
The Generalized Shortest Path Kernel for Classifying
Cluster Graphs

Linus Hermansson

Department of Mathematical and Computing Sciences,

Tokyo Institute of Technology, Meguro-ku Ookayama, Tokyo 152-8552, Japan

Abstract—We consider using an SVM together with
graph kernels in order to classify graphs into classes.
Although several graph kernels exist and have been shown
experimentally to work for certain graph classification
problems, it is often difficult to theoretically analyze for
which graph classification problems a particular graph
kernel will work well. We provide a semi-theoretical
analysis of the feature vectors of the newly published gen-
eralized shortest path kernel, which results in a conjecture
about the accuracy of an SVM which uses the generalized
shortest path kernel. We back up our conjecture with
experimental results, for a classification task where the
goal is to classify if a graph contains k or k+1 number
of clusters. Keywords: SVM, Graph Kernel, Machine
Learning.

1 Introduction
A graph kernel can be seen as a similarity measure

between graphs, this similarity measure can be used

together with a support vector machine (SVM) in order

to be able to classify graphs into different classes [3],

[8], [9]. Graph classification has many useful applications

and by solving this problem it is possible to for example

classify if human tissue contains cancer or not [1].

One particular type of graphs which comes up in many

applications are cluster graphs. By a cluster in a graph

we mean a subgraph that contains a higher density of

edges inside the clusters than between clusters. Cluster

graphs can represent for instance social networks, where

each node represents a person and each edge represents

a friendship relation. For such graphs the clusters corre-

spond to groups of friends.

The shortest path (SP) kernel is a very popular graph

kernel to use in combination with an SVM for graph

classification and has been shown to be able to classify

a wide variety of graphs, such as for instance classifying

protein graphs by their enzyme class [3] or classifying

if a graph represents a low-density-parity-check code [9].

The newly introduced generalized shortest path (GSP)

kernel [7], when used by an SVM classifier, has been

shown to outperform the SP kernel at classifying certain

types of graphs, even though calculating the feature

vectors for the GSP kernel takes almost the same amount

of time as the SP kernel when using standard algorithms.

In this paper we discuss in more detail why and when the

SVM classifier, which uses the GSP kernel, outperforms

the SVM classifier which uses the SP kernel. For this

purpose, we consider harder cluster graph classification

problems than the one discussed in [7], that is, for each

This work is supported in part by KAKENHI No. 24106008.

k, the problem of distinguishing whether a given graph

consist of k-clusters or k + 1-clusters. The hardness of

this problem is determined by four parameters: p, the

probability of having an edge between two nodes that

are inside the same cluster; q1 (or q2), the probability of

having an edge between two nodes that are in different

clusters, and k, the number of clusters. We investigate

how the accuracy of the SVM classifier which uses the

GSP kernel relates to these four parameters. The details

of this classification problem can be found in Sect. 3.

Our experimental results show that for certain param-

eter values, the SP kernel does not work at all, even

though the GSP kernel completely solves the problem.

This happens when p is large and k is small. The reason

that the SP kernel does not work well is most likely due

to the fact that for these parameters, all node pairs are

at very close distances, making it difficult to distinguish

feature vectors from the different classes of graphs for the

SP kernel.

For understanding the GSP based SVM classifier, we

think that it is important to give some formula estimating

its accuracy. Unfortunately, though, there are several

parameters even for our relatively simple classification

task, and the mechanism of the GSP based SVM classifier

is not so simple, it seems difficult to give a rigorous

analysis of its performance. Thus, we took a heuristic

approach in this paper. Based on observations from our

experimental results, we propose some statistical value

as a “hidden parameter” that determines the accuracy

of our classifier. We then derive, as our main technical

contribution, some evidence supporting this conjecture

using our experimental results.

The rest of the paper is organized as follows. Section

2 contains definitions and terms used throughout the

paper. In Sect. 3 we define the random models used to

generate graphs and formally define our graph classifica-

tion problem. Section 4 defines the graph kernels which

we investigate. Section 5 contains our semi-theoretical

analysis. Section 6 contains our experimental results and

Sect. 7 contains our conclusions.

2 Preliminaries
In this section we define our notations that will be

used throughout the paper. For a fixed graph, G,V and

E denote the graph, the set of vertices and set of edges

respectively. We denote the number of nodes and edges

in a particular graph by the symbols n and m.

