
PCSE-KDD: A Process-Centered Support Environment
for the Knowledge Discovery Processes

Hesham A. Mansour
FJA-US, Inc., 1040 Avenue of the Americas, 4th Floor, New York, NY 10018, USA

Abstract – Current support for Knowledge Discovery in
Databases (KDD) is provided only for fragments of the
process, a particular KDD process model, or most recently
certain process aspects. The support needed for a KDD
process varies greatly based on the specifications of the
concrete KDD process, and cannot be based purely on a
generic process model. There is a need for a more
comprehensive support approach that can cover the entire
process, target concrete process specifications, and include
various aspects of the process. KDD processes are similar to
software processes and they can benefit from advancement of
software engineering and process technology to facilitate their
development, support their execution, and ultimately improve
their effectiveness, utilization, and outcomes. This paper
proposes the Process-Centered Support Environment for KDD
(PCSE-KDD) processes that is based on explicitly
representing these processes as process programs that can be
developed, managed, and enacted by the environment. This
approach has been successfully used to provide support for
developing software processes and we propose to transplant
this approach into the KDD field. With the proposed
approach, KDD processes can be flexibly captured at different
levels of details in a clear, precise, and explicit way that can
enable reasoning about the process, insuring its correct
execution, and supporting its performance.

Keywords: KDD Process, Process Programming, Process-
Centered Support Environments

1 Introduction
Although KDD is now widely accepted as a complex

process with many different phases and non-trivial
interactions, little support is provided to the various steps of
the process or to manage the overall process.

The lack of systematic approaches for managing and
keeping track of the different parts of KDD projects means
that some steps may unintentionally be repeated, adding
overhead to the knowledge discovery task. Rudiger et al. [18]
have noted major problems during the development of many
KDD projects at Daimler-Benz due to the lack of a
methodology and lack of a usable process model with proper
tool support. The result is wasted resources and unnecessarily

long development times, in addition to the fact that the results
were highly dependent on the experience of the persons doing
the work. Marban et al. [8] have noted that the number and
complexity of data mining projects has increased in recent
years, that nowadays there isn’t a formal process model for
this kind of project, and that existing approaches are not
correct or complete enough. They also noted that not all
projects end successfully. The failure rate is actually as high
as 60%. The intrinsic features of the KDD process, together
with the main difficulties in its application, make the
development and management of a KDD application,
particularly of exploratory nature, very complex [19].

Current support for KDD is provided only for fragments
of the process (activity-oriented support), a particular KDD
process model (KDD support environments), or most recently
certain process aspects (process-oriented support), such as the
coordination or collaboration [1]. In the activity-oriented
support approach, the process concept, if used at all, is only
represented in the form of documentation and guidelines.
Also, the tools supporting the process tasks are isolated
without any means of integration. The process support
provided by most existing KDD support environments is
mainly derived from a hardwired generic KDD process
model, which includes major process phases along with their
generic tasks and simple interactions. This sort of guidance is
too generic and clearly insufficient for effectively supporting
KDD processes, where specialized guidance is needed to
assist in selecting valid, desirable, and effective process
configurations. Moreover, the tool guidance provided by these
systems is limited to a few standard KDD techniques and
prescribed set of supporting tools that are mandated by the
environments. Among the very few proposals that apply
process-oriented support to KDD, only [4] uses a process
language approach based on Little-JIL to explicitly represent
and support only the coordination aspect of KDD processes.
In addition to the discovered deficiencies in Little-JIL, only
the simplest processes can be modeled visually using Little-
JIL. For additional information about the different approaches
for supporting KDD processes and their limitations, see [1].

