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Abstract - Embedding microprocessors in implantable devices 
such as cardiac pacemakers improved their ability to treat 
complex heart conditions effectively. Future cardiac 
pacemakers are expected to evolve in features, gaining secure 
wireless connectivity, longer battery life, and increased 
operational reliability. Implementing such features in a power 
constrained pacemaker requires a deep understanding of the 
power consumption behavior of the underlying processor, 
especially for computing the expected workloads. In this paper, 
the popular ARM Cortex series of processors are evaluated 
against anticipated future workloads of a smart cardiac 
pacemaker. Simulation results are analyzed to understand the 
tradeoffs in instruction set design and the importance of a 
dedicated floating point calculation unit. The simulation results 
are backed by data collected from the execution of the 
programs on an actual Cortex-M4 processor with a floating
point unit. The instantaneous power consumed by the processor 
is monitored, and possible improvement techniques are 
discussed. Execution time and total energy per operation are 
summarized to conclude the feasibility of existing embedded 
processors for future cardiac pacemaker application.

Keywords: ARM, Thumb, Cardiac Pacemaker, Pacemaker 
Security, STM32

1 Introduction
The use of cardiac pacemakers for the treatment of 

common heart diseases, such as arrhythmia, increased by 
55.6% between the years 1993 to 2009 with approximately 2.9 
million patients receiving a permanent pacemaker implant [1]. 
A pacemaker monitors the cardiac signals of the heart, 
determines the need for artificial pacing and generates electric 
impulses to synchronize the heart’s rhythm. The technology 
used in cardiac pacemakers matured over the years in ensuring 
efficient and reliable operation of its primary functionality. The 
introduction of microprocessors in cardiac pacemakers in the 
1980s [2] made it possible to achieve programmable operating 
behavior and configurable pacing logic for individual patients;
significantly improving the effectiveness of this treatment 
method. Present day cardiac pacemakers are carefully crafted 
embedded systems, typically hosting ASIC (Application 
Specific Integrated Circuit) components, low power processing
units, analog filters and charge pump circuitry and a low self-
discharge battery [3] as the source of energy. With the help of 
recent technological advancements, pacemaker manufacturers 
can equip modern pacemakers with advanced features such as 

adaptive pacing [2], ultra-low power operation for longer 
battery life (7-10 years) [3] and wireless telemetry for 
programming and monitoring [4]. 

Future cardiac pacemakers are expected to push the 
boundaries of low-power embedded system design and take 
advantage of the ubiquitous wireless connectivity present 
around the patient and in the hospital’s infrastructure. Similar 
to existing wearable devices, future pacemakers can benefit 
immensely from having the ability to communicate with the 
patient’s smartphone via Bluetooth Low Energy (BLE) or 
connect to other low power wireless networks. One can 
imagine a scenario, where a pacemaker can be programmed to 
transmit alerts automatically via the connected smartphone or 
low power network when an emergency occurs. This 
technology can also be used to enable remote diagnosis and 
treatment. However, the integration of smart computing and 
connectivity into such a critical application introduces security 
concerns and power consumption challenges. Secure 
communication is a serious demand for next generation 
pacemakers due to vulnerabilities and risks that are currently 
present [5]. The increase in power consumption from the 
addition of new features also appears as an obstacle to fulfilling 
the requirement of a long battery life. A wirelessly connected 
pacemaker will require higher degrees of security, combined 
with extreme power efficiency. The energy footprint of both 
existing and anticipated features must conform to the current 
power budget of the cardiac pacemaker’s battery to ensure a 
sustainable move forward.

This research attempts to determine the potential workloads 
in a future cardiac pacemaker and evaluate the performance of 
these workloads on popular embedded processors, namely the 
ARM Cortex variants. Utilizing architectural simulation, the 
computational requirements for each benchmark program are 
analyzed, and the appropriateness of existing ISAs (Instruction 
Set Architecture) are studied. The analysis is further 
authenticated by utilizing an MCU (Micro-Controller Unit) 
development board to measure the energy consumption of 
representative programs to evaluate real world performance of 
the ISA. 

2 Pacemaker workloads and Processors
2.1 Heart Signal Processing

The human heart contracts and expands in a specific 
sequence periodically to distribute blood to the body and lungs. 