Since our approach is based on graph kernels, (see Sect.

4 for details) which counts the number of node pairs in

222 Int'l Conf. Data Mining | DMIN'16 |

ISBN: 1-60132-431-6, CSREA Press ©

graphs that are at particular distances and have a particular

number of shortest paths, we define necessary notations

for the feature vectors of these graph kernels so that we

can appropriately discuss the relevant graph properties.

We denote the number of node pairs, that have a shortest

path of length d ≥ 1, in a graph G, by nd. For d, x ≥ 1,

by nd,x, we denote the number of node pairs that are

at distance d and have x number of shortest paths. For

any given graph G, We call a vector vsp = [n1, n2, . . .]
a SPI feature vector. For any given graph G, We call

a vector vgsp = [n1,1, n1,2, . . . , n2,1 . . .] a GSPI feature
vector. Note that nd =

∑
x nd,x. We sometimes in our

analysis use feature vectors where we consider shortest

paths from a fixed node in a graph, instead of all node

pairs. Whenever we use such a version of the feature

vectors we point it out in the text.

In this paper we consider different random models

for generating graphs. For any specific such model,

E[vsp] = [E[n1],E[n2], . . .], denotes the expected SPI

feature vector. We denote the expected GSPI feature

vector by E[vgsp] = [E[n1,1],E[n1,2] . . . ,E[n2,1] . . .]. In

order to separate k and k + 1-cluster graphs, we use a

super script (k) or (k+1). So that for instance n
(k)
2,1 is the

number of node pairs that have a shortest path of length

2 and exactly 1 shortest path, in a k-cluster graph. We

also consider nodes from particular clusters, we define

that n
(y,k)
d is the number of nodes at distance d, in a k

cluster graph, that are in cluster y only.

We compare the performances for an SVM that uses

either the SP kernel or the GSP kernel. Sometimes for

simplicity we write “the accuracy of the SP/GSP kernel”,

when we mean the accuracy of an SVM which uses

the SP/GSP kernel. When showing figures of average

experimental feature vectors, the average is always over

200 i.i.d. feature vectors.

3 Random graph model and our graph
classification task

The problem that we analyze in this paper is the

problem of classifying random graphs as having either

k or k + 1 number of clusters, where k is an integer

greater than or equal to 2. A cluster is a subgraph of a

graph where the edge density is higher than between the

clusters. The graphs which we use in our experiments are

generated according to the planted partition model [10],

which is an extension of the well known Erdős-Rényi
model [2]. In the planted partition model, for a k-cluster

graph, all nodes belong to one of k clusters. Each cluster

contains n/k number of nodes. The presence of an edge

between any node pair is determined randomly. Two

nodes that are from the same cluster are connected with

the probability p, while nodes that are from different

clusters are connected with probability q1. Where we

define q1 as

q1 = p(1− β).

with parameter β which is one of the key parameters in

our experiments. We denote the model for generating such

graphs as G(n, k, p, q1).
Each dataset consists of k-cluster graphs and k + 1-

cluster graphs, For the k+1-cluster graphs, two nodes that

are from the same cluster are connected with probability

p, which is the same probability as for the k-cluster

graphs. Two nodes that are from different clusters are

connected with probability q2. In order that it is not

possible to simply distinguish the different graph types

based on the number of edges, we fix q2 so that the

expected number of edges in the k-cluster graphs and

the k+1-cluster graphs are the same. It is easy to verify

that this implies that we have to choose q2 as

q2 = q1 +
1

k2
(p− q1) = q1 + p

β

k2
.

We call the model for generating such graphs G(n, k +
1, p, q2).

The problem which we consider in this paper is to train

an SVM using graphs from both models (for a fixed set

of parameters p, q1, q2, k). We then want to be able to

use this SVM to predict, for random graphs which are

generated from one of the two models, which of the two

models was used to generate each particular graph. I.e.

we want our SVM to correctly be able to classify, after

training, if a given random graph is a k-cluster graph or

a k + 1-cluster graph.

4 Shortest path kernel based SVM
and generalized shortest path kernel
based SVM

Here we define the relevant graph kernels which we use

together with an SVM in order to classify graphs from

our classification problem defined in Sect. 3. A graph

kernel is a function k(G1, G2) on pairs of graphs, which

can be represented as an inner product k(G1, G2) =
〈φ(G1), φ(G2)〉H for some mapping φ(G) to a Hilbert

space H, of possibly infinite dimension. It is convenient

to think of graph kernels as similarity functions on graphs.

