
Performance and Energy Evaluation of ARM Cortex
Variants for Smart Cardiac Pacemaker Application

Safwat Mostafa Noor and Eugene John
Department of Electrical and Computer Engineering,

University of Texas at San Antonio, San Antonio, TX, USA

Abstract - Embedding microprocessors in implantable devices
such as cardiac pacemakers improved their ability to treat
complex heart conditions effectively. Future cardiac
pacemakers are expected to evolve in features, gaining secure
wireless connectivity, longer battery life, and increased
operational reliability. Implementing such features in a power
constrained pacemaker requires a deep understanding of the
power consumption behavior of the underlying processor,
especially for computing the expected workloads. In this paper,
the popular ARM Cortex series of processors are evaluated
against anticipated future workloads of a smart cardiac
pacemaker. Simulation results are analyzed to understand the
tradeoffs in instruction set design and the importance of a
dedicated floating point calculation unit. The simulation results
are backed by data collected from the execution of the
programs on an actual Cortex-M4 processor with a floating
point unit. The instantaneous power consumed by the processor
is monitored, and possible improvement techniques are
discussed. Execution time and total energy per operation are
summarized to conclude the feasibility of existing embedded
processors for future cardiac pacemaker application.

Keywords: ARM, Thumb, Cardiac Pacemaker, Pacemaker
Security, STM32

1 Introduction
The use of cardiac pacemakers for the treatment of

common heart diseases, such as arrhythmia, increased by
55.6% between the years 1993 to 2009 with approximately 2.9
million patients receiving a permanent pacemaker implant [1].
A pacemaker monitors the cardiac signals of the heart,
determines the need for artificial pacing and generates electric
impulses to synchronize the heart’s rhythm. The technology
used in cardiac pacemakers matured over the years in ensuring
efficient and reliable operation of its primary functionality. The
introduction of microprocessors in cardiac pacemakers in the
1980s [2] made it possible to achieve programmable operating
behavior and configurable pacing logic for individual patients;
significantly improving the effectiveness of this treatment
method. Present day cardiac pacemakers are carefully crafted
embedded systems, typically hosting ASIC (Application
Specific Integrated Circuit) components, low power processing
units, analog filters and charge pump circuitry and a low self-
discharge battery [3] as the source of energy. With the help of
recent technological advancements, pacemaker manufacturers
can equip modern pacemakers with advanced features such as

adaptive pacing [2], ultra-low power operation for longer
battery life (7-10 years) [3] and wireless telemetry for
programming and monitoring [4].

Future cardiac pacemakers are expected to push the
boundaries of low-power embedded system design and take
advantage of the ubiquitous wireless connectivity present
around the patient and in the hospital’s infrastructure. Similar
to existing wearable devices, future pacemakers can benefit
immensely from having the ability to communicate with the
patient’s smartphone via Bluetooth Low Energy (BLE) or
connect to other low power wireless networks. One can
imagine a scenario, where a pacemaker can be programmed to
transmit alerts automatically via the connected smartphone or
low power network when an emergency occurs. This
technology can also be used to enable remote diagnosis and
treatment. However, the integration of smart computing and
connectivity into such a critical application introduces security
concerns and power consumption challenges. Secure
communication is a serious demand for next generation
pacemakers due to vulnerabilities and risks that are currently
present [5]. The increase in power consumption from the
addition of new features also appears as an obstacle to fulfilling
the requirement of a long battery life. A wirelessly connected
pacemaker will require higher degrees of security, combined
with extreme power efficiency. The energy footprint of both
existing and anticipated features must conform to the current
power budget of the cardiac pacemaker’s battery to ensure a
sustainable move forward.

This research attempts to determine the potential workloads
in a future cardiac pacemaker and evaluate the performance of
these workloads on popular embedded processors, namely the
ARM Cortex variants. Utilizing architectural simulation, the
computational requirements for each benchmark program are
analyzed, and the appropriateness of existing ISAs (Instruction
Set Architecture) are studied. The analysis is further
authenticated by utilizing an MCU (Micro-Controller Unit)
development board to measure the energy consumption of
representative programs to evaluate real world performance of
the ISA.

