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Abstract—Detecting extreme events in large datasets is
a major challenge in climate science research. Current
algorithms for extreme event detection are build upon human
expertise in defining events based on subjective thresholds
of relevant physical variables. Often, multiple competing
methods produce vastly different results on the same dataset.
Accurate characterization of extreme events in climate simu-
lations and observational data archives is critical for under-
standing the trends and potential impacts of such events in
a climate change content. This study presents an application
of Deep Learning techniques as alternative methodology for
climate extreme events detection. Deep neural networks are
able to learn high-level representations of a broad class of
patterns from labeled data. In this work, we developed deep
Convolutional Neural Network (CNN) classification system
and demonstrated the usefulness of Deep Learning technique
for tackling climate pattern detection problems. Coupled
with Bayesian based hyper-parameter optimization scheme,
our deep CNN system achieves 89%-99% of accuracy in
detecting extreme events (Tropical Cyclones, Atmospheric
Rivers and Weather Fronts).

Keywords: Pattern Recognition, Deep Learning; Convolutional
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1. Introduction
Extreme climate events (such as hurricanes and heat

waves) pose great potential risk on infrastructure and human

health. Hurricane Joaquin, for example, hit Carolina in early

October 2015, and dropped over 2 feet of precipitation

in days, resulted in severe flooding and economic loss.

An important scientific goal in climate science research is

to characterize extreme events in current day and future

climate projections. However, understanding the developing

mechanism and life cycle of these events as well as future

trend requires accurately identifying them in space and time.

Satellites acquire 10s of TBs of global data every year to

provide us with insights into the evolution of the climate

system. High resolution climate models produces 100s of

TBs of data from multi-decadal run to enable us to explore

future climate scenarios under global warming. Detecting

extreme climate events in terabytes of data presents an

unprecedented challenge for climate science.

Existing extreme climate events (e.g. hurricane) detection

methods all build upon human expertise in defining relevant

events based on evaluating of relevant spatial and temporal

variables on hard and subjective thresholds. For instance,

tropical cyclones are strong rotating weather systems that

are characterized by low pressure and warm temperature core

structures with high wind. However, there is no universally

accepted sets of criteria for what defines a tropical cyclone

[1]. The "Low" pressure and "Warm" temperature are in-

terpreted differently among climate scientists, therefore dif-

ferent thresholds are used to characterize them. Researchers

[2], [3], [4], [5], [6], [7] have developed various algorithms

to detect tropical cyclones in large climate dataset based on

subjective thresholding of several relevant variables (e.g. sea

level pressure, temperature, wind etc.). One of the general

and promising extreme climate event detecting software,

Toolkit for Extreme Climate Analysis (TECA) [6], [7], is

able to detect tropical cyclones, extra-tropical cyclones and

atmospheric rivers. TECA utilizes the MapReduce paradigm

to find pattern in Terabytes of climate data with in hours.

However, many other climate extreme events do not have

a clear empirical definition (e.g. extra-tropical cyclone and

mesoscale convective system), which precludes the devel-

opment and application of algorithms for detection and

tracking. This study attempts to search for an alternative

methodology for extreme events detection by designing a

neural network based system that is capable of learning a

broad class of patterns from complex multi-variable climate

data, thus avoiding subjective threshold.

Recent advances in deep learning have demonstrated

exciting and promising results on pattern recognition tasks,

such as ImageNet Large Scale Visual Recognition Challenge

[8], [9], [10] and speech recognition [11], [12], [13], [14].