Graph kernels have been used as tools for SVM classifiers

for several graph classification problems [3], [4], [8].

The shortest path (SP) kernel, compares graphs based

on the shortest path length of all pairs of nodes [3]. Let

D(G) denote the multi set of shortest distances between

all node pairs in the graph G. For two given graphs G1

and G2, the SP kernel is then defined as:

KSP(G1, G2) =
∑

d1∈D(G1)

∑
d2∈D(G2)

k(d1, d2),

where k is a positive definite kernel [3]. One of the

most common kernels for k is the indicator function, as

used in [3]. This kernel compares shortest distances for

equality. Using this choice of k we obtain the following

definition of the SP kernel:

KSPI(G1, G2) =
∑

d1∈D(G1)

∑
d2∈D(G2)

1 [d1 = d2] .

We call this the shortest path index (SPI) kernel. It is easy

to check that KSPI(G1, G2) is simply the inner product

of the SPI feature vectors of G1 and G2.

The generalized shortest path (GSP) kernel, is defined

using the shortest path length and number of shortest

paths between all node pairs. For a given graph G, by

ND(G) we denote the multi set of numbers of shortest

paths between all node pairs of G. The GSP kernel is

Int'l Conf. Data Mining | DMIN'16 | 223

ISBN: 1-60132-431-6, CSREA Press ©

then defined as:

KGSP(G1, G2) =
∑

d1∈D(G1)

∑
d2∈D(G2)∑

t1∈ND(G1)

∑
t2∈ND(G2)

k(d1, d2, t1, t2),

where k is a positive definite kernel. In this paper we

investigate the GSP kernel which considers node pairs

equal if they have the same shortest distance and the

same number of shortest paths. Which gives us the

following definition, called the generalized shortest path
index (GSPI) kernel [7].

KGSPI(G1, G2) =
∑

d1∈D(G1)

∑
d2∈D(G2)∑

t1∈ND(G1)

∑
t2∈ND(G2)

1 [d1 = d2]1 [t1 = t2] .

It is easy to see that this is equivalent to the inner product

of the GSPI feature vectors of G1 and G2.

Computing the SPI and GSPI feature vectors can be

done efficiently. One possible method is to use Dijkstra’s

algorithm [6] for each node in a graph. Doing so takes

O(nm + n2 log n) time for one graph and gives us the

shortest path length of all node pairs in a graph. This

information is exactly what is needed to construct a SPI

feature vector. When running Dijkstra’s algorithm, the

algorithm actually computes all shortest paths between

each node pair, although most applications do not store

this information, by saving this information we can count

the number of shortest paths between each node pair in the

graph without any extra cost in running time. This means

that calculating a GSPI feature vector takes basically the

same time as calculating a SPI feature vector.

Note that all the graph kernels used in this paper are

inner products between finite dimensional feature vectors.

We choose to still call them graph kernels in order to

preserve the connection to other researchers’ work on

graph kernels, see for instance [3], [4], [9].

5 Analysis
In this section we analyze in which situations, and

why, the GSP kernel outperforms the SP kernel. Further

evidence for our analysis can be found in Sect. 6, which

contains our experimental results.

In this section, instead of considering the number of

node pairs which are at distance d from each other, we

consider the number of nodes at a particular distance from

a fixed source node s. By n
(k)
d,x we mean the number of

nodes that are at distance d from s and have exactly x
number of shortest paths to s, in a k-cluster graph.

5.1 Preliminary approximations
Here we give some preliminary approximations that we

use in order to derive our main result. We estimate the

expected number of nodes at distances 1 and 2, from a

fixed node s, in a k-cluster graph. Our analysis closely

parallels [7]. Consider the probability that s is connected

to some other fixed node t. Let Ft,1 be the probability

that s and t are connected. Ft,1 is obviously p if t is in

the same cluster as s and q1 otherwise. Let Ft,2 be the

probability that there exists at least one path of length 2

between s and t. Let Au,v be the event that u and v are

connected. Ft,2 is then equal to

Ft,2 = Pr

⎡⎣ ∨
v∈V \{s,t}

As,v ∧Av,t

⎤⎦ . (1)

Ft,2 can be calculated using the inclusion-exclusion prin-

ciple and will give a different result depending on if t
is in the same cluster as s or not. Let ft,2 denote the

probability that s and t are at distance 2. This happens if

s and t have a path of length 2 and no path of length 1.