The recognition that software processes can themselves
be described as software is attributed to Osterweil [20], and
has led to the development of process programming as part of
software engineering, as well as ongoing research into
process-centered environments. The idea of using a Process

168 Int'l Conf. Data Mining | DMIN'16 |

ISBN: 1-60132-431-6, CSREA Press ©

Modeling Language (PML) to encode a software process as a
“process model”, and enacting this using a process-sensitive
environment is now well established [21]. Process-Centered
Software Engineering Environments (PCSEEs) form the most
recent generation of environments supporting software
development activities [22]. They aim to support software
development activities by exploiting an explicit representation
of the software process---a process program---that specifies
how to carry out the process activities and how to use and
control the process supporting tools.

Although some researchers [4], [7]-[9] have recognized
the similarities between KDD processes and software
development processes, none (to our knowledge) has
proposed a comprehensive approach for developing KDD
processes through a Process-Centered KDD Support
Environment based on PCSEEs to enable and facilitate the
modeling, execution, and management of KDD processes.

In this paper, we propose the Process-Centered Support
Environment for KDD (PCSE-KDD) for modeling, enacting,
and managing KDD processes. The environment aims to
provide effective management for the KDD process by
supporting its entire lifecycle, and offering a variety of
services, similar to those offered by PCSEEs, but directed
toward KDD processes. Environment support includes
assistance for process developers, maintenance of process
resources, automation of routine tasks, invocation and control
of development tools, and enforcement of mandatory rules
and practices. The environment implements the process
definition/instantiation/enactment paradigm found in PCSEEs
and is based on the KDD process programming language
KDPMEL [1], [2]. The environment includes a number of
modeling editors for modeling KDD processes, an Enactment
Engine for providing runtime process execution support, and a
Repository for providing persistency support to both process
artifacts and process execution states.

Achieving a general-purpose data mining and knowledge
discovery support environment is an undertaking that has been
described to be quite a challenging problem in [23] and was
predicted in 2003 to be among the most important KDD
issues that will not show any measurable and notable
scientific progress in the next 10 years [24]. This pessimism
was mainly because of the complex nature of the KDD
process and its branching factors in terms of selecting specific
methods and supporting tools, branching which has caused
commercial data mining products to be limited to a few
standard techniques and to provide guidance based only on a
hardwired process model. In contrast, we demonstrate that a
general-purpose KDD support environment can be achieved
by separating KDD process definitions from the environment
and by providing the appropriate mechanisms for integrating
these definitions with the environment. This separation of
concerns can achieve significant flexibility in supporting a
wide range of process specifications that can evolve over time
and generality due to the fact that the environment is not
bound to any particular KDD process models, techniques, or

tools. Process technology can provide the appropriate
approaches for achieving this separation of concerns. The
paper is structured as follows. This section provides
background information and the motivation for our work.
Section 2 presents the Process-Centered Support Environment
for KDD (PCSE-KDD) and illustrates its major components.
Section 3 outlines the implementation details of PCSE-KDD.
Section 4 concludes the paper and outlines future work.

1.1 Process-Centered Software Engineering
Environments (PCSEEs)

PCSEEs address three distinguishable domains: the
modeling, enactment, and performance domains. The
modeling domain comprises all activities for defining and
maintaining process models using a formal language with an
underlying operational semantics that enables mechanical
interpretation of the models. The enactment domain
encompasses what takes place in the environment to
mechanically interpret the process model by a so-called
process engine. The performance domain is defined as the set
of actual activities conducted by human agents and nonhuman
agents (computers) during process execution. Process support
provided by PCSEEs can be characterized by the typical
interactions between the three domains (Fig. 1) [10]:

Fig. 1. Three domains of software process support [10]

1.2 KDD Processes and Software Development
Processes

KDD processes are on one hand similar to software
processes and on the other hand are different from software
processes. The similarities between KDD processes and
software processes suggest that approaches used to support
the development of software processes, such as PMLs and
related PCSEEs, are also applicable to KDD processes.
However, because of the differences, some adaptation is
needed in order to apply these approaches to KDD processes.
Instead of adapting current KDD processes to match software
processes as proposed in [8], [25], we propose to adapt these
approaches to suit KDD processes in order to support their
specific activities, techniques, components, and developers.
This will provide support for current KDD processes as they
are normally known by KDD practitioners who are not
necessarily experts in software engineering. In addition, this
will not force fundamental changes and additional activities
on KDD processes and at the same time will not prevent form
doing so when needed.

