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Abstract: In linear regression model setting, moti-
vated by Wasserman and Roeder (2009), we develop
a cross-validation procedure for selecting an appro-
priate model which can best fit the data. In the pro-
cedure, we make use of adaptive Lasso method to se-
lect the most appropriate model. In the selection of
the suitable tuning parameter, the Bayesian Informa-
tion Criterion (BIC, Schwarz, 1978) is utilized. We
conduct the hypothesis testings for the significance
of nonzero coefficients of fixed effects to further se-
lect the model. A simulation study investigates the
effectiveness of performance for the proposed proce-
dure. The simulation results demonstrate that BIC
and the adaptive Lasso method can both lower Type
I error and false positive rate; they can also improve
the test power and the rate of selecting an overfitted
model.
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1 Introduction

Model selection is to select a subset of candidate
variables that will contribute to the prediction of the
response variable. The traditional subset method
and ridge regression have drawbacks. For the subset
method, because we add or drop one variable in the
model, the procedure is discontinuous. While losing
the unbiasedness, the ridge regression may decrease
the mean square error (MSE). Further, the predictors
whose coefficients are close to zero are still stand in
the model, making the model quite complicated and
then it is not easily interpreted.

To avoid the problems in traditional methods, pe-
nalized model selection in linear regression has caught
enough attention. Following the Lasso method, by
Tibshirani in 1996, the SCAD (Fan and Li, 2001) and
the adaptive Lasso (Zou, 2006) modified the Lasso
L-1 penalty term by using adaptive weights, to give
consistent estimator of non-zero sets under mild reg-
ularity conditions. Candes and Tao (2007) modified
the penalty term and developed the Dantzig selec-
tor to achieve the same goal. The sparsity pattern
lying in these approaches makes the selected model
simpler.

A number of other papers also tackle the model
selection problem using the penalized method. In this
pool, they are Meinshausen and Bühlmann (2006),
Wainwright (2006), Zhao and Yu (2006), Fan and
Lv (2008), Meinshausen and Yu (2009), Tropp (2004,
2006), Donoho (2006) and Zhang and Huang (2006).

We wish to employ a penalized method to conduct
model selection for achieving a better selection re-
sult. The paper of Wasserman and Roeder (2009) has
investigated a penalized method for high-dimension
variable selection, which inspires us to improve its
method. We therefore develop a cross-validation pro-
cedure to select nonzero effects in linear regression
models, whose goal is to obtain a better model selec-
tion result using cross-validation, adaptive Lasso and
BIC.

In what follows, the model and assumptions are
first introduced. The procedure is depicted in Sec-
tion 3. Section 4 presents a simulation study. The
last section concludes and discusses.
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2 The model and assumptions

The fundamental settings are first presented and
then the assumptions are interpreted.

2.1 The model

Let (X1, Y1), . . . , (Xn, Yn) be i.i.d observations
from the regression model

Yi = XT
i β + εi, i = 1, · · · , n, (2.1)

where εi∼N(0, σ2), Xi = (Xi1, . . . , Xip)
T ∈ Rp.

Here we have n observations and p potential fac-
tors affecting the response variable. Let X repre-
sent the design matrix for the model and we denote
the jth column of the design matrix using X•j =
(X1j , . . . , Xnj)

T , and the response vector Y is de-
noted by Y = (Y1, . . . , Yn)

T . Let D = {j : βj �= 0}
represent the set of covariates with nonzero coeffi-
cients. We assume thatX and Y are given and known
prior to analysis, but D is unknown.

2.2 The assumptions

Throughout the paper, we have the following as-
sumptions:
(A1) Yi = XT

i β + εi where εi ∼ N(0, σ2), for i =
1, . . . , n.
(A2) The covariates are standardized: E(Xij) = 0

and E(X2
ij) = 1. Also there exists 0 < B < ∞ such

that P (|Xjk| ≤ B) = 1.
(A1) is required since we are dealing the problems

under the normal settings.
(A2) means the data are standardized before pro-

ceeding to analysis.
We also require that (1) the number of columns

of design matrix X is not far beyond the number
of rows; (2) the number of non-zero covariates is
bounded by a constant regardless of n, and at least
we have one non-zero covariates. (3) We require that
the largest eigenvalue of p by p matrix 1

nX
TX, when

n approaches to infinity, is almost bounded. The
smallest eigenvalue of C1 log n by C1 log n matrix of
1
nX

T
k Xk is almost greater than a positive value for

some C1 > 0. Here Xk denotes a design matrix with
k predictors in the model. This condition is added
due to some proof requirements.