I.e. ft,2 = Ft,2 − Ft,1. Note that ft,2, Ft,2 and Ft,1 vary

depending on where t is. Let f2 denote the probabillity

that s is at distance 2 to a random node t. f2 is simply

the weighted average sum over the cases when t is in the

same cluster as s and when t is not in the same cluster as

s. The probability of t being in the same cluster as s is

simply 1/k and the probability that t is not in the same

cluster as s is (k − 1)/k. With this f2, we are able to

estimate that the expected number of nodes at distance 2

is (n− 1)f2.

In order to simplify (1), we use an approximation

of the inclusion-exclusion principle from [7]. I.e. we

approximate

Pr

[
l⋃

i=1

Ei

]
≈ 1− exp

(
−

l∑
i=1

Pr[Ei]

)
.

Where Ei, in the case of (1), is As,v ∧Av,t.

5.2 Analysis of GSPI feature vectors
Here we analyze the expected GSPI feature vectors,

E[v
(k)
gsp] and E[v

(k+1)
gsp], where the graphs are generated

as specified in Sect. 3. Here we consider the number of

shortest paths between a fixed source node s and a random

target node t. We focus on the part of the GSPI feature

vectors that corresponds to nodes at distance 2 from s,

namely the subvectors [E[n
(k)
2,x]]x≥1 and [E[n

(k+1)
2,x]]x≥1.

Since we in this section consider feature vectors for a

fixed s, note that for instance, E[n
(k)
2,4] is the expected

number of nodes, that are at distance 2 from s and have

4 number of shortest paths to s in a k-cluster graph.

We first consider a k-cluster graph but we use q instead

of q1 so that we are later able to replace q by either q1 or

q2. Assume, without loss of generality, that s is in cluster

1. Note that s has an expected (n/k)p number of nodes

at distance 1, in cluster 1. s also has an expected (n/k)q
number of nodes at distance 1 in each of the other k− 1
clusters. For our analysis, we assume that the number of

nodes at distance 1, in each cluster, is actually equal to the

expected number of such nodes. We also assume that each

node at distance 1 is connected to any node at distance 2

independently at random. We give evidence later in this

section that these are actually reasonable assumptions.

We now analyze the number of shortest paths between

s and t, when s and t are at distance 2. We first consider

the case when t is in cluster 1. In this case we know that

s has an expected (n/k)p nodes at distance 1 in cluster 1.

Due to our assumption of independence of each of those

(n/k)p nodes having an edge to t, we say that each such

224 Int'l Conf. Data Mining | DMIN'16 |

ISBN: 1-60132-431-6, CSREA Press ©

node is connected to t with probability p independently at

random. Which means that if we consider the number of

shortest paths between s and t, that goes through cluster

1, the number of shortest paths is distributed according

to the binomial distribution Bin((n/k)p, p). There could

also be shortest paths that go from s to cluster 2 then

to t, from s to cluster 3 then to t and so on. For any of

these situations, the number of shortest paths is distributed

according to the distribution Bin((n/k)q, q). There are

obviously k − 1 such cases. The final distribution of the

number of shortest paths when s and t are both in cluster

1 is then

Bin(
np

k
, p) + (k − 1)Bin(

nq

k
, q). (2)

Similarly, we can calculate that, when t is not in cluster 1,

the number of shortest paths between s and t is distributed

according to the distribution

Bin(
np

k
, q) + Bin(

nq

k
, p) + (k − 2)Bin(

nq

k
, q). (3)

Note here that we have two different cases, the first

case where t is in cluster 1 and the second case where t
is in any other cluster. Since the position of t is randomly

determined, the final distribution of the number of shortest

paths between s and t is a mixture distribution [11] of (2)

and (3). Where the weight of the first distribution is the

number of nodes at distance 2 in cluster 1 over the total

number of nodes at distance 2. Which we write as

n
(1,k)
2

n
(k)
2

= w
(k)
1 .