2 Pacemaker workloads and Processors
2.1 Heart Signal Processing

The human heart contracts and expands in a specific
sequence periodically to distribute blood to the body and lungs.

Int'l Conf. Biomedical Engineering and Sciences | BIOENG'16 | 13

ISBN: 1-60132-429-4, CSREA Press ©

This movement consists of two steps called the “diastole” and
“systole”. In these two stages, electric impulses are generated
and sent to the heart's myocardium muscles via special
conduction fibers. These impulses are the cardiac signals that
are typically monitored in an ECG (Electrocardiogram).
Cardiac signals which are monitored by sensing leads inserted
in the heart are called IECG (Intra-cardiac Electrocardiogram).
IECG usually contains noise due to muscle activity and
physical movement of the lead [2]. This signal is filtered and
sampled by dedicated circuitry and then digitally processed to
detect the fundamental features of the signals associated with
the heart’s diastole and systole stages. A complete ECG cycle
consists of P, Q, R, S and T components and are visualized in
Figure 1.

Figure 1: Illustration of a typical electrocardiogram [6]

The nature of an ECG signal has been thoroughly studied
and is typically found to have an amplitude in the range of 2mV
peak-to-peak and a bandwidth of 0.05Hz-150Hz [6]. To
accurately determine the existence and occurrence time of a P
wave, QRS complex, ST segment and T wave, the time-
frequency component of the signal needs to be extracted via a
frequency domain analysis. Common signal processing
techniques for this purpose include Fourier transform or Short
Time Fourier Transform [6]. Detection of an abnormality in the
electrocardiogram after extracting the frequency information is
trivial compared to the computation involved in the Fourier
transform of a large sample size. The Fast Fourier Transform
(FFT) is an efficient algorithm for this task and is used as one
of the benchmark programs in this paper. The “FFT” program
is collected from the MiBench embedded benchmark suite [7]
and a large sample size (8192) is used to examine the
performance of the simulated processors. To cover other
mathematical operations that might be a part of the detection
process, the “basicmath” benchmark from MiBench is also
selected. The basicmath program performs a series of common
mathematical operation. To simulate the process of generating
an artificial pacing signal, the “ECGSYN” benchmark program
from ImplantBench [8] is used in this research. The ECGSYN
program generates a synthesized ECG signal which can be
utilized by the pacemaker’s processor to determine the pacing
amplitude and duration.

2.2 Security and Reliability
Security is one of the prime concerns in any wireless

communication. When wireless functionality is introduced in a

cardiac pacemaker, new life-threatening risks emerges.
Exploitable vulnerabilities have been demonstrated by
researchers [5] in multiple present day wireless cardiac
pacemakers which relied on proprietary encryption
mechanisms for securing their wireless data transmission. To
eliminate such risks, the adoption of industry standard security
schemes used in TLS (Transport Layer Security) is desirable.
Unfortunately, such computational load requires feasibility
study in the power constraint environment of a pacemaker. The
AES (Advanced Encryption Standard) used by TLS for
securing communication data packets is a computationally
demanding task and is studied in this research as a benchmark.

To ensure the reliability of transmitted and received data,
error checking hash functions are typically used. For a
wirelessly connected pacemaker, cryptographic hash functions
such as SHA (Secure Hash Algorithm) and CRC (Cyclic
Redundancy Check) can be employed to ensure the reliability
of the critical configuration and transmitted data. The list of
simulations, therefore, includes benchmark programs for 32 bit
CRC and SHA function as well. The programs representing
AES, SHA and CRC are named “rijndael”, “SHA”, and
“CRC32” respectively and are all collected from the MiBench
suite.

2.3 ARM Cortex Processors
ARM Cortex processors are popular choices for embedded

systems ranging from high-performance applications to low-
power battery operated deeply embedded systems. The Cortex
range mainly has three variants, the Cortex-A series, Cortex-R
series and Cortex-M series. The major differences between
these variants are shown in Table 1.