Int'l Conf. Data Mining | DMIN'16 | 169

ISBN: 1-60132-431-6, CSREA Press ©

The approach that we propose to establish formal
process models and methodologies for developing KDD
processes is based on transplanting the idea that has been
successfully used in software engineering to support the
development of software processes into the KDD field. By
transplanting this idea to KDD, we believe that we can
formally and explicitly define KDD processes and provide a
systematic methodology for their development and execution.

2 The KDD Process-Centered Support
Environment (PCSE-KDD)
PCSE-KDD is an Integrated Development Environment

that is built around KDPMEL, with an IDE-style approach to
facilitate the development, execution, and management of
KDPMEL programs. KDPMEL provides a hybrid modeling
approach for specifying KDD processes, mixing different
types of editors and views in source-based, graph-based, and
form-based styles to allow both technical and non-technical
users to participate in the development of KDD processes.
KDPMEL provides various language constructs to control
task sequencing and dependencies as well artifacts consumed
and/or produced, tools utilized, and the actors performing the
tasks. KDPMEL allows for capturing the process tasks at
different levels of abstraction to represent the process phases
(lifecycle) along with its generic and specialized KDD tasks.
For additional information about KDPMEL, see [1], [2].

2.1 Architecture
Fig. 2 illustrates the high level architecture of the

environment.

Fig. 2. The high level architecture of the PCSE-KDD

The PUI exposes the various components and services
offered by the environment. Through the PUI, users are able
to define, update, and persist process models/programs during
the modeling phase, instantiate a process model for
enactment, participate in the enactment phase by performing
manual and/or interactive tasks in the process, are notified by
the enactment engine about the status of the process being
enacted, and are guided by the enactment engine about what

to do next. The PUI uses the perspective concept in a way
similar to Eclipse’s perspectives [26] to control the visibility
and presentation of items in the workspace of the
environment. The PUI includes three different perspectives to
support the modeling, enactment, and management features of
PCSE-KDD.

The Enactment Engine includes three significant
components: KDPMEL Interpreter, the Repository
Management Unit (RMU), and the Tool Invocation Unit
(TIU). The KDPMEL Interpreter implements the semantics of
the language. The RMU maintains the process data during
process modeling and enactment. The TIU manages the
invocation of tools specified in the process program. Tools
are specified in the resources section of the program and they
can be referenced by the KDPMEL action construct. Two
types of tools can be specified. The first type is interactive
tools. The invocation of an interactive tool is based on a URL
representing the tool executable. The second type is scripted
tools that can be run from the KDPMEL command construct.

2.2 PCSE-KDD Perspectives
The PUI-Modeling perspective includes the items visible

during the modeling phase along with their provided
presentations and supported actions in the user interface. The
PUI-Enactment includes the items relevant to the enactment
phase. The PUI-Repository perspective includes the items
maintained in the environment repository.

2.2.1 The PUI-Modeling Perspective
The PUI-Modeling perspective supports the three

modeling approaches provided in KDPMEL: source-based,
graph-based, and form-based. Fig. 3 sketches the layout of the
PUI-Modeling perspective.

Fig. 3. The PUI-Modeling Perspective

The Process Navigation Tree allows for navigating
between multiple processes. The Process Outline Tree
displays the process components grouped by their types and
allows for navigating between these components in the
source-code representation of the process. The Process
Modeling Tabs includes a tab for each process shown in the
Process Navigation Tree. The Process tab includes a tab for
the Source-code editor, a tab for the Graph editors, and a tab
for the Form editors. The Graph Editors tab includes a tab for

170 Int'l Conf. Data Mining | DMIN'16 |

ISBN: 1-60132-431-6, CSREA Press ©

the Process Graph editor, a tab for the Resources Graph
editor, and a tab for the activities. The Activities tab includes
a tab for each activity. The Activity tab includes a tab for the
Activity Graph editor and a tab for the actions. The Actions
tab includes a tab for each action. The Action tab includes the
Action Graph editor. The Form Editors tab includes a tab for
the Process Form editor, a tab for the activities, and a tab for
the artifacts. The Activities tab includes a tab for each
activity. The Artifacts tab includes a tab for each artifact. The
Artifact tab includes the Artifact Form editor.