We call this weight w
(k)
1 . The weight of the second

distribution is the sum of the number of nodes at distance

2 in all clusters except cluster 1, over the total number of

nodes at distance 2. Written as

k∑
i=2

n
(i,k)
2

n
(k)
2

= w
(k)
2 .

We call this weight w
(k)
2 . Note that w

(k)
1 + w

(k)
2 = 1.

The final mixture distribution, for the number of shortest

paths between s and a random node t, that is at distance

2 from s, is then

w
(k)
1 (Bin(

np

k
, p) + (k − 1)Bin(

nq

k
, q)) + (4)

w
(k)
2 (Bin(

np

k
, q) + Bin(

nq

k
, p) + (k − 2)Bin(

nq

k
, q)).

This mixture distribution must then have two peaks, the

first one being

x
(1,k)
peak =

n

k
(p2 + (k − 1)q2)

and the second one being

x
(2,k)
peak =

n

k
(2pq + (k − 2)q2).

When using the above formulas for a k-cluster graph,

we simply replace q by q1. To obtain the relevant formulas

for a k+1-cluster graph, we need to replace q by q2 and

k by k + 1.

We denote the difference between the peaks for a k-

Fig. 1. Comparison between the average experimental and analytical

feature subvectors [E[n
(k)
2,x]]x≥1. For n=1000, p=0.11, beta=0.3, k=4.

cluster graph as

Δx
(k)
peak = x

(1,k)
peak − x

(2,k)
peak =

np2β2

k
. (5)

Note that the two weights in (4) will be different for

the k-cluster graphs and the k + 1-cluster graphs. In

particular, for fixed values of p, β and k, we always have

w
(k)
2 < w

(k+1)
2 , since the weight of the second distri-

bution increases when the number of clusters increases

(since then there is a lower chance of t being in cluster

1). Also note that w
(k)
1 decreases when k grows. If w

(k)
1

becomes negligible, we will not have a two peak shape

even if the two peaks are separated by a wide margin. This

is however never the case for the parameters we consider

in our experiments, i.e. k ∈ [2, 9].

In the above semi-theoretical analysis, we made two

noteworthy assumptions. First that the number of nodes

at distance 1 from a fixed node s, is equal to its expected

value. We also assumed that all of the distance 1 nodes are

connected to distances 2 nodes independently at random,

which finally gave us the distribution (4) for the number

of shortest paths between s and a random node t at

distance 2 from s. In order to provide some evidence

that this model is actually reasonably close to what

really happens, we provide two figures where we compare

the subvector [E[n
(k)
2,x]]x≥1 from the experiments and the

subvector which we obtain by using (4) multiplied by the

number of nodes at distance 2. We use the approximation

from Sect. 5.1 to approximate the number of nodes at

distance 2 and substitute the binomial distributions in (4)

for normal distributions in order to simplify summing the

distributions. The results can be seen in Figures 1 and

2. As can be seen, the distributions obtained from our

analysis are very close to the experimental values, no

matter if the distribution appears to have only one peak

(the two peaks are very close), or if the two peaks are far

away.

It is important to note that if the difference between

the peaks is large enough, the distribution will look

very different compared to when the difference between

the peaks is close to 0. If the difference between the

peaks is large, the distribution will look skewed compared

to a standard normal distribution. This can be seen in

Fig. 3, which shows the average subvectors [E[n
(k)
2,x]]x≥1,

when n = 1000, p = 0.15, k = 2 for β = 0.2 and

Int'l Conf. Data Mining | DMIN'16 | 225

ISBN: 1-60132-431-6, CSREA Press ©

Fig. 2. Comparison between the average experimental and analytical

feature subvectors [E[n
(k)
2,x]]x≥1. For n=1000, p=0.15, beta=0.7, k=2.

β = 0.7. Note that the difference between the peaks is a

lot greater when β = 0.7 than when β = 0.2. In fact the

difference between the two peaks is equal to 0.45 when

β = 0.2 and 5.51 when β = 0.7. The distributions of

the k and k+1-cluster graphs also appears to look more

different when the difference between the peaks is large.

Figure 4, contains the average subvectors [E[n
(k)
2,x]]x≥1

and [E[n
(k+1)
2,x]]x≥1, when n = 1000, p = 0.15, k = 2,

β = 0.7. The difference between the peaks for the k-

cluster graphs is 5.51 and the difference between the

peaks for the k+1-cluster graphs is 2.07. If the distance

between the peaks is low, the feature vectors tend to look

the same for k-cluster graphs and k + 1-cluster graphs.