3 Cross-validation procedure

3.1 The procedure

First, we split the data into three parts,
D1, D2, D3. The D1 is to select the most appropriate
model through a penalized method, Lasso or adaptive
Lasso; the D2 is to choose the best tuning parameter
for D1 by means of MSE or BIC; that is, the D1 and
D2 are utilized in one iteration, and the determina-
tion of the tuning parameter will affect the selection
of final model. The D3 is to refine the selected model
from D1 and D2 by removing the insignificant covari-
ates. Theoretically, the D3 may not be needed, yet
it will fortify the selected model.

For the first part D1, we fit a series of candidate
models, and each model depends on a tuning pa-
rameter λ. The whole set of candidate models is
denoted as S = {Ŝn(λ) : λ ∈ Λ}. Let us call the

best candidate model Ŝn, and it can be shown that
P (D ⊂ Ŝn) → 1 and |Ŝn| = oP (n), where |Ŝn| rep-
resents the number of elements in the set Sn. That
means the candidate models are overfitted ones which
contain the unknown true model and therefore corre-
spond to a sequence of λ values which can determine
such overfitted models. This fact will also be dis-
cussed afterwards. We address that this fact that D1

will choose the overfitted models provides the foun-
dation for the entire procedure and guarantees the
validity of tests for D3 and the test power will not
be too small. Moreover, it shows the selected power
approaches to 1 as the sample size n goes to infinity,
thus we can almost reject all the non-zero coefficients
when the data size is large enough.

A penalized method will be applied to D1 for se-
lecting the overfitted models. Of course, a large sam-
ple size will result in a large probability of containing
the true model. The Lasso penalized target function
to be utilized in D1 is defined as:

n∑
i=1

(Yi −XT
i β)

2 + λ

p∑
j=1

|βj |, (3.1)

where Yi, Xi are the corresponding vector and matrix
from D1. To minimize this function, the Lasso esti-
mator of the β will be obtained, and the model will
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therefore be selected. In the selection procedure of
using D1, all the non-zero coefficients are included in
the selected models.
We adopt the adaptive Lasso penalized method

and it follows a quite similar way as the function in
expression 3.1, and has been changed to:

n∑
i=1

(Yi −XT
i β)

2 + λ

p∑
j=1

wj |βj |, (3.2)

where wj = 1
|βj | . Firstly, we compute the βols from

D1, and take their reciprocals to have the weight for
each βj as starting values. Analogously, minimizing
this function will result in the adaptive Lasso esti-
mator of the β. For each λ value, we will obtain a
different selected model.
For functions (3.1) or (3.2), we assign multiple dif-

ferent values of λ in a reasonable interval, and each λ
outputs a selected model and then the selected model
outputs a criterion. The best model is selected corre-
sponding to the smallest criterion, as shown in what
follows. With respect to the reasonable interval of λ,
it can be investigated in the simulations and then is
determined.
For the second part D2, the target is to select the

best λ. The first selection criterion is the mean square
error (MSE) and is also called the loss.
Generally, for an estimator, we want to measure

how close it was to the true parameter, thus the con-
cept of loss was brought in. The loss of any estimator
β̂ is defined as:

L(β̂) =
1

n
(β̂ − β)TXTX(β̂ − β).

The loss measures the “distance” between the statis-
tic and the true parameter, and a smaller loss means
our estimate statistic is closer to the parameter.
Therefore, we want to have a β̂, which can mini-
mize the loss. Meanwhile we can see that each tun-
ing parameter λ exports a β̂, and β̂ determines the
loss, so the loss can be treated as a function of λ.
We will denote the loss as L(λ). Again and more

importantly, we have P (D ⊂ Ŝn(λ̂)) → 1 where

λ̂ = argminλ∈Λn
L(λ), indicating that by the loss

function, the overfit or overspecified models are se-
lected.

However, due to the unknown β, we plug in the
β̂(λ) to a substitute estimable formula for loss, we
then have

L̂(λ) =
1

n

∑
Xi∈D2

(Yi −XT
i β̂(λ))

2.

Corresponding to the “best” selected λ, the estimated
loss L̂(λ) is minimized. Note that the estimated loss

L̂(λ) behaves similarly as the true loss. This optimal
property is shown by Theorem 3.2 in Wasserman and
Roeder (2009). Suppose that the maxλ∈λn

|Ŝn(λ)| ≤
kn. Then there exists a sequence of random variables
δn = OP (1) that do not depend on λ or X, such that
with probability tending to 1,

sup
λ∈Λn

|L(λ)− L̂(λ)− δn| = OP (
kn

n1−c2
) +OP (

kn√
n
)

Note that if kn is a good sequence which makes
kn

n1−c2
, kn√

n
converge to 0, the difference between L̂(λ)

and L(λ) can be approximated by a random variable
δ, which is bounded in probability. Based on this the-
orem, the estimated loss L̂(λ) performs as the true
loss. For the true loss, the ovefitted models are se-
lected, which is identical to the selecting procedure of
D1 in that the penalized method will also choose the
overfitted models which include the true parameters
or true model.