Table 1. ARM Cortex series comparison [11]

Features Cortex-A Cortex-R Cortex-M
ISA ARM ARM Thumb
Inst. Bits 32 32 16
FPU Yes Yes Optional
DSP Inst. Yes Yes Yes (M4)
Dynamic
Power 80μW/MHz 120μW/MHz 8μW/MHz

Application High
Performance Real Time Embedded

Cortex-A and Cortex-R processors are intended for high-
performance real-time applications such as smartphones and
automotive applications. Cortex-M processors cater for low
power embedded applications. Despite the similar naming,
these variants are largely different at the ISA level. The Cortex-
A/R supports the full 32-bit ARM instruction set whereas the
Cortex-M only supports a compact 16-bit subset called the
“Thumb Instruction Set”. The ISA domains can be visualized
in Figure 2. The Cortex-M series is less capable but is more
efficient in code size and power consumption for simpler
workloads typically found in deeply embedded systems. Given
the fact that Cortex-M processors can be coupled with an
optional floating point unit; it is expected to perform equally
well as a Cortex-A for certain applications. To run the
simulations, the selected benchmark programs are compiled for

14 Int'l Conf. Biomedical Engineering and Sciences | BIOENG'16 |

ISBN: 1-60132-429-4, CSREA Press ©

Figure 2: The ARM and Thumb instruction set domains.

three ISA and FPU (Floating Point Unit) configurations: ARM-
FPU, THUMB-FPU, and THUMB-NoFPU. Subsequently, an
MCU development board bearing a Cortex-M processor
coupled with an FPU is used to run some representative
programs. The execution time and power consumption
footprint on the actual hardware are measured and analyzed.

3 Simulation and Test Methods
The GEM5 architectural simulator [9] was used for

simulating ARM and THUMB ISA. The binaries were
compiled with –O3 level optimization and static linking. The
standard input files/parameters provided with the benchmarks
were used during simulations. The hardware used for
measuring power and execution time was an STM32F4-
DISCOVERY board shown in Figure 3.

Figure 3: The STM32F4-Discovery Board used for execution time
and power measurement.

The onboard MCU (STM32F407VG) was clocked at a
relatively slow clock speed of 16MHz. The clock was generated
using the internal RC oscillator to reduce the power
consumption. The MCU also includes a low power standby
mode which was measured to consume ~2μA at 3V. With the
built-in RTC (Real Time Clock) enabled this figure goes up to
~3.4μA. For measuring the current consumption for the
benchmark subroutines, the execution sequence shown in
Figure 4(a) was followed. The MCU was put in standby mode

Figure 4: (a) The program sequence for testing (b) The test
hardware setup for measuring current

with the RTC running, configured with an RTC wakeup
interrupt. The MCU remained in standby mode for a predefined
amount of time and consumed 3.4μA as measured previously.
After the standby time passes, the RTC generated interrupt
wakes the processor up. The subroutine under test is the first
code that is executed after wake up. After the computation is
done, the MCU returns to standby mode. This cycle repeats.
Since actual processing lasts for a very limited time, it was not
possible to use a regular ampere meter to perform the current
measurement. To capture the current consumed during this fast
transition between active and sleep state, a small valued
resistance was connected in series between the VDD and the
MCU. The voltage drop across this resistor was measured using
an Oscilloscope. The measurement configuration is shown in
Figure 4(b). The measured voltage was later converted to
current and the total energy consumption was calculated.