Fig. 4 depicts a view of the PUI-Modeling perspective
showing its Source-code editor.

Fig. 4. The Source-code editor of the PUI-Modeling Perspective

A KDPMEL program can be developed using a Source-
code editor and then updated using the Graph and Form
editors that are automatically created from the program
source-code [2]. The alternative is to use the various graph
editors: the Process Graph editor to create the process and its
activities; the Resources Graph editor for process resources;
the Activity Graph editor for each activity along with its
constituent actions; and the Action Graph editor for each
action. Process graphs are translated into their source-code
and form representations. Fig. 5 through Fig. 7 depict multiple
views of the PUI-Modeling perspective showing some of its
various Graph editors.

Fig. 5. The Process Graph editor of the PUI-Modeling Perspective

Fig. 6. The Resources Graph editor of the PUI-Modeling
Perspective

Fig. 7. The Activity Graph editor of the PUI-Modeling Perspective

2.2.2 The PUI-Repository Perspective
The PUI-Repository perspective manages the process

resources using forms that are created to display and update
the properties of these resources. In addition, a read-only
graph is provided to show the flow of artifacts in the process
starting from the process inputs to its outcomes. Fig. 8
sketches the layout of the PUI-Repository perspective.

Fig. 8. The PUI-Repository Perspective

The Process Resources Tabs includes a tab for the
Artifact Flow Graph and a tab for the Form editors. The Form
Editors tab includes a tab for the artifact forms, a tab for the
role/actor forms, and a tab for the tool forms. The Artifact
Forms includes a tab for each artifact. The Role/Actor Forms
includes a tab for each role/actor. The Tool Forms includes a
tab for each tool. The Artifact tab includes the Artifact Form
editor. The Role/Actor tab includes the Role/Actor Form
editor. The Tool tab includes the Tool Form editor. Fig. 9
depicts a view of the PUI-Repository perspective showing its
Artifact Flow Graph.

Int'l Conf. Data Mining | DMIN'16 | 171

ISBN: 1-60132-431-6, CSREA Press ©

Fig. 9. The Artifact Flow Graph of the PUI-Repository Perspective

2.2.3 The PUI-Enactment Perspective
The PUI-Enactment perspective includes the items

visible during the enactment phase along with their provided
presentations and supported actions in the user interface. Fig.
10 sketches the layout of the PUI-Enactment perspective.

Fig. 10. The PUI-Enactment Perspective

The Process Instance Navigation Tree allows for
navigating between multiple process instances for the same
process or for different processes. The Overall Process Flow
Tree and Actor Process Flow Tree represent process tasks as
nodes that change their color based on the execution state of
the task (Posted=Orange, [Started, Resumed]=Green,
Suspended=Red, [Completed, Terminated]=Blue,
Otherwise=Black). The Process Instance Tabs include a tab
for each process instance. The Actor Tree Tabs includes a tab
for each actor showing the Actor Process Flow Tree. The
Actor Process Flow Tree groups and displays the tasks
assigned for the actor. The Actor Tabs includes a form for
each actor showing the actions assigned to the actor. The
Action Forms display detailed action information. The
Process Table displays process instances, the Activity Table
displays activity instances, and the Action Table displays
action instances. Each task in these tables is displayed with its
execution state and performing actor name along with other
execution information such as its running time. A popup menu
is displayed showing applicable execution commands to select
from. The Enactment Console displays execution information.