Now we remark on the procedure using D1 and
D2. In D1, the penalized Lasso method will choose
the overfitted models; in D2, the loss function MSE
will also choose the best λ which agrees with an over-
fitted model. So it is convincing to develop the cross-
validation for D1 and D2, and we select the λ which
minimizes the L̂(λ) for the data D2. After the cross-
validation procedure using D1 and D2, the “best”
model which is overfitted will be selected.

The criterion we take for selecting the best λ is
BIC, and it is written as

BIC = n log σ̂2 + k log n,

where σ̂2 is computed by 1
n (Y −Xβ̂ols)

T (Y −Xβ̂ols),
and k is the number of the estimated parameters in
the corresponding model. Note that the constant in
BIC is ignored here. Based on the model selected
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in D1 for each λ, we can estimate the least squares
estimate of β, β̂ols in D2, and n is the sample size in
D2, BIC can therefore be calculated in D2. We select
the λ which minimizes the L̂(λ) or BIC for the data
D2. After the best λ is selected by minimizing the
criterion MSE or BIC, by functions in (3.1) or (3.2),
the best model will be selected.
Note that as a model selection criterion, MSE is

efficient yet not consistent; whereas BIC is consistent,
which means that BIC will select the true model with
probability 1 as the sample size increases to infinity.
We therefore expect that BIC can perform better in
selecting the tuning parameter λ.
For high-dimensional model selection, it requires

the property that |Ŝn| = op(n), which means when
n approaches to ∞, the number of selected non-zero
regression coefficients is much smaller than n in prob-
ability. This property ensures that the subsequent
steps of the procedure can function well even in high-
dimensional model selection.
We remark that in the previous procedure, we

adopt the adaptive Lasso and BIC for the choice of
proper model and tuning parameter. Although the
method in Wasserman and Roeder (2009) is effec-
tive in high-dimensional model selection, the adap-
tive Lasso can perform well only if the matrix XTX
is of full rank, so we can assume p < n to facilitate
the implementation of adaptive Lasso.
For the third part D3, we will finalize the selected

model. In fact, using D3 is one step which is not re-
quired for model selection. However, this step can al-
ways improve the rate of selecting the correct model.
We thus consider it as an effective supplementary step
to the cross-validation procedure.
For the best model from the previous steps, we

can find its corresponding least squares estimate β̂
by using the data D3. Then for each coefficient in
the β̂, we use the t-test to decide which coefficients
will be included, and the final non-zero set is given
by:

D̂n = {j ∈ Ŝn : |Tj | > cn},
where Tj is the t-statistic, cn = tα/2m,n−m or cn =

zα/2m and m = |Ŝn|.
To be more specific, the estimated covariance ma-

trix can be computed by σ̂2(XT
MXM )−1, where σ̂2 =

SSE
n∗−p∗ . Here, XM represents the design matrix for
the best model, n∗, p∗ represent its numbers of rows
and columns respectively in D3. The α is divided by
2m due to the Bonferroni correction, and m is the
number of t tests.

Theorem 4.1 in Wasserman and Roeder (2009)

states P (D ⊂ Ŝn(λ̂)) → 1 where λ̂ =

argminλ∈Λn
L̂(λ). This theorem makes sure that the

subset selected by the cross-validation procedure can
cover all the non-zero coefficients with probability 1.
Consequently, the best model selected from this pro-
cedure is overfitting, and the hypothesis testings in
D3 for t-tests are not biased. When the criterion
BIC is utilized, as the sample size n goes to infin-
ity, we can have P (D = Ŝn(λ̂)) → 1 where λ̂ =
argminλ∈ΛnBIC(λ). As mentioned earlier, because of
the consistency of BIC in selecting models, it may be
expected that using BIC instead of L̂(λ), the model
selection will result in a better implementation.

Theorem 4.2 asserts the consistency of the proce-
dure. In particular, let αn → 0, and

√
nαn → ∞, then

we have P (D̂n = D) → 1, which indicates that as the
sample size n goes to infinity, this cross-validation
procedure will choose the true model with probabil-
ity 1, and we can achieve a consistent estimate of
the non-zero subset by utilizing this cross-validation
procedure.