4 Experimental Results
4.1 Simulation Results

The GEM5 simulator reports detailed statistics about each
simulation. The parameters of interest are execution time, IPC
and instruction mix. The statistics of floating point instructions
are especially important as it helps to justify the need for a
dedicated FPU for a given task. The instruction mix of the
programs compiled for three different ISA configurations is
shown in Figure 5. In both the ARM-FPU and Thumb-FPU
configurations, only three benchmarks (basicmath, FFT,
ecgsyn) utilized floating point instructions. From this point
onwards, these programs will be referred to as floating point
benchmarks. The remaining benchmarks (AES encode, AES
decode, SHA, and CRC32) did not perform any floating point
calculations and will be referred to as integer benchmarks. For
the Thumb-NoFPU configuration, the compiler did not
generate any floating point instructions as there was no floating
point unit available on the processor. In this configuration all
floating point operations were performed through floating point
emulation subroutines that rely on the integer calculations, thus
resulting in a larger percentage of integer instructions. The
most important observation in instruction mix was the
similarity of the instruction distribution between ARM-FPU

A
R

M
 (3

2
B

it)

T
hu

m
b

+
D

SP

T
hu

m
b

(1
6

B
it)

Cortex-A5, A7, A8

Cortex-M4F

Cortex-M3, M4

Cortex-M0

Int'l Conf. Biomedical Engineering and Sciences | BIOENG'16 | 15

ISBN: 1-60132-429-4, CSREA Press ©

Figure 5: Instruction mix of the benchmark programs compiled for
three different ISA platforms.

and Thumb-FPU configurations. This indicates that for the set
of workloads at hand, the ARM ISA does not provide any
substantial benefit over the Thumb subset in terms of
functionality and code size. The program execution
performance of the two ISA can still be different given the
dissimilarity in their datapath and pipeline configuration.

Figure 6: Comparison of execution time of the benchmark programs
compiled for three different ISA platforms.

The execution time and IPC for the three configurations can
be observed in Figure 6 and Figure 7 respectively. For the
floating point benchmarks, the execution time difference for
Thumb-NoFPU is substantially greater. This large time
requirement is not acceptable for programs such as FFT, which
is a critical operation that needs to process heart signal samples
in real time. In these benchmarks, the Thumb-FPU
configuration yields similar execution time as the more capable

ARM-FPU configuration. For the remaining integer
benchmarks, the ARM ISA exhibits faster execution time than
the Thumb sets. However, the time requirement of these
programs are smaller, and the difference can be considered as
negligible. In the IPC chart of Figure 7, benefits of the ARM

Figure 7: Instruction Per Cycle (IPC) of the benchmark programs
compiled for three different ISA platforms

ISA can be observed as it achieves more instruction per cycle
(IPC) than other configurations. The average difference with
the Thumb-FPU offering and Thumb-NoFPU is 0.14 and 0.16
respectively.

The simulation results clearly indicate that for the set of tasks
in future cardiac pacemakers both the ARM-FPU and Thumb-
FPU are favorable ISA configurations for performance.
Looking at power consumption, the better option is the Thumb
or Cortex-M offerings given their low dynamic power
consumption of 8μW/MHz [11]. In contrast, the Cortex-A offers
80μW/MHz [11]. Modern pacemakers consume 6μW to 13μW
at 2.8V [3] depending on their operating state. The power
consumption of Cortex-M remains mostly within these limited
power budgets.

4.2 Power Consumption Measurements
The benchmarks used in the simulations are designed to

evaluate the processor's ability to compute the algorithms of the
given task. For practical power consumption estimation,
representative programs for FFT, AES encode/decode [10] and
SHA-256 hash function [10] are used. These programs are
optimized for embedded platforms but do not utilize any
dedicated hardware on the MCU. Figure 8 shows the voltage
measured across the series resistor for the FFT operation. The
duration of the operation for a 2,048-point input data is about
70ms with the FPU enabled and 144ms without the FPU
enabled. Figure 9 shows oscilloscope readings for the AES
(encode and decode) and SHA programs. As expected, enabling
the FPU did not make any difference in the execution time. The
measurements are taken with the FPU disabled to avoid any
unwanted power consumption. At the beginning of the AES and
SHA hash functions, the algorithms need to load a large key
value stored in the flash memory resulting in the large current