An example of this can be seen in Fig. 5. Obviously, for

such datasets, it is not possible to distinguish the feature

subvectors.

Now we propose a “hidden parameter”, a major factor

in determining the accuracy of the GSPI based SVM clas-

sifier. It is well known that the difficulty of distinguishing

between a simple one peak distribution and a mixture

distribution with two peaks, is related to the ratio of the

distance of the two peaks and the standard deviation of the

distributions [11]. Here we propose to use this ratio for

the hidden parameter. Note that the standard deviation of

both (2) and (3) can be approximated as
√

nq21(1− q1).
Thus, the ratio can be approximated by

Rn,p,k,β =
np2β2

k
/
√
nq21(1− q1) (6)

≈ √
n p β2/(k(1− β)).

Which we conjecture to be the major factor determining

the accuracy of the GSPI based SVM, for the graph

classification problem of deciding if a graph contains k

or k+1 clusters. In Sect. 6.3 we derive some evidence

supporting this conjecture based on experimental results.

6 Experiments
In this section we show and explain experimental

results.

6.1 Dataset specifications and experiment pa-
rameters

All datasets are generated according to the models

G(n, k, p, q1) and G(n, k + 1, p, q2). Where each dataset

consists of 200 graphs from each model (400 in total). We

Fig. 3. Average subvectors [E[n
(k)
2,x]]x≥1, when n = 1000, p = 0.15,

k = 2 for β = 0.2 and β = 0.7. The difference between the peaks
when β = 0.2 is 0.45 and the difference between the peaks when
β = 0.7 is 5.51.

Fig. 4. Average subvectors [E[n
(k)
2,x]]x≥1 and [E[n

(k+1)
2,x]]x≥1, when

n = 1000, p = 0.15, β = 0.7, k = 2. The difference between the
peaks for the k-cluster graphs is 5.51 and the difference between the
peaks for the k + 1-cluster graphs is 2.07.

performed the experiments for the parameters n = 1000,

p ∈ {0.07, 0.09, 0.11, 0.13, 0.15}, k ∈ {2, 3, . . . , 9} and

β ∈ {0.2, 0.22, 0.24, . . . , 0.7}. For the SVM, we used

libsvm [5], with 10-fold cross validation. For the cross

validation we tried C = 2i, for i = [0, 49] and the

result from the best C was used as the accuracy. Each

experiment was repeated 10 times, with different random

seeds, and the final accuracy is the average of the 10

runs. If any of the 10 runs resulted in less than 56%
accuracy, the final accuracy for that dataset and kernel

was set to 56% in order to save running time. Preliminary

Fig. 5. Average subvectors [E[n
(k)
2,x]]x≥1 and [E[n

(k+1)
2,x]]x≥1, when

n = 1000, p = 0.15, β = 0.2, k = 2. The difference between the
peaks for the k-cluster graphs is 0.45 and the difference between the
peaks for the k + 1-cluster graphs is 0.17. The distributions in this
picture are indistinguishable.

226 Int'l Conf. Data Mining | DMIN'16 |

ISBN: 1-60132-431-6, CSREA Press ©

TABLE 1
COMPARISON OF ACCURACY FOR THE SPI KERNEL AND THE GSPI

KERNEL. p = 0.15 , k = 2.

β SPI accuracy GSPI accuracy

0.2 56% 63.6%

0.22 56% 70.2%

0.24 56% 78.2%

0.26 56% 85.3%

0.28 56% 92.0%

0.3 56% 95.2%

0.32 56% 98.4%

TABLE 2
COMPARISON OF ACCURACY FOR THE SPI KERNEL AND THE GSPI

KERNEL. p = 0.09 , k = 2.

β SPI accuracy GSPI accuracy

0.26 60.3% 71.3%

0.28 61.7% 74.7%

0.3 60.3% 82.3%

0.32 62.2% 84.1%

0.34 68.1% 91.9%

0.36 74.5% 92.8%

0.38 78.9% 98.5%

experiments showed that i < 1 never gave any competitive

accuracy. We used the SPI and GSPI kernels, with their

feature vectors as defined in Sect. 4, with the modification

that each feature vector is normalized by its Euclidean

norm, this means that all inner products are in [0, 1].