Fig. 11 depicts a view of the PUI-Enactment
perspective.

Fig. 11. Enacting a Process Instance in the PUI-Enactment
Perspective

2.3 The Enactment Engine
The main components of the Enactment Engine are:

The KDPMEL Interpreter
The Repository Management Unit (RMU)
The Tool Invocation Unit (TIU)

2.3.1 The KDPMEL Interpreter
The user interactions with KDPMEL Interpreter are

performed through the PUI-Enactment perspective.

The execution of a process program starts by issuing an
execute command, which causes the PUI-Enactment
perspective to be created and presented (Fig. 11) to the user.
A process instance is created, placed in a posted state, and
entered in the process table (Fig. 12). The user is offered a
menu of valid transition states; e.g., a posted task can be
either retracted or started. The same mechanism applies for
activities and actions that are ready for execution: they are
placed in a posted state in the activity and action tables.
Starting a process instance triggers the execution of its
activities in the order they are defined. Starting an activity
triggers the execution of its sub-activities in a depth-first order
and its constituent actions based on their control construct.

Fig. 12. A Posted KDPMEL Process Instance

The Interpreter interacts with the PUI-Enactment
perspective to update its presentation based on the execution
states and to accept the user selection of choices offered
during the execution.

To illustrate the dynamics of executing a KDPMEL
action, consider the following example for building a decision
tree classification model using the WEKA [14] framework:

172 Int'l Conf. Data Mining | DMIN'16 |

ISBN: 1-60132-431-6, CSREA Press ©

process ADecisionTreeProcess {
resources {

artifacts {
 Dataset sampleDataset …

Model sampleDecisionTreeModel …
}
roles { Actor dmAnalyst …}
tools { Tool weka_Script_Tool …}

}
…
action buildDecisionTreeClassificationModel {

consume sampleDataset;
produce sampleDecisionTreeModel;
performer dmAnalyst;
utilize {

call weka_Script_Tool {
command buildDecisionTreeCommand {
kind Modeling;
input sampleDataset;
output sampleDecisionTreeModel;
operation

"weka.classifiers.trees.J48";
parameters "-C 0.25 -M 2";

…
}

The Interpreter establishes a handle on the action’s
consumed (sampleDataset artifact) and produced
(sampleDecisionTreeModel artifact) artifacts by submitting
queries to the RMU. Each artifact handle contains
information, such as name, type, URL, etc., which allows
accessing and controlling the artifacts. Another handle is
established for each utilized tool (weka_Script_Tool tool).
The Interpreter sends the TIU a tool handle that specifies the
tool description and how to invoke it (invocation
URL/command). Two mechanisms are used for tool
invocations. Simple invocation is provided for an interactive
tool through calling the tool’s URL. A tool that can be called
in a scripted mode is invoked through a plug-in module that
implements the translation of KDPMEL external commands
(buildDecisionTreeCommand command) into their
appropriate commands that are accepted by the tool.

The interpreter identifies the assigned actor (dmAnalyst
actor) by issuing a query to the RMU and accordingly notifies
that actor. An action that awaits a user's response is in the
posted state. The actor would respond through the PUI-
Enactment perspective by selecting his/her preferred choice.
When the actor starts the action, the interpreter identifies the
needed artifacts, binds them with the action, identifies the
tools utilized by the action, and issues their invocation calls.
The actor then takes responsibility for executing and finishing
the action and informing the interpreter through the PUI-
Enactment perspective about the completion status. If the
action is completed successfully, the interpreter issues an
update or create request to the RMU for the produced artifacts
and determines the next action to be executed.