Many of the state-of-art deep learning architectures for visual

pattern recognition are based on the hierarchical feature

learning convolutional neural network (CNN). Modern CNN

systems tend to be deep and large with many hidden layers

and millions of neurons, making them flexible in learning a

broad class of patterns simultaneously from data. AlexNet (7
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layers with 5 convolutonal layer and 2 fully connected layer)

developed by [8] provides the first end to end trainable deep

learning system on objective classification, which achieved

15.3% top-5 classification error rate on ILSVRC-2012 data

set. On the contrary, previous best performed non-neural net-

work based systems achieved only 25.7% top-5 classification

error on the same data set. Shortly after that, Simonyan and

Zisserman [9] further developed AlexNet and introduced an

even deeper CNN (19 layers with 16 convolutional layer

and 3 fully connected layer) with smaller kernel (filter) and

achieved an impressively 6.8% top-5 classification error rate

on ILSVRC-2014 data set. Szegedy et al.[10] introduced the

"inception" neural network concept (network includes sub-

network) and developed an even deeper CNN (22 layers)

that achieved comparable classification results on ImageNet

benchmark. Build on deep CNN, Sermanet et al. [15] intro-

duced an integrated system of classification and detection,

in which features learned by convolutional layers are shared

among classification and localization tasks and both tasks are

performed simultaneously in a single network. Girshick et

al. [16] took a completely different approach by combining

a region proposal framework [17] with deep CNN and

designed the state of art R-CNN object detection system.

In this paper, we formulate the problem of detecting

extreme climate events as classic visual pattern recognition

problem. We then build end to end trainable deep CNN

systems, following the architecture introduced by [8]. The

model was trained to classify tropical cyclone, weather front

and atmospheric river. Unlike the ImageNet challenge, where

the training data are labeled natural images, our training data

consist of several continuous spatial variables(e.g. pressure,

temperature, precipitation) and are stacked together into

image-like patches.

2. Related Work
Climate data analysis requires an array of advanced

methodology. Neural network based machine learning ap-

proach, as a generative analysis technique, has received

much attention and been applied to tackle several climate

problems in recent year. Chattopadhyay et al. [18] developed

a nonlinear clustering method based on Self Organizational

Map (SOM) to study the structure evolution of Madden-

Julian oscillation (MJO). Their method does not require

selecting leading modes or intraseasonal bandpass filtering

in time and space like other methods do. The results show

SOM based method is not only able to capture the gross

feature in MJO structure and development but also reveals

insights that other methods are not able to discover such

as the dipole and tripole structure of outgoing long wave

radiation and diabatic heating in MJO. Gorricha and Costa

[19] used a three dimensional SOM on categorizing and

visualizing extreme precipitation patterns over an island in

Spain. They found spatial precipitation patterns that tradi-

tional precipitation index approach is not able to discover,

and concluded that three dimensional SOM is very useful

tool on exploratory spatial pattern analysis. More recently,

Shi et al. [20] implemented a newly developed convolutional

long short term memory (LSTM) deep neural network

for precipitation nowcasting. Trained on two dimensional

radar map time series, their system is able to outperform

the current state-of-art precipitation nowcasting system on

various evaluation metrics. Iglesias et al. [21] developed a

multitask deep fully connected neural network on prediction

heat waves trained on historical time series data. They

demonstrate that neural network approach is significantly

better than linear and logistic regression. And potentially can

improve the performance of forecasting extreme heat waves.

These studies show that neural network as a generative

method and can be applied on various climate problems. In

this study, we explore deep CNN on solving climate pattern

detection problem.

3. Methods
3.1 Convolutional Neural Network

A Deep CNN is typically comprised of several convolu-

tional layers followed by a small amount of fully connected

layers. In between two successive convolutional layers,

subsampling operation (e.g. max pooling, mean pooling) is

performed typically. Researchers have questioned about the

necessity of pooling layers, and argue that they can be simply

replaced by convolutional layer with increased strides, thus

simplify the network structure [22]. In either case, the inputs

of a CNN is (m,n,p) images, where m and n is the width

and height of an image in pixel, p is the number of color

channel of each pixel. The output of a CNN is a vector of q
probability units (class scores), corresponding to the number

of categories to be classified (e.g. for binary classifier q=2).
The convolutional layers perform convolution operation

between kernels and the input images (or feature maps from

previous layer). Typically, a convolutional layer contains

k filters (kernels) with the size (i,j,p). Where i,j is the

width and height of the filter. The filters are usually smaller

than the width m and height n of input image. p always

equal to the number of color channel of input image (e.g.

a color image has three channels: red, green, and blue).