Int'l Conf. Biomedical Engineering and Sciences |  BIOENG'16  | 13

ISBN: 1-60132-429-4, CSREA Press ©



This movement consists of two steps called the “diastole” and 
“systole”. In these two stages, electric impulses are generated 
and sent to the heart's myocardium muscles via special 
conduction fibers. These impulses are the cardiac signals that 
are typically monitored in an ECG (Electrocardiogram). 
Cardiac signals which are monitored by sensing leads inserted 
in the heart are called IECG (Intra-cardiac Electrocardiogram). 
IECG usually contains noise due to muscle activity and 
physical movement of the lead [2]. This signal is filtered and 
sampled by dedicated circuitry and then digitally processed to 
detect the fundamental features of the signals associated with 
the heart’s diastole and systole stages. A complete ECG cycle 
consists of P, Q, R, S and T components and are visualized in 
Figure 1. 

Figure 1: Illustration of a typical electrocardiogram [6]

The nature of an ECG signal has been thoroughly studied 
and is typically found to have an amplitude in the range of 2mV
peak-to-peak and a bandwidth of 0.05Hz-150Hz [6]. To 
accurately determine the existence and occurrence time of a P
wave, QRS complex, ST segment and T wave, the time-
frequency component of the signal needs to be extracted via a
frequency domain analysis. Common signal processing 
techniques for this purpose include Fourier transform or Short
Time Fourier Transform [6]. Detection of an abnormality in the 
electrocardiogram after extracting the frequency information is 
trivial compared to the computation involved in the Fourier 
transform of a large sample size. The Fast Fourier Transform 
(FFT) is an efficient algorithm for this task and is used as one 
of the benchmark programs in this paper. The “FFT” program 
is collected from the MiBench embedded benchmark suite [7] 
and a large sample size (8192) is used to examine the 
performance of the simulated processors. To cover other 
mathematical operations that might be a part of the detection 
process, the “basicmath” benchmark from MiBench is also
selected. The basicmath program performs a series of common 
mathematical operation. To simulate the process of generating 
an artificial pacing signal, the “ECGSYN” benchmark program 
from ImplantBench [8] is used in this research. The ECGSYN
program generates a synthesized ECG signal which can be 
utilized by the pacemaker’s processor to determine the pacing 
amplitude and duration.

2.2 Security and Reliability
Security is one of the prime concerns in any wireless 

communication. When wireless functionality is introduced in a 

cardiac pacemaker, new life-threatening risks emerges.
Exploitable vulnerabilities have been demonstrated by 
researchers [5] in multiple present day wireless cardiac 
pacemakers which relied on proprietary encryption 
mechanisms for securing their wireless data transmission. To 
eliminate such risks, the adoption of industry standard security 
schemes used in TLS (Transport Layer Security) is desirable. 
Unfortunately, such computational load requires feasibility 
study in the power constraint environment of a pacemaker. The 
AES (Advanced Encryption Standard) used by TLS for 
securing communication data packets is a computationally 
demanding task and is studied in this research as a benchmark. 

To ensure the reliability of transmitted and received data, 
error checking hash functions are typically used. For a 
wirelessly connected pacemaker, cryptographic hash functions 
such as SHA (Secure Hash Algorithm) and CRC (Cyclic 
Redundancy Check) can be employed to ensure the reliability 
of the critical configuration and transmitted data. The list of 
simulations, therefore, includes benchmark programs for 32 bit 
CRC and SHA function as well. The programs representing 
AES, SHA and CRC are named “rijndael”, “SHA”, and 
“CRC32” respectively and are all collected from the MiBench
suite.

2.3 ARM Cortex Processors
ARM Cortex processors are popular choices for embedded

systems ranging from high-performance applications to low-
power battery operated deeply embedded systems. The Cortex 
range mainly has three variants, the Cortex-A series, Cortex-R
series and Cortex-M series. The major differences between
these variants are shown in Table 1.

Table 1. ARM Cortex series comparison [11]

Features Cortex-A Cortex-R Cortex-M
ISA ARM ARM Thumb
Inst. Bits 32 32 16
FPU Yes Yes Optional
DSP Inst. Yes Yes Yes (M4)
Dynamic 
Power 80μW/MHz 120μW/MHz 8μW/MHz

Application High 
Performance Real Time Embedded

Cortex-A and Cortex-R processors are intended for high-
performance real-time applications such as smartphones and 
automotive applications. Cortex-M processors cater for low 
power embedded applications. Despite the similar naming, 
these variants are largely different at the ISA level. The Cortex-
A/R supports the full 32-bit ARM instruction set whereas the 
Cortex-M only supports a compact 16-bit subset called the 
“Thumb Instruction Set”. The ISA domains can be visualized 
in Figure 2. The Cortex-M series is less capable but is more 
efficient in code size and power consumption for simpler 
workloads typically found in deeply embedded systems. Given 
the fact that Cortex-M processors can be coupled with an 
optional floating point unit; it is expected to perform equally
well as a Cortex-A for certain applications. To run the 
simulations, the selected benchmark programs are compiled for

14 Int'l Conf. Biomedical Engineering and Sciences |  BIOENG'16  |

ISBN: 1-60132-429-4, CSREA Press ©



Figure 2: The ARM and Thumb instruction set domains.

three ISA and FPU (Floating Point Unit) configurations: ARM-
FPU, THUMB-FPU, and THUMB-NoFPU. Subsequently, an 
MCU development board bearing a Cortex-M processor 
coupled with an FPU is used to run some representative 
programs. The execution time and power consumption 
footprint on the actual hardware are measured and analyzed.