When buildDecisionTreeClassificationModel action
becomes ready for execution, it is placed in a posted state on
the action table. The color of the node representing the action
in the Overall Process Flow Tree and Actor Process Flow
Tree changes to Orange. The actor performing the action
starts its execution by clicking on the row representing the

action in the action table and selecting the Start choice from
the popup menu. A number of dialogs begin with the actor to
support the performance of the action, the state of the action
changes to started state, and the action node color changes to
Green. The first dialog asks for invoking the
weka_Script_Tool tool that is utilized by the action and the
actor responds with Yes. The second dialog asks whether to
run the commands associated with the tool and the actor
responds with Yes. The third dialog asks to run the first tool
command (buildDecisionTreeCommand command) and the
actor responds with Yes. The last dialog confirms that the
command has been executed successfully. Fig. 13 illustrates
the execution of the action.

Fig. 13. The execution of the buildDecisionTreeClassificationModel
action

2.3.2 The Repository Management Unit (RMU)
RMU provides management and persistence support for

process resources. In addition, process instances that are
created during enactment are maintained by the RMU.

Concurrent access to the process artifacts can happen in
a number of situations and there is a need for a concurrency
control mechanism, suitable for KDD processes, to handle
these situations. KDD processes are highly interactive and
iterative. They include tasks that can have very long running
times and a high degree of interactions with process actors.

Int'l Conf. Data Mining | DMIN'16 | 173

ISBN: 1-60132-431-6, CSREA Press ©

These KDD tasks are similar to database transactions that
involve browsing or performing data entry, which may last
several minutes. For this kind of transactions, concurrency can
severely suffer with higher isolation levels. Also, the
possibility of deadlock is increased. A lower isolation level is
typically used for this kind of transactions.

Given the nature of KDD tasks and their running time
similarities with long running database transactions, the
lowest isolation level would be a better choice. The RMU
supports the lowest isolation level as defined in the ANSI
SQL Standard [6] by implementing a simple exclusive locking
mechanism on the process artifacts that are updated by an
action. Process artifacts that are updated by an action are
locked for exclusive use (write-lock) when the action is
started (the started state) and released when the action is
finished with either terminated or completed state.

2.3.3 The Tool Invocation Unit (TIU)
TIU is responsible for orchestrating and managing the

invocation of tools. Two mechanisms are used for tool
invocations. Simple invocation is provided for an interactive
tool through calling the tool’s URL. A tool that can be called
in a scripted mode is invoked through a plug-in module that
implements the translation of KDPMEL external commands
into their appropriate commands that are accepted by the tool.
Fig. 14 illustrates the structure of the TIU.

Fig. 14. The Tool Invocation Unit (TIU)

2.4 PCSE-KDD Key Aspects and Novelty

PCSE-KDD combines aspects form KDD Support
Environments, Language Integrated Development
Environments (IDEs), and PCSEEs. These aspects are
blended together in PCSE-KDD to support developing KDD
processes in a language-based and process-oriented approach.

As a KDD support environment, PCSE-KDD provides
features to assist KDD developers, maintain KDD resources,
invoke and interact with KDD supporting tools, automate
routine KDD tasks, manage dependencies and interactions
between KDD techniques, and enforce mandatory KDD rules
and practices.

As an IDE for KDPMEL, PCSE-KDD provides basic
features to facilitate the construction, execution, and
management of KDPMEL programs. KDPMEL programs are
constructed using a hybrid modeling approach, mixing
different types of editors and views in source-based, graph-
based, and form-based styles.

As a PCSEE, PCSE-KDD exploits an explicit
representation of the KDD process (a process program) to

support KDD development activities and to manage the
overall process. PCSE-KDD implements the process
definition/instantiation/enactment paradigm to develop KDD
processes in a way similar to developing software processes in
PCSEEs.

We believe that this novel approach for designing
PCSE-KDD combines the benefits of the underlying aspects
(KDD, Language, and Process) to provide concrete, flexible,
explicit, and process-oriented support for KDD processes.