Each of the filters is independently convolved with the

input images (or feature maps from previous layer) followed

by non-linear transformation and generates k feature maps,

which serve as inputs for the next layer. In the process of

convolution, a dot product is computed between the entry of

filter and the local region that it is connected to in the input

image (or feature map from previous layer). The parameters

of convolutional layers are these learnable filters. Sliding

convolutional kernels across all the input will produce larger

outputs for certain sub-regions than for others. This allows

features to be extracted from inputs and preserved in the

feature maps regardless of where the feature is located in
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the input. The pooling layer subsamples the feature maps

generated from convolutional layer over a (s,t) contiguous

region, where s,t is the width and height of the subsampling

window. This operation reduces the resolution of feature

maps with the depth of CNN. All feature maps are high-level

representations of the input data. The fully connected layer

has connections to all hidden units in previous layer. If it is

the last layer within CNN architecture, the fully connected

layer also does the high level reasoning based on the feature

vectors from previous layer and produce final class scores

for image objects.

3.2 Hyper-parameter Optimization
Training deep neural network is known to be hard [23],

[24]. Effectively and efficiently train deep neural network not

only requires large amount of training data, but also requires

carefully tuning model hyper-parameters (e.g. learning pa-

rameters, regularization parameters) [25]. The parameter

tuning process, however, can be tedious and non-intuitive.

Hyper-parameter optimization can be reduced to find a set

of parameters for a network that produces the best possible

validation performance. As such, this process can be thought

of as a typical optimization problem of finding a set, x,
of parameter values from a bounded set X that minimize

an objective function f(x), where x is a particular setting

of the hyper-parameters and f(x) is the loss for a deep

neural network with a particular set of training and testing

data as function of the hyper-parameter inputs. Training

a deep neural network is not only a costly (with respect

to time) procedure, but a rather opaque process regarding

to how the network performance varies with respect to its

hyper-parameter inputs. Because training and validating a

deep neural network is very complicated and expensive,

Bayesian Optimization (which assumes f(x) is not known,

is non-convex and is expensive to evaluate) is a well-

suited algorithm for hyper-parameter optimization for our

task at hand. Bayesian Optimization attempts to optimize

f(x) by constructing two things: a probabilistic model of

f(x) and an acquistion function that picks which point x
in X to evaluate next. The probabilistic model is updated

with Bayesian rule with a Gaussian prior. The acquisition

function suggests hyper-parameter settings or points to eval-

uate by trying to balance evaluating parameter settings in

regions, where f(x) is low and points in regions where

the uncertainty in the probabilistic model is high. As a

result the optimization procedure attempts to evaluate as few

points as possible [26], [25]. In this study, we use spearmint

(https://github.com/JasperSnoek/spearmint) for performing

network hyper-parameter optimization.

3.3 CNN Configuration
Following AlexNet [8], we developed a deep CNN which

has totally 4 learnable layers, including 2 convolutional

layers and 2 fully connected layers. Each convolutional layer

is followed by a max pooling layer. The model is constructed

based on the open source python deep learning library

NOEN (https://github.com/NervanaSystems/neon). The con-

figuration of our best performed architectures are shown in

Table 1.

The networks are shallower and smaller comparing to the

state-of-art architecture developed by [9], [10].The major

limitations for exploring deeper and larger CNNs is the

limited amount of labeled training data that we can obtain.

However, a small network has the advantage of avoiding

over-fitting, especially when the amount of training data is

small. We also chose comparatively large kernels (filters) in

the convolutional layer based on input data size, even though

[9] suggests that deep architecture with small kernel (filter)

is essential for state of art performance. This is because

climate patterns are comparatively simpler and larger in size

as compared to objects in ImageNet dataset.