3 Simulation and Test Methods
The GEM5 architectural simulator [9] was used for 

simulating ARM and THUMB ISA. The binaries were 
compiled with –O3 level optimization and static linking. The 
standard input files/parameters provided with the benchmarks 
were used during simulations. The hardware used for 
measuring power and execution time was an STM32F4-
DISCOVERY board shown in Figure 3.

Figure 3: The STM32F4-Discovery Board used for execution time 
and power measurement.

The onboard MCU (STM32F407VG) was clocked at a 
relatively slow clock speed of 16MHz. The clock was generated 
using the internal RC oscillator to reduce the power 
consumption. The MCU also includes a low power standby 
mode which was measured to consume ~2μA at 3V. With the 
built-in RTC (Real Time Clock) enabled this figure goes up to
~3.4μA. For measuring the current consumption for the 
benchmark subroutines, the execution sequence shown in 
Figure 4(a) was followed. The MCU was put in standby mode 

Figure 4: (a) The program sequence for testing (b) The test 
hardware setup for measuring current

with the RTC running, configured with an RTC wakeup 
interrupt. The MCU remained in standby mode for a predefined 
amount of time and consumed 3.4μA as measured previously. 
After the standby time passes, the RTC generated interrupt 
wakes the processor up. The subroutine under test is the first 
code that is executed after wake up. After the computation is 
done, the MCU returns to standby mode. This cycle repeats. 
Since actual processing lasts for a very limited time, it was not 
possible to use a regular ampere meter to perform the current 
measurement. To capture the current consumed during this fast 
transition between active and sleep state, a small valued 
resistance was connected in series between the VDD and the 
MCU. The voltage drop across this resistor was measured using 
an Oscilloscope. The measurement configuration is shown in 
Figure 4(b). The measured voltage was later converted to 
current and the total energy consumption was calculated.

4 Experimental Results
4.1 Simulation Results

The GEM5 simulator reports detailed statistics about each 
simulation. The parameters of interest are execution time, IPC 
and instruction mix. The statistics of floating point instructions 
are especially important as it helps to justify the need for a 
dedicated FPU for a given task. The instruction mix of the 
programs compiled for three different ISA configurations is 
shown in Figure 5. In both the ARM-FPU and Thumb-FPU 
configurations, only three benchmarks (basicmath, FFT, 
ecgsyn) utilized floating point instructions. From this point 
onwards, these programs will be referred to as floating point 
benchmarks. The remaining benchmarks (AES encode, AES 
decode, SHA, and CRC32) did not perform any floating point 
calculations and will be referred to as integer benchmarks. For 
the Thumb-NoFPU configuration, the compiler did not 
generate any floating point instructions as there was no floating 
point unit available on the processor. In this configuration all
floating point operations were performed through floating point 
emulation subroutines that rely on the integer calculations, thus 
resulting in a larger percentage of integer instructions. The 
most important observation in instruction mix was the 
similarity of the instruction distribution between ARM-FPU 
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Figure 5: Instruction mix of the benchmark programs compiled for 
three different ISA platforms.

and Thumb-FPU configurations. This indicates that for the set 
of workloads at hand, the ARM ISA does not provide any 
substantial benefit over the Thumb subset in terms of 
functionality and code size. The program execution 
performance of the two ISA can still be different given the 
dissimilarity in their datapath and pipeline configuration.

Figure 6: Comparison of execution time of the benchmark programs 
compiled for three different ISA platforms.

The execution time and IPC for the three configurations can 
be observed in Figure 6 and Figure 7 respectively. For the 
floating point benchmarks, the execution time difference for 
Thumb-NoFPU is substantially greater. This large time 
requirement is not acceptable for programs such as FFT, which 
is a critical operation that needs to process heart signal samples 
in real time. In these benchmarks, the Thumb-FPU 
configuration yields similar execution time as the more capable 

ARM-FPU configuration. For the remaining integer 
benchmarks, the ARM ISA exhibits faster execution time than 
the Thumb sets. However, the time requirement of these 
programs are smaller, and the difference can be considered as 
negligible. In the IPC chart of Figure 7, benefits of the ARM

Figure 7: Instruction Per Cycle (IPC) of the benchmark programs 
compiled for three different ISA platforms

ISA can be observed as it achieves more instruction per cycle 
(IPC) than other configurations. The average difference with 
the Thumb-FPU offering and Thumb-NoFPU is 0.14 and 0.16
respectively. 