We have used PCSE-KDD to implement a non-trivial
KDD prediction process in [1]. To evaluate PCSE-KDD, we
have also implemented a real-world case study data analysis
process for analyzing, comparing, and visualizing streams of
ocean data [3]. The evaluation results of this case study show
that the entire process can be fully automated, which yields an
execution time of 4.8 hours as opposed to 79 hours original
execution time for the manual non-process implementation.
This is a 16.5x speedup over the original execution time. The
results also show that the execution of the process can be
easily repeated with the same or different configurations
and/or data. Moreover, the results show that minor to
moderate program adjustments and configurations are needed
to expand and scale up the analysis. As for novice users, the
results show that they will have no difficulty in executing the
analysis in PCSE-KDD.

3 Prototyping PCSE-KDD
The environment has been prototyped in Java utilizing a

number of open source libraries and tools such as JavaCC [5],
JGraph [27], JGoodies [16], and SMC [15]. The environment
has the look and feel of Eclipse IDE. It also has similar
Workbench that includes three different perspectives for the
Modeling, Enactment, and Management functionalities.

The prototype is structured into multiple modules: the
KDPMEL language along with its components and tools
(Parser, Model Checker, Interpreter, Source-code Editor,
etc.); the Process Object Model (Process Components); the
Desktop Development Environment (Workbench, Graph
Editors, and Form Editors); the Runtime System (Enactment
Engine and State Diagrams); and the Repository.

In addition to the PCSE-KDD Java prototype, an Eclipse
Rich Client Platform (RCP) Plug-in version has been
prototyped to provide full modeling and management
capabilities that are supported by the Eclipse platform. With
Eclipse RCP, a plethora of Eclipse features and components
are available for reuse. Building on a platform facilitates
faster development and seamless integration. The inherit
extensibility of Eclipse allows to build not only a closed-form
application, but also and open-ended platform like the Eclipse
IDE itself. This RCP version utilizes the following
technologies:

The Eclipse Workbench, Perspectives, Views, and
Editors for building the Desktop of the environment.

174 Int'l Conf. Data Mining | DMIN'16 |

ISBN: 1-60132-431-6, CSREA Press ©

The Eclipse Modeling Framework (EMF) [11] for
defining the KDD Process Meta-Models.
The Eclipse Graphical Modeling Framework (GMF)
[12] and Graphical Editing Framework (GEF) [13] for
building the KDD Process Graph Editors.
The xText Language Development Framework [17] for
developing KDPMEL.

4 Conclusions
In this paper, we presented the Process-Centered

Support Environment for KDD (PCSE-KDD) that can be used
to develop KDD processes in a way that is similar to
developing software processes, which is based on encoding
KDD processes as process programs written in KDPMEL and
exploited by PCSE-KDD to provide execution support and
management for KDD processes.

PCSE-KDD includes a number of modeling editors and
views, an Enactment Engine for runtime process execution
support, and a Repository for providing persistence support
for the process resources. PCSE-KDD has been prototyped in
Java plus a number of open source libraries and tools.

In PCSE-KDD, the process concept is supported and
enforced according to a specialized KDD process that
includes specific tasks organized according to their
sequencing, dependencies, and alternatives. Also, tools are
loosely integrated through a flexible and expandable plug-in
mechanism. They are launched automatically and dynamically
according to the execution order of the process tasks. PCSE-
KDD employs an engineering approach to develop KDD
processes. It is a language-based and process-driven
approach. In this language-based approach, KDD processes
are managed. Their specifications can evolve and executions
can be repeated. Moreover, they are validated according to
standard programming techniques.

Our future work includes expanding the support for
more KDD tools and continuing the development of PCSE-
KDD to provide more enhanced graphical modeling and
management for KDD artifacts.

5 References
[1] Mansour, H. A., Duchamp, D., and Krapp, C.-A. A Language-
Based and Process-Oriented Approach for Supporting the
Knowledge Discovery Processes. In Proceedings of the 11th
International Conference on Data Mining (DMIN’15) (pp. 107-115),
July 2015.
[2] Mansour, H. A. (in press). KDPMEL: A Knowledge Discovery
Process Modeling and Enacting Language. The 12th International
Conference on Data Mining (DMIN’16), July 2016.
[3] Mansour, H. A. A Process-Centered Environment for
Modeling, Enacting, and Managing the Knowledge Discovery
Processes. PhD dissertation, Stevens Institute of Technology,
Hoboken, N. J., 2015.
[4] David Jensen et al. Coordinating Agent Activities in
Knowledge Discovery Processes, Department of Computer Science,
University of Massachusetts Amherst, 1999.