One key feature of deep learning architectures is that it

is able to learn complex non-linear functions. The convo-

lutional layers and first fully connected layer in our deep

CNNs all have Rectified Linear Unit (ReLU) activation

functions [27] as characteristic. ReLU is chosen due to its

faster learning/training character [8] as compared to other

activation functions like Tanh.

f(x) = max(0, x) (1)

Final fully connected layer has Logistic activation function

as non-linearity, which also serves as classifier and outputs

a probability distribution over class labels.

f(x) =
1

1 + e−x
(2)

3.4 Computational Platform
We performed our data processing, model training and

testing on Edison, a Cray XC30 and Cori, a Cray XC40

supercomputing systems at the National Energy Research

Scientific Computing Center (NERSC). Each of Edison

computing node has 24 2.4 GHz Intel Xeon processors.

Each of Cori computing node has 32 2.3 GHz Intel Haswell

processors. In our work, we mainly used single node CPU

backend of NEON. The hyper-parameter optimization was

performed on a single node on Cori with tasks fully parallel

on 32 cores.

4. Data
In this study, we use both climate simulations and re-

analysis products. The reanalysis products are produced by

assimilating observations into a climate model. The spatial

scale of both climate model simulation and reanalysis prod-

ucts covers the entire global. A summary of the data source

and its temporal and spatial resolution is listed in Table

2. Ground truth labeling of various events is obtained via

multivariate threshold based criteria implemented in TECA
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Table 1: Deep CNN architecture and layer parameters. The convolutional layer param-

eters are denoted as <filter size>-<number of feature maps> (e.g. 5x5-8). The pooling

layer parameters are denoted as <pooling window> (e.g. 2x2). The fully connected

layer parameter are denoted as <number of units> (e.g. 2).

Conv1 Pooling Conv2 Pooling Fully Fully

Tropical Cyclone 5x5-8 2x2 5x5-16 2x2 50 2

Weather Fronts 5x5-8 2x2 5x5-16 2x2 50 2

Atmospheric River 12x12-8 3x3 12x12-16 2x2 200 2

Table 2: Data Sources

Climate Dataset Time Frame Temporal Resolution Spatial Resolution

(lat x lon degree)

CAM5.1 historical run 1979-2005 3 hourly 0.23x0.31

ERA-Interim reanalysis 1979-2011 3 hourly 0.25x0.25

20 century reanalysis 1908-1948 Daily 1x1

NCEP-NCAR reanalysis 1949-2009 Daily 1x1

Table 3: Dimension of image, diagnostic variables (channels) and labeled dataset size

for extreme events considered in this study (PSL: sea surface pressure, U: zonal

wind, V: meridional wind, T: temperature, TMQ: vertical integrated water vapor, Pr:

precipitation)

Events Image Dimension Variables Total Examples

Tropical Cyclone 32x32 PSL,V-BOT,U-BOT,

T-200,T-500,TMQ,

V-850,U-850

10,000 +ve 10,000 -ve

Atmospheric River 148 x 224 TMQ, Land Sea

Mask

6,500 +ve 6,800 -ve

Weather Front 27 x 60 T-2m, Pr, PSL 5,600 +ve 6,500 -ve

[6], [7], and manual labeling by experts [28], [29]. Training

data comprise of image patterns, where several relevant

spatial variables are stacked together over a prescribed region

that bounds an event. The dimension of the bounding box

is based on domain knowledge of events spatial extent in

real word. For instance, tropical cyclone radius are typically

with in range of 100 kilometers to 500 kilometers, thus

bounding box size of 500 kilometers by 500 kilometers

is likely to capture most of tropical cyclones. The chosen

physical variables are also based on domain expertise. The

prescribed bounding box is placed over an event. Relevant

variables are extracted within the bounding box from the

climate model simulations or reanalysis products and stacked

together. To facilitate model training, bounding box location

is adjusted slightly such that all of events are located

approximately at the center. Image patches are cropped and

centered correspondingly. Because of the spatial dimension

of climate events vary quite a lot and the spatial resolution

of source data is non-uniform, final training images prepared

differ in their size among the three types of events. The class

labels of images are "containing events" and "not containing

events", in other words, we formulate the problem as binary

classification task. A summary of the attributes of training

images is listed in Table 3.