6.2 Results
Both kernels increase in accuracy when β increases.

The SPI does not perform good when p is very large,

this is because of the fact that for large values of p, all

node pairs are at very close distances. For none of the

datasets did the SPI kernel significantly outperform the

GSPI kernel, although for very low values of p, the kernels

perform similarly in terms of accuracy. For larger values

of p, the GSPI significantly outperforms the SPI kernel.

A comparison between the accuracies of the kernels can

be seen in Tables 1, 2, 3 and 4.

The SPI kernel is only able to detect changes in the

number of nodes at certain distances, i.e. n1, n2 Also

note that the expected number of edges is the same for the

k-cluster graphs and the k+1-cluster graphs, which means

E[n
(k)
1] = E[n

(k+1)
1]. Because of this, for datasets where

all nodes are at distances 1 and 2, the SPI kernel will not

be able to gain any advantage over a random classifier.

The number of nodes at distances 3 and greater, is larger

for smaller values of p and larger values of β.

6.3 The accuracy of the GSPI kernel
We plot the accuracy of the GSPI kernel for p = 0.11

and p = 0.15. These results can be seen in Figures 6 and

7. Our analysis is focused on the subvectors at distance 2

for analyzing the accuracy of the GSPI kernel. The reason

for this is because of the fact that for most of the datasets,

the number of node pairs that are at distances 1 and 2 is

over 50%, meaning that the number of such node pairs

TABLE 3
COMPARISON OF ACCURACY FOR THE SPI KERNEL AND THE GSPI

KERNEL. p = 0.15 , k = 4.

β SPI accuracy GSPI accuracy

0.26 56% 64.4%

0.28 56% 68.0%

0.30 56% 73.0%

0.32 56% 87.2%

0.34 56% 92.1%

0.36 56% 94.4%

0.38 56% 97.8%

TABLE 4
COMPARISON OF ACCURACY FOR THE SPI KERNEL AND THE GSPI

KERNEL. p = 0.09 , k = 4.

β SPI accuracy GSPI accuracy

0.34 57.9% 64.2%

0.36 60.8% 74.7%

0.38 64.2% 80.0%

0.4 70.0% 86.2%

0.42 73.6% 90.3%

0.44 78.9% 92.5%

0.46 84.9% 97.1%

is never negligible. In fact, for certain datasets, nearly all

the node pairs are at distances 1 and 2. Such a range of

parameters is for instance, p = 0.15, β ∈ [0.2, 0.4], k =
2, 3, where the number of node pairs at distance more

than 2 is always less than 0.1% of the total number of

node pairs. This fact, that the number of node pairs at

distances greater than 2 is very small, is one reason that

the SPI kernel does not perform well for those datasets.

Now let us derive some evidence from our experimental

results supporting our conjecture, that is, the ratio Rn,p,k,β

is the major factor determing the accuracy of the GSPI

based SVM classifier. Unfortunately, it is computationally

hard to get data for various graph sizes n. Thus, in

this paper, we consider one reasonably large graph size,

namely, n = 1000, fixed, and obtain experimental results

by changing the other parameters, p, k, and β. Thus, in

the following discussion, we regard n in the ratio Rn,p,k,β

as a constant.

First we note the relation between β and the accuracy

of the GSPI kernel; see, Figures 6 and 7. From the figures

Fig. 6. Accuracy of the GSPI kernel when p = 0.11.

Int'l Conf. Data Mining | DMIN'16 | 227

ISBN: 1-60132-431-6, CSREA Press ©

Fig. 7. Accuracy of the GSPI kernel when p = 0.15.

it seems that the accuracy increases linearly in β for the

interval of β where the accuracy has started to increase

above 60% until it reaches close to 100%. That is, for

such an interval of β, the accuracy could be written as

aβ+b at least approximately. Note on the other hand that√
Rn,p,k,β ∝

(√
p/k

)
β/

√
1− β,

and that β/
√
1− β is close to linear for that interval of β.

Thus, if Rn,p,k,β were the major factor of the accuracy,

the accuracy can be expressed as√
Rn,p,k,β + b ≈ c

(√
p/k

)
β + b,

and hence, the slopes of graphs, e.g., in Figures 6 and

7 (i.e., how quickly the accuracy increases when β
increases) should be proportional to

√
p/k. We can check

this point from our experimental results.