Load Store Branch Integer Floating Point Other

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

B
A

SI
C

M
A

TH FF
T

EC
G

SY
N

A
ES

 E
N

C
A

ES
 D

EC
SH

A
C

R
C

32

Instruction Mix on
ARM-FPU

B
A

SI
C

M
A

TH FF
T

EC
G

SY
N

A
ES

 E
N

C
A

ES
 D

EC
SH

A
C

R
C

32

Instruction Mix on
Thumb-FPU

B
A

SI
C

M
A

TH FF
T

EC
G

SY
N

A
ES

 E
N

C
A

ES
 D

EC
SH

A
C

R
C

32

Instruction Mix on
Thumb-NoFPU

ARM-FPU THUMB-FPU THUMB-NOFPU

0

0.05

0.1

0.15

BASICMATH
0

0.2

0.4

0.6

0.8

FFT
0

0.5

1

1.5

2

ECGSYN

0
0.001
0.002
0.003
0.004
0.005
0.006

AES ENC
0

0.002

0.004

0.006

0.008

AES DEC

Execution time in seconds

0.00172
0.00174
0.00176
0.00178

0.0018
0.00182
0.00184

SHA

0.004126

0.004128

0.00413

0.004132

0.004134

0.004136

CRC32

0
0.5

1
1.5

2
2.5

3
3.5

4

B
A

SI
C

M
A

TH FF
T

EC
G

SY
N

A
ES

 E
N

C

A
ES

 D
E

C

SH
A

C
R

C
32

IPC

ARM-FPU THUMB-FPU THUMB-NOFPU

16 Int'l Conf. Biomedical Engineering and Sciences | BIOENG'16 |

ISBN: 1-60132-429-4, CSREA Press ©

(a)

(b)
Figure. 8. Execution time measurement for FFT operation (a) with
FPU (b) without FPU.

(a)

(b)
Figure 9. Execution time measurement for (a) AES operation
(encode followed by decode) (b) SHA hash function calculation

spike seen on the oscilloscope. The remaining portion of the
consumption envelope is contributed from the actual
computation. To avoid the initial surge, the key values can be
pre-loaded in the RAM if large enough memory is available.
The execution time for AES and SHA was 1.33ms and 1.01ms
respectively. The total energy consumed can be calculated by
the following equation:

][JtV
R
VddE ss

series
total (1)

Where, Etotal is the total energy in Joules, Vdd is the supply
voltage (3V), Rseries is the series resistor for measurement
13Ohms, Vs is the amplitude of the sampled voltage and ts is the
oscilloscope sample hold time. Using equation (1), the energy
calculated for the three selected programs are listed in Table.
II. The results indicate the FFT as the largest power consuming

Table II. Execution time and energy consumption of selected
programs.

Program Time Energy

FFT_FPU 70.2ms 7.96mJ

FFT_NoFPU 143.8ms 10.8mJ

AES 1.3ms 32μJ

SHA 1.0ms 25.8μJ

program among the other selected tasks. Given this demanding
nature of Fourier transform computation, many pacemaker
manufacturers rely on ASIC-based approaches for signal
processing needs. However, the FFT operation on an ARM
based SoC can be further optimized by implementing an integer
based algorithm and utilizing DMA (Direct Memory Access)
peripherals to transfer data from the source to the RAM. Some
additional power consumption was captured in this experiment
by reading the input data from the onboard flash memory.
Further studies can be conducted by executing critical
operations from only RAM with properly determined sample
size to reduce the current.

5 Conclusion
The Thumb instruction subset from ARM was designed

to be energy efficient in deeply embedded applications.
Coupled with a dedicated FPU, this platform can perform
efficiently in both floating point and integer workloads.
However, for integer based workloads, energy consumption
can be further reduced by using more streamlined FPU-less and
slowly clocked processing chips. Positive results were
observed for encryption and secure hash calculation, which
consumed energy in the range of micro joules on the test
hardware. On the other hand, Signal processing tasks were
more demanding. The execution time and power consumption
observed in this paper bring forward the differences in the
energy footprint of potential workloads of a future cardiac
pacemaker. Given the asynchronous execution nature of the
programs and the difference in their energy footprint, the use

70.185ms

143.79 ms

1.328 ms

1.012 ms

Int'l Conf. Biomedical Engineering and Sciences | BIOENG'16 | 17

ISBN: 1-60132-429-4, CSREA Press ©

of heterogeneous architectures such as ARM “Big.Little”
architecture [12] promises lower power operation. Application
specific optimization of each processing core on a
heterogeneous architecture can be potentially utilized for low
power operation in next generation of cardiac pacemakers.

