
is where the strengths of the ensemble and the co-training 
methods come to light: in comparison to using a general 
classifier, they both lead to significant gains in recall and F-
measure.  

Our results also suggest that there is considerable room for 
improvement for the both methods on the Eyewitness task. 
Thus, our future work will focus on exploring parameters of 
the ensemble and the co-training method, such as the effect of 
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the amount of automatically added training data, as well as 
other semi-supervised techniques such as active learning, in 
the context of this classification scenario. The proposed 
classification methods will eventually be incorporated into a 
practical system for detection and monitoring of mass 
emergency events on social media and evaluate their utility 
within simulated real-world use cases, where their benefits 
will be measured in terms of the efficiency of semi-automated 
detection of emergency situations by first responders, 
ultimately enabling early warning and more expedient 
recovery operations. 
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