3.2 Type I error and test power

The goal of the paper is to derive a procedure D̂n,
such that:

lim sup
n→∞

P (D̂n ⊂ D) ≥ 1− α.

The formula above shows that the probability of se-
lecting “false positive” variable is controlled by α. In
other words, the probability of rejecting zero covari-
ates is less than α, thus the Type I error is controlled.
When n is large enough, the inequality is satisfied for
whatever positive α. In a sense, we can let the α
approach to 0, ensuring that the selected subset does
not involve any zero covariates. Note that as n goes
to infinity, the asymptotic results will be used in the
derivation.

On the other hand, we wish the procedure can take
nontrivial power, thus we still have chance to reject
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the nonzero covariates. We will compare the reject-
ing power of this procedure utilizing adaptive Lasso
and BIC with that in Wasserman and Roeder (2009)
utilizing Lasso and MSE in a simulation study in the
next section.
For any test, we have two major concerns, the error

and the power. The type I error rate regarding the
estimated non-zero subset is defined as:

q(D̂n) = P (D̂n ∩Dc �= ∅).
The power is defined as:

π(D̂n) = P (D ⊂ D̂n).

We can see the Type I error actually means the proba-
bility of rejecting any zero-coefficients. The power ac-
tually means the probability of rejecting all the non-
zero coefficients. Our target is to keep a low error
rate and meanwhile to maximize the power. Regard-
ing the power presented in the tables of next section,
we use the average power which is defined as:

πav =
1

s

∑
j∈D

P (j ∈ D̂n),

where s is the number of non-zero coefficients.

4 A simulation study

4.1 The simulation settings

First, the data are generated from the true mod-
els in equation (2.1). For the design matrix X, each
element xij is generated from N(0, 2), the normal dis-
tribution with mean 0 and variance 2. For the error
term ε, each element εj is simulated from N(0, 1).
For the regression coefficients vector β, we have two
true models.
Model (a): β = rep(0, 20), which contains 20 pre-

dictors with zero coefficients.
Model (b): β = c (9 : 1, rep(0, 11)), which contains

9 non-zero coefficients and 11 zero coefficients.
For the true models, we have dimension p = 20.

Utilizing the generated X, β and ε, we can compute
the response vector Y under the true model.

For each of the two true models, we generate 1000
replicates, and for each replicate, we implement the

cross-validation procedure. As the result, we will
have the coefficient selection for 1000 replicates and
p = 20 parameters either zero or nonzero.

Prior to analysis, the covariates are scaled with
mean 0 and variance 1. The tests are performed using
one third of the data for each of the 3 stages of the
procedure. The level α is set as 0.05, and we want
to compare the 3 approaches mentioned in stage one
and detect which level α = 0.05 test gives the greatest
power.

As introduced for the procedure, we split the data
(one replicate) into 3 parts, D1, D2 and D3.

For D1, we choose a sequence values of λ from 0.01
to 0.4 (reasonable interval for λ). In fact, there are
70 values with equal width. For each λ, since the
Yi, Xi are known, this is a 20 dimensional function of
β, we use the “optim” function in R to minimize the
target function (3.1) or (3.2). The problem is that
the numerical solution can never be 0 for βj , thus we
set the boundary value as 0.03. If βj is less than 0.03,
then it could be treated as 0. In this way, for each λ,
a candidate model is selected from D1.

For D2, we use the candidate model from D1 to
compute the criterion (MSE or BIC). Computing
MSE or BIC, we record the candidate model corre-
sponding to the minimum MSE or BIC value, which
is considered as the best model.

For the model selected from D2, we compute the
βols regarding D3, the covariance matrix of β̂ is
σ̂2(XTX)−1. Taking the diagonal elements of the
covariance matrix, we have the estimated variance re-
garding each β̂j . Then we compute the t-test statis-

tic of each coefficient by
β̂j

sd(β̂)
, if it is greater than

Tα/2m,n−m, we reject and consider that coefficient as
non-zero in the final model. Note that m is the num-
ber of coefficients in the best model from the previous
steps. Since n−m is very large, we may approximate
the t-value by z-value.