6 Acknowledgement
Research reported in this paper was supported in part by

National Institute of General Medical Sciences of the Nation-
al Institutes of Health under award number 1SC3GM096937-
01A1. The content is solely the responsibility of the authors and
does not necessarily represent the official views of the National
Institutes of Health

7 References
[1] Greenspon, Arnold J., Jasmine D. Patel, Edmund Lau,

Jorge A. Ochoa, Daniel R. Frisch, Reginald T. Ho,
Behzad B. Pavri, and Steven M. Kurtz. "Trends in
permanent pacemaker implantation in the United States
from 1993 to 2009: increasing complexity of patients and
procedures." J. of the American College of Cardiology.
Vol. 60(16), pp.1540-1545, (2012)

[2] Haddad, Sandro AP, Richard PM Houben, and W. A.
Serdijin. "The evolution of pacemakers." IEEE
Engineering in Medicine and Biology Magazine,
May/June (2006)

[3] Biotronik Effecta Pacemaker Technical Manual,
BIOTRONIK SE & Co. KG, Available: http://www.
biotronikusa.com/manuals/ (2010)

[4] Lakshmanadoss, U., Shah, A., Daubert, J. P., in “Modern
Pacemakers: Present and Future”, M. K. Das, Editor,
Intech Publisher, Croatia (2011), Chapter 8, pp.129-145.

[5] Halperin, D.; Heydt-Benjamin, T.S.; Ransford, B.; Clark,
S.S.; Defend, B.; Morgan, W.; Fu, K.; Kohno, T.; Maisel,
W.H., "Pacemakers and Implantable Cardiac
Defibrillators: Software Radio Attacks and Zero-Power
Defenses". Proceedings of IEEE Symposium on Security
and Privacy, (2008) May 18-22; Oakland, California

[6] Haddad, Sandro AP, and Wouter A. Serdijn. “In Ultra
Low-Power Biomedical Signal Processing”, Springer
Netherlands, (2009), Chapter 2, pp.14-26

[7] Guthaus, Matthew R., Jeffrey S. Ringenberg, Dan Ernst,
Todd M. Austin, Trevor Mudge, and Richard B. Brown.
"MiBench: A free, commercially representative
embedded benchmark suite." Proceedings of the IEEE
International Workshop on Workload Characterization,
(2001) December 2; Austin, Texas

[8] Jin, Zhanpeng, and Allen C. Cheng. "ImplantBench:
Characterizing and projecting representative benchmarks
for emerging bio-implantable computing." IEEE Micro
issue 28, no. 4, pp 71-91, (2008)

[9] Nathan, Binkert, Beckmann Bradford, and Black Gabriel.
"The gem5 simulator." ACM SIGARCH Computer
Architecture News, vol. 39(2), pp.1-7, (2011)

[10] Texas Instruments, C Implementation of Cryptographic
Algorithms, Application Report. Available: http://www.
ti.com/lit/an/slaa547a/slaa547a.pdf, (2013)

[11] ARM Cortex Series Documentation, ARM, Available:
http://www.arm.com/products/processors/cortex-
a/index.php (2015)

[12] Jeff, Brian. "Big. LITTLE system architecture from
ARM: saving power through heterogeneous
multiprocessing and task context migration."
Proceedings of the 49th Annual Design Automation
Conference. ACM, 2012.

18 Int'l Conf. Biomedical Engineering and Sciences | BIOENG'16 |

ISBN: 1-60132-429-4, CSREA Press ©