The simulation results clearly indicate that for the set of tasks 
in future cardiac pacemakers both the ARM-FPU and Thumb-
FPU are favorable ISA configurations for performance. 
Looking at power consumption, the better option is the Thumb 
or Cortex-M offerings given their low dynamic power 
consumption of 8μW/MHz [11]. In contrast, the Cortex-A offers 
80μW/MHz [11]. Modern pacemakers consume 6μW to 13μW
at 2.8V [3] depending on their operating state. The power 
consumption of Cortex-M remains mostly within these limited 
power budgets.

4.2 Power Consumption Measurements
The benchmarks used in the simulations are designed to 

evaluate the processor's ability to compute the algorithms of the 
given task. For practical power consumption estimation, 
representative programs for FFT, AES encode/decode [10] and 
SHA-256 hash function [10] are used. These programs are 
optimized for embedded platforms but do not utilize any 
dedicated hardware on the MCU. Figure 8 shows the voltage 
measured across the series resistor for the FFT operation. The 
duration of the operation for a 2,048-point input data is about 
70ms with the FPU enabled and 144ms without the FPU 
enabled. Figure 9 shows oscilloscope readings for the AES
(encode and decode) and SHA programs. As expected, enabling 
the FPU did not make any difference in the execution time. The 
measurements are taken with the FPU disabled to avoid any 
unwanted power consumption. At the beginning of the AES and
SHA hash functions, the algorithms need to load a large key
value stored in the flash memory resulting in the large current
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(a)

(b)
Figure. 8. Execution time measurement for FFT operation (a) with 
FPU (b) without FPU.

(a)

(b)
Figure 9. Execution time measurement for (a) AES operation 
(encode followed by decode) (b) SHA hash function calculation

spike seen on the oscilloscope. The remaining portion of the 
consumption envelope is contributed from the actual 
computation. To avoid the initial surge, the key values can be 
pre-loaded in the RAM if large enough memory is available. 
The execution time for AES and SHA was 1.33ms and 1.01ms
respectively. The total energy consumed can be calculated by 
the following equation:

                 ][JtV
R
VddE ss

series
total                            (1)

Where, Etotal is the total energy in Joules, Vdd is the supply 
voltage (3V), Rseries is the series resistor for measurement 
13Ohms, Vs is the amplitude of the sampled voltage and ts is the
oscilloscope sample hold time. Using equation (1), the energy
calculated for the three selected programs are listed in Table. 
II. The results indicate the FFT as the largest power consuming

Table II. Execution time and energy consumption of selected 
programs.

Program Time Energy

FFT_FPU 70.2ms 7.96mJ

FFT_NoFPU 143.8ms 10.8mJ

AES 1.3ms 32μJ

SHA 1.0ms 25.8μJ

program among the other selected tasks. Given this demanding 
nature of Fourier transform computation, many pacemaker 
manufacturers rely on ASIC-based approaches for signal 
processing needs. However, the FFT operation on an ARM 
based SoC can be further optimized by implementing an integer 
based algorithm and utilizing DMA (Direct Memory Access) 
peripherals to transfer data from the source to the RAM. Some 
additional power consumption was captured in this experiment 
by reading the input data from the onboard flash memory. 
Further studies can be conducted by executing critical 
operations from only RAM with properly determined sample 
size to reduce the current.

5 Conclusion
The Thumb instruction subset from ARM was designed 

to be energy efficient in deeply embedded applications. 
Coupled with a dedicated FPU, this platform can perform 
efficiently in both floating point and integer workloads. 
However, for integer based workloads, energy consumption 
can be further reduced by using more streamlined FPU-less and 
slowly clocked processing chips. Positive results were 
observed for encryption and secure hash calculation, which 
consumed energy in the range of micro joules on the test 
hardware. On the other hand, Signal processing tasks were 
more demanding. The execution time and power consumption 
observed in this paper bring forward the differences in the 
energy footprint of potential workloads of a future cardiac 
pacemaker. Given the asynchronous execution nature of the 
programs and the difference in their energy footprint, the use

70.185ms

143.79 ms

1.328 ms

1.012 ms
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of heterogeneous architectures such as ARM “Big.Little”
architecture [12] promises lower power operation. Application 
specific optimization of each processing core on a 
heterogeneous architecture can be potentially utilized for low 
power operation in next generation of cardiac pacemakers.
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