5. Results and Discussion
Table 4 summarizes the performance of our deep CNN

architecture on classifying tropical cyclones, atmospheric

rivers and weather fronts. We obtained fairly high accuracy

(89%-99%) on extreme event classification. In addition, the

systems do not suffer from over-fitting. We believe this is

mostly because of the shallow and small size of the architec-

ture (4 learnable layers) and the weight decay regularization.

Deeper and larger architecture would be inappropriate for

this study due to the limited amount of training data.

Fairly good train and test classification results also suggest

that the deep CNNs we developed are able to efficiently

learn representations of climate pattern from labeled data

and make predictions based on feature learned. Traditional

threshold based detection method requires human expert

carefully examine the extreme event and its environment,

thus come up with thresholds for defining the events. In

contrast, as shown in this study, deep CNNs are able to
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learn climate pattern just from the labeled data, thus avoiding

subjective thresholds.

Table 4: Overall Classification Accuracy

Event Type Train Test Train time
Tropical Cyclone 99% 99% ≈ 30 min
Atmospheric River 90.5% 90% 6-7 hour
Weather Front 88.7% 89.4% ≈ 30 min

5.1 Classification Results for Tropical Cyclones
Tropical cyclones are rapid rotating weather systems that

are characterized by low pressure center with strong wind

circulating the center and warm temperature core in upper

troposphere. Figure 1 shows examples of tropical cyclones

simulated in climate models, that are correctly classified by

deep CNN (warm core structure is not shown in this figure).

Tropical cyclone features are rather well defined, as can be

seen from the distinct low pressure center and spiral flow

of wind vectors around the center. These clear and distinct

characteristics make tropical cyclone pattern relatively easy

to learn and represent within CNN. Our deep CNNs achieved

nearly perfect (99%) classification accuracy.
Figure 2 shows examples of tropical cyclones that are

mis-classified. After carefully examining these events, we

believe they are weak systems (e.g. tropical depression),

whose low pressure center and spiral structure of wind have

not fully developed. The pressure distribution shows a large

low pressure area without a clear minimum. Therefore, our

deep CNN does not label them as tropical cyclones.

Table 5: Confusion matrix for tropical cyclone classification

Label TC Label Non_TC
Predict TC 0.989 0.003

Predict Non_TC 0.011 0.997

Fig. 1: Sample images of tropical cyclones correctly classi-

fied (true positive) by our deep CNN model. Figure shows

sea level pressure (color map) and near surface wind distri-

bution (vector solid line).

Fig. 2: Sample images of tropical cyclones mis-classified

(false negative) by our deep CNN model. Figure shows sea

level pressure (color map) and near surface wind distribution

(vector solid line).

5.2 Classification Results for Atmospheric
Rivers

In contrast to tropical cyclones, atmospheric rivers are

distinctively different events. They are narrow corridors of

concentrated moisture in atmosphere. They usually originate

in tropical oceans and move pole-ward. Figure 3 shows

examples of correctly classified land falling atmospheric

rivers that occur on the western Pacific Ocean and north

Atlantic Ocean. The characteristics of narrow water vapor

corridor is well defined and clearly observable in these

images.

Figure 4 are examples of mis-classified atmospheric rivers.