More specifically, we check whether the slopes are

proportional to
√
p/k as follows. First calculate the slope,

from the experiments, of the accuracy of the GSPI kernel

for several combinations of the parameters p and k.

The slopes were obtained by picking the intervals of β
values for which the GSPI accuracy seems to increase

linearly, where we considered p ∈ {0.11, 0.13, 0.15},

k ∈ {3, 4, 5, 6}. We then fitted a line aβ+b using the least

squares method in order to obtain the slope a. We then

plotted the obtained slopes (values of a) against
√
p/k

and fitted it by a function g(x) = cx, again using the least

squares method. The result of this can be seen in Fig. 8,

where c was determined to be 1362.8. In the figure, each

dot represents an experimental slope value obtained from

one combination of p and k and the line is the slope that

we predict based on

Slope ∝
√

p/k.

As can be seen in the figure, the slope obtained from our

conjecture is reasonably close to the real values.

7 Conclusions
We have provided a semi-theoretical analysis of the

feature vectors of the GSPI kernel for a random graph

classification problem where we classify graphs as having

k or k + 1 number of clusters. Our experiments showed

that the analysis closely parallels what really happens. We

conjectured that the important parameter for determining

the accuracy of the GSPI kernel is related to the distance

between the peaks of the mixture distribution of number

Fig. 8. The slopes of the accuracy of the GSPI kernel for p ∈
{0.11, 0.13, 0.15}, k ∈ {3, 4, 5, 6} and the slope as predicted by our

conjecture that the slope is proportional to
√

p/k.

of shortest paths of distance 2, divided by the standard

deviation of the two distributions forming the mixture dis-

tribution. We came up with a conjecture for determining

what the slope of the accuracy of the GSPI kernel will

be, and verified for certain datasets that our conjectured

slope value is close to the real value.

Future work should focus on extending the analysis

to other values of n. Throughout the paper we only

considered n = 1000, it would be interesting to analyze

what behavior the GSPI kernel has as n increases.

References
[1] C. Bilgin, C. Demir, C. Nagi, and B. Yener. Cell-graph mining

for breast tissue modeling and classification. In Engineering in
Medicine and Biology Society, 2007. EMBS 2007. 29th Annual
International Conference of the IEEE, pages 5311–5314. IEEE,
2007.

[2] B. Bollobás. Random graphs. Springer, 1998.
[3] K. M. Borgwardt and H.-P. Kriegel. Shortest-path kernels on

graphs. In Prof. of ICDM, 2005.
[4] K. M. Borgwardt, C. S. Ong, S. Schönauer, S. Vishwanathan, A. J.

Smola, and H.-P. Kriegel. Protein function prediction via graph
kernels. Bioinformatics, 21(suppl 1):i47–i56, 2005.

[5] C.-C. Chang and C.-J. Lin. LIBSVM: A library for support
vector machines. ACM Transactions on Intelligent Systems and
Technology, 2:27:1–27:27, 2011. Software available at http://www.
csie.ntu.edu.tw/∼cjlin/libsvm.

[6] E. W. Dijkstra. A note on two problems in connexion with graphs.
Numerische mathematik, 1(1):269–271, 1959.

[7] L. Hermansson, F. D. Johansson, and O. Watanabe. Generalized
shortest path kernel on graphs. In Discovery Science, pages 78–85.
Springer, 2015.

[8] L. Hermansson, T. Kerola, F. Johansson, V. Jethava, and D. Dub-
hashi. Entity disambiguation in anonymized graphs using graph
kernels. In Proceedings of the 22nd ACM international conference
on Conference on information & knowledge management, pages
1037–1046. ACM, 2013.

[9] F. Johansson, V. Jethava, D. Dubhashi, and C. Bhattacharyya.
Global graph kernels using geometric embeddings. In Proceedings
of the 31st International Conference on Machine Learning (ICML-
14), pages 694–702, 2014.

[10] S. D. A. Kolla and K. Koiliaris. Spectra of random graphs with
planted partitions.

[11] M. F. Schilling, A. E. Watkins, and W. Watkins. Is human height
bimodal? The American Statistician, 56(3):223–229, 2002.

228 Int'l Conf. Data Mining | DMIN'16 |

ISBN: 1-60132-431-6, CSREA Press ©