[5] The JavaCC Framework. URL: https://javacc.dev.java.net/
[6] The SQL-92 Standard. URL:
http://www.contrib.andrew.cmu.edu/~shadow/sql/sql1992.txt.
[7] L. Kurgan and P. Musilek. A Survey of Knowledge Discovery
and Data Mining Process Models. Knowledge Engineering Review,
21(1), pp. 1-24, 2006.
[8] Marban, O. et al. An Engineering Approach to Data Mining
Projects. Intelligent Data Engineering and Automated Learning –
IDEAL 2007, LNCS 4881, pp. 578-588, 2007.
[9] Marban, O. et al. Toward data mining engineering: A software
engineering approach. Information Systems 34 (1), 2009.
[10] Pohl, K. et al. PRIME-Toward Process-Integrated Modeling
Environments. ACM Transactions on Software Engineering and
Methodology, Vol. 8, No. 4, October 1999, Pages 343-410.
[11] The Eclipse Modeling Framework (EMF). URL:
http://www.eclipse.org/modeling/emf/
[12] The Eclipse Graphical Modeling Framework (GMF). URL:
http://wiki.eclipse.org/Graphical_Modeling_Framework/
[13] The Graphical Editing Framework (GEF). URL:
http://www.eclipse.org/gef/
[14] University of Waikato, New Zealand. Weka 3: Data Mining
Software in Java. URL: http://www.cs.waikato.ac.nz/ml/weka/
[15] Open Source, The State Machine Compiler (SMC)
Framework, URL: http://smc.sourceforge.net/
[16] The JGoodies Framework. URL: https://jgoodies.dev.java.net/
[17] The xText Language Development Framework. URL:
http://www.eclipse.org/Xtext/
[18] Rudiger Wirth et al. Towards Process-Oriented Tool Support
for Knowledge Discovery in Databases. DaimlerChrysler Research
& Technology, 1997.
[19] Cinara Ghedini and Karin Becker. A documentation model for
the KDD application management support. Faculdade de
Informatica, PUCRS 2000.
[20] Osterweil, L.J. Software Processes are Software Too. In
Proceedings of the Ninth International Conference on Software
Engineering, pp 2-14, 1987.
[21] B.C. Warboys et al. Collaboration and Composition: Issues
for a Second Generation Process Language. 1999.
[22] Vincenzo Ambriola et al. Assessing Process-centered Software
Engineering Environments. Universita di Pisa, NTH-Trondheim,
Politecnico di Milano, 1996.
[23] Padhraic Smyth. Breaking Out of the Black-Box: Research
Challenges in Data Mining. The 2001 ACM SIGMOD Workshop
on Research Issues in Data Mining and Knowledge Discovery, 2001.
[24] Fayyad U. M., Piatetsky-Shapiro, G., and Uthurusamy, R.
Summary from the KDD-03 Panel – Data Mining: The Next 10
Years. The 9th International Conference on Data Mining and
Knowledge Discovery: KDD-03, August 27, 2003.
[25] J. Segovia. Definition and Instantiation of an Integrated Data
Mining Process. Jornadas de Seguimiento de Proyectos, 2007.
[26] Using Perspectives in the Eclipse UI. URL:
https://www.eclipse.org/articles/using-
perspectives/PerspectiveArticle.html
[27] The JGraph Framework. URL:
http://www.jgraph.com/jgraph.html

Int'l Conf. Data Mining | DMIN'16 | 175

ISBN: 1-60132-431-6, CSREA Press ©