Upon further investigation, we believe there are two main

factors leading to mis-classification. Firstly, presence of

weak atmospheric river systems. For instance, the left col-

umn of Figure 4 shows comparatively weak atmospheric

rivers. The water vapor distribution clearly show a band

of concentrated moisture cross mid-latitude ocean, but the

signal is much weaker comparing to Figure 3. Thus, deep

CNN does not predict them correctly. Secondly, the presence

of other climate event may also affect deep CNN representa-

tion of atmospheric rivers. In reality, the location and shape

of atmospheric river are affected by jet streams and extra-

tropical cyclones. For example, Figure 4 right column shows

rotating systems (likely extra-tropical cyclone) adjacent to

the atmospheric river. This phenomenon presents challenge

for deep CNN on representing atmospheric river.

Table 6: Confusion matrix for atmospheric river classifica-

tion
Label AR Label Non_AR

Predict AR 0.93 0.107
Predict Non_AR 0.07 0.893

5.3 Classification Results for Weather Fronts
Among the three types of climate events we are looking

at, weather fronts have the most complex spatial pattern.

Weather fronts typically form at the interface of warm air

and cold air, and usually associated with heavy precipitation

due moisture condensation of warm air up-lifting. In satellite
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Fig. 3: Sample images of atmospheric rivers correctly clas-

sified (true positive) by our deep CNN model. Figure shows

total column water vapor (color map) and land sea boundary

(solid line).

Fig. 4: Sample images of atmospheric rivers mis-classified

(false negative) by our deep CNN model. Figure shows total

column water vapor (color map) and land sea boundary

(solid line).

images,a weather front is observable as a strip of clouds,

but it is hardly visible on two dimensional fields such as

temperature and pressure. In middle latitude (e.g. most U.S.),

a portion of weather front are associated with extra-tropical

cyclones. Figure 5 shows examples of correctly classified

weather front by our deep CNN system. Visually, the narrow

long regions of high precipitation line up approximately par-

allel to the temperature contour. This is a clear characteristics

and comparatively easy for deep CNNs to learn.

Because patterns of weather fronts is rather complex and

hardly show up in two dimensional fields, we decided to

further investigate it in later work.

Table 7: Confusion matrix for weather front classification
Label WF Label Non_WF

Predict WF 0.876 0.18
Predict Non_WF 0.124 0.82

Fig. 5: Sample images of weather front correctly classified

by our deep CNN model. Figure shows precipitation with

daily precipitation less than 5 millimeters filtered out (color

map), near surface air temperature (solid contour line) and

sea level pressure (dashed contour line)

6. Future Work
In the present study, we trained deep CNNs separately

for classifying tropical cyclones, atmospheric rivers and

weather fronts. Ideally, we would like to train a single
neural network for classifying all three types of events.

Unlike object recognition in natural images, climate patterns

detection have unique challenges. Firstly, climate events

happen at vastly different spatial scales. For example, a

tropical cyclone typically extends over less than 500 kilo-

meters in radius, while an atmospheric river can be several
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thousand kilometers long. Secondly, different climate events

are characterized by different sets of physical variables.

For example, atmospheric rivers correlate strongly with the

vertical integration of water vapor, while tropical cyclones

has a more complex multi-variable pattern involving sea

level pressure, near surface wind and upper troposphere

temperature. Future work will need to develop generative

CNN architectures that are capable of discriminating be-

tween different variables based on the event type and capable

of handling events at various spatial scale. Note that we have

primarily addressed detection of extreme weather patterns,

but not their localization. We will work on architectures for

spatially localizing weather pattern in the future.

Several researchers have pointed out that deeper and

larger CNNs perform better for classification and detection

tasks[9], [10] compared to shallow networks. However, deep

networks require huge amount of data to be effectively

trained, and to prevent model over fitting. Datasets, such as

ImageNet, provide millions of labeled images for training

and testing deep and large CNNs. In contrast, we can only

obtain a small amount of labeled training data, hence we

are constrained on the class of deep CNNs that we can

explore without suffering from over-fitting. This limitation

also points us to the need for developing unsupervised

approaches for climate pattern detection. We believe that

this will be critical for the majority of scientific disciplines

that typically lack labeled data.