4.2 The simulation results

We repeat the procedure for 1000 times and or-
ganize the results for a replicate in the format of a
vector from the simulations, and all the results are
stored in a 1000 × 20 matrix. For each replicate, we
use an indicated vector (length is 20) to record the
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Table 1: Selection results for model (a)

Model (a) (c) (d) (e)
Lasso. MSE 0.0023 0.0360 1.0
Lasso. BIC 0.0017 0.0320 1.0

A.Lasso. MSE 0.0021 0.0340 1.0
A.Lasso. BIC 0.0016 0.0320 1.0

Note: (c) = FPR, (d)=Type I error,
(e)=Overspecified.

selection result. For instance, if an indicated vector
is (0,0,0,1,0...,0), it suggests only the 4th coefficient
are kept in the final model.

Since true model (a) is a null model, the expected
vector of estimated parameters is (0, 0, · · · , 0). If the
ith predictor is not selected in the model, the ith el-
ement is denoted as 0; otherwise, keep it as 1. We
compute the column means, which is the rejection
rate of each regression coefficient, which is also the
false positive rate. Since there are no non-zero coeffi-
cients, the power is always 0. The type I error occurs
when a result vector contains not all 0.

For true model (b), the expected vector of esti-
mated parameters is (1, ...1, 0, 0, · · · , 0), where the
first 9 elements are 1 and the rest are 0. Similarly, we
can compute the false positive rate of each regression
coefficient. The average power is to average over the
rejection rates in the first 9 columns, which are the
first 9 column means. Type I error appears when the
last 11 elements of a result vector are not all 0.

For model (a), Type I error occurs when at least
one of the coefficients are not zero, the false positive
rate is computed as the rate of 1 occurring in the
result matrix. The rate of overspecified models is al-
ways 1 and the power does not exist for the model (a).
Similarly, we can output everything for the model (b).
The results are listed in Tables 1 and 2.

Note that “FPR” represents the false positive rate;
“overspecified” column inputs the rate that the se-
lected model contains the true model; “AV-Power”
represents the average power for all the t-tests in D3.

From the numbers in Table 1, we can observe that

Table 2: Selection results for model (b)

(b) (c) (d) (e) (f)
(1) 0.0027 0.0300 0.9550 0.9950
(2) 0.0027 0.0275 0.9825 0.9980
(3) 0.0016 0.0175 0.9650 0.9960
(4) 0.0020 0.0225 0.9750 0.9972

Note: (b) = Model (b), (c) =
FPR, (d)=Type I error, (e)=Overspecified,
(f)=AV-Power, (1)= Lasso with MSE, (2)=
Lasso with BIC, (3)= adaptive Lasso with
MSE, (4)= adaptive Lasso with BIC.

for the model with all zero coefficients, employing
BIC for selecting the appropriate tuning parameter
can lower the false positive rate and the probability
of Type I error. The adoption of the adaptive Lasso
for selecting the appropriate model can decrease the
above two rates as well.

Table 2 shows that BIC and the adaptive Lasso
can not only lower the false positive rate and the
probability of Type I error, but also increase the rate
of selecting a model containing the true model and
test powers.

The simulation study shows that BIC and the
adaptive Lasso are an optimal choice for the cross-
validation method in model selection.

5 Concluding remarks

Based on the method in Wasserman and Roeder
(2009), we adopt the adaptive Lasso and BIC for se-
lecting a model and for selecting the tuning param-
eter respectively to develop a cross-validation model
selection procedure in linear regression model setting.

The simulation results demonstrate that BIC and
the adaptive Lasso method can both lower Type I er-
ror and false positive rate, and meanwhile they can
also increase both the test power and the rate of se-
lecting a model containing the true model.

This paper is the launch of further research. Start-
ing from the procedure in this paper, we will ex-
tend similar methodology to generalized linear, lin-
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ear mixed, and generalized linear mixed models with
solidified proofs. Of course, the future research is
confronted with quite a few challenges. For instance,
in the step of selecting a model, handling the ran-
dom effects using the penalized method is appealing.
Regarding random effects selection, we may consider
using the EM algorithm. Treating the random effects
as unobserved data, we may compute the conditional
expectation of likelihood given the random effects,
which is considered as E-step. Other than that, dif-
ferent papers propose different penalty terms, which
makes the target expectation different, then M-step
is to maximize the target function.

The other idea is to estimate the mixed effects and
random effects separately. Moreover, we can replace
the unknown covariance matrix by some simple ma-
trix, such as log n×I, which significantly simplify the
penalized likelihood.

In addition, we will consider the model selection
with missing values. Missing values occur commonly,
effectively coping with missing values therefore plays
an important role in model selection literature. We
may explore imputation and bootstrapping for miss-
ing values.

It is expected that the bootstrap method will im-
prove the test power. However, the necessary boot-
strapping theories must be steadily justified.

We can also investigate leave-one-out cross-
validation to make this procedure more effective.
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