7. Conclusion
In this study, we explored deep learning as a methodology

for detecting extreme weather patterns in climate data. We

developed deep CNN architecture for classifying tropical

cyclones, atmospheric rivers and weather fronts. The system

achieves fairly high classification accuracy, range from 89%

to 99%. To the best of our knowledge, this is the first

time that deep CNN has been applied to tackle climate

pattern recognition problems. This successful application

could be a precursor for tackling a broad class of pattern

detection problem in climate science. Deep neural network

learns high-level representations from data directly, therefore

potentially avoiding traditional subjective thresholding based

criteria of climate variables for event detection. Results from

this study will be used for quantifying climate extreme

events trend in current day and future climate scenarios, as

well as investigating the changes in dynamics and thermody-

namics of extreme events in global warming contend. This

information is critical for climate change adaptation, hazard

risk prediction and climate change policy making.

8. Acknowledgments
This research was conducted using "Neon", an open

source library for deep learning from Nervana Systems.

This research used resources of the National Energy

Research Scientific Computing Center, a DOE Office of

Science User Facility supported by the Office of Science

of the U.S. Department of Energy under Contract No.

DE-AC02-05CH11231. This work was supported by the

Director, Office of Science, Office of Advanced Scientific

Computing Research, Applied Mathematics program of the

U.S. Department of Energy under Contract No. DE-AC02-

05CH11231.

References
[1] D. S. Nolan and M. G. McGauley, “Tropical cyclogenesis in wind

shear: Climatological relationships and physical processes,” in Cy-
clones: Formation, Triggers, and Control, 2012, pp. 1–36.

[2] F. Vitart, J. Anderson, and W. Stern, “Simulation of interannual
variability of tropical storm frequency in an ensemble of gcm in-
tegrations,” Journal of Climate, vol. 10, no. 4, pp. 745–760, 1997.

[3] ——, “Impact of large-scale circulation on tropical storm frequency,
intensity, and location, simulated by an ensemble of gcm integrations,”
Journal of Climate, vol. 12, no. 11, pp. 3237–3254, 1999.

[4] K. Walsh and I. G. Watterson, “Tropical cyclone-like vortices in a
limited area model: comparison with observed climatology,” Journal
of Climate, vol. 10, no. 9, pp. 2240–2259, 1997.

[5] K. Walsh, M. Fiorino, C. Landsea, and K. McInnes, “Objectively
determined resolution-dependent threshold criteria for the detection
of tropical cyclones in climate models and reanalyses,” Journal of
Climate, vol. 20, no. 10, pp. 2307–2314, 2007.

[6] Prabhat, O. Rübel, S. Byna, K. Wu, F. Li, M. Wehner, W. Bethel,
et al., “Teca: A parallel toolkit for extreme climate analysis,” in Third
Worskhop on Data Mining in Earth System Science (DMESS) at the
International Conference on Computational Science (ICCS), 2012.

[7] Prabhat, S. Byna, V. Vishwanath, E. Dart, M. Wehner, W. D. Collins,
et al., “Teca: Petascale pattern recognition for climate science,” in
Computer Analysis of Images and Patterns. Springer, 2015, pp. 426–
436.

[8] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural
Information Processing Systems (NIPS), 2012, pp. 1097–1105.

[9] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” in Internaltional Conference on
Learning Representation (ICLR), 2015.

[10] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with
convolutions,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2015, pp. 1–9.

[11] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly,
A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath, et al., “Deep
neural networks for acoustic modeling in speech recognition: The
shared views of four research groups,” Signal Processing Magazine,
IEEE, vol. 29, no. 6, pp. 82–97, 2012.

[12] G. E. Dahl, D. Yu, L. Deng, and A. Acero, “Context-dependent pre-
trained deep neural networks for large-vocabulary speech recognition,”
Audio, Speech, and Language Processing, IEEE Transactions on,
vol. 20, no. 1, pp. 30–42, 2012.

[13] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with
deep recurrent neural networks,” in Acoustics, Speech and Signal
Processing (ICASSP), 2013 IEEE International Conference on. IEEE,
2013, pp. 6645–6649.

[14] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Advances in neural information processing
systems, 2014, pp. 3104–3112.

[15] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and
Y. LeCun, “Overfeat: Integrated recognition, localization and detec-
tion using convolutional networks,” in International Conference on
Learning Representations (ICLR), 2014.

[16] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmentation,”
in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2014, pp. 580–587.

Int'l Conf. on Advances in Big Data Analytics |  ABDA'16  | 87

ISBN: 1-60132-427-8, CSREA Press ©



[17] J. R. Uijlings, K. E. van de Sande, T. Gevers, and A. W. Smeulders,
“Selective search for object recognition,” International Journal of
Computer Vision, vol. 104, no. 2, pp. 154–171, 2013.

[18] R. Chattopadhyay, A. Vintzileos, and C. Zhang, “A description of the
madden–julian oscillation based on a self-organizing map,” Journal
of Climate, vol. 26, no. 5, pp. 1716–1732, 2013.

[19] J. Gorricha, V. Lobo, and A. C. Costa, “A framework for exploratory
analysis of extreme weather events using geostatistical procedures
and 3d self-organizing maps,” International Journal on Advances in
Intelligent Systems, vol. 6, no. 1, 2013.

[20] X. Shi, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, and W.-c.
Woo, “Convolutional lstm network: A machine learning approach
for precipitation nowcasting,” in Advances in Neural Information
Processing Systems: Twenty-Ninth Annual Conference on Neural
Information Processing Systems (NIPS), 2015.

[21] G. Iglesias, D. C. Kale, and Y. Liu, “An examination of deep
learning for extreme climate pattern analysis,” in The 5th International
Workshop on Climate Informatics, 2015.

[22] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller,
“Striving for simplicity: The all convolutional net,” in International
Conference on Learning Representation (ICLR), 2015.

[23] H. Larochelle, Y. Bengio, J. Louradour, and P. Lamblin, “Exploring
strategies for training deep neural networks,” The Journal of Machine
Learning Research, vol. 10, pp. 1–40, 2009.

[24] X. Glorot and Y. Bengio, “Understanding the difficulty of training
deep feedforward neural networks,” in International conference on
artificial intelligence and statistics, 2010, pp. 249–256.

[25] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian op-
timization of machine learning algorithms,” in Advances in neural
information processing systems, 2012, pp. 2951–2959.

[26] E. Brochu, V. M. Cora, and N. De Freitas, “A tutorial on bayesian
optimization of expensive cost functions, with application to active
user modeling and hierarchical reinforcement learning,” arXiv preprint
arXiv:1012.2599, 2010.

[27] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
boltzmann machines,” in Proceedings of the 27th International Con-
ference on Machine Learning (ICML), 2010, pp. 807–814.

[28] K. E. Kunkel, D. R. Easterling, D. A. Kristovich, B. Gleason,
L. Stoecker, and R. Smith, “Meteorological causes of the secular vari-
ations in observed extreme precipitation events for the conterminous
united states,” Journal of Hydrometeorology, vol. 13, no. 3, pp. 1131–
1141, 2012.

[29] D. A. Lavers, G. Villarini, R. P. Allan, E. F. Wood, and A. J.
Wade, “The detection of atmospheric rivers in atmospheric reanalyses
and their links to british winter floods and the large-scale climatic
circulation,” Journal of Geophysical Research: Atmospheres, vol. 117,
no. D20, 2012.

88 Int'l Conf. on Advances in Big Data Analytics |  ABDA'16  |

ISBN: 1-60132-427-8, CSREA Press ©


