
Bidirectional Representation and Backpropagation Learning

Olaoluwa Adigun and Bart Kosko
Department of Electrical Engineering
Signal and Image Processing Institute

University of Southern California

Abstract— The backpropagation learning algorithm extends
to bidirectional training of multilayer neural networks. The
bidirectional operation gives a form of backward chaining
or backward inference from a network output. We first prove
that a fixed three-layer network of threshold neurons can
exactly represent any finite permutation function and its
inverse. The forward pass gives the function value. The
backward pass through the same network gives the inverse
value. We then derive and test a bidirectional version of
the backpropagation algorithm that can learn bidirectional
mappings or their approximations.

Keywords: bidirectional associative memory, backpropagation
learning, function representation, backward inference

Forward Pass: 𝒂𝑥 𝒂ℎ 𝒂𝑦

Backward Pass: 𝒂𝑥 𝒂ℎ 𝒂𝑦

0

0

0

0

0

0

0
 1

1

1
1

1

1

−1

−1

1
1
−1

−1

0

0

0

1

1

−1

−1

1

1

−1

−1

1
1

1

1

Input Layer

Hidden Layer

Output Layer

Fig. 1: Bidirectional Representation of a Permutation Function.
This 3-layer bidirectional threshold network exactly represents the
invertible 3-bit bipolar permutation function f in Table 1. The
forward pass feeds the input vector x to the input layer and passes it
through the weighted links and the hidden layer of threshold neurons
(each with zero threshold) to the output layer. The backward pass
sends the output bit vector y back through the same weighted links
and threshold neurons. The network computes y = f(x) on the
forward pass and the inverse value f−1(y) on the backward pass.

1. Bidirectional Backpropagation
We show that bidirectional backpropagation (B-BP) train-

ing endows a multilayered neural network N : Rn → Rp

with a form of backward inference. The forward pass gives
the usual predicted neural output N(x) given a vector input
x. The output vector value y = N(x) in effect answers the
what-if question that x poses: What would we observe if x
occurred? What would be the effect? Then the backward pass
answers the why question that y poses: Why did y occur?
What type of input would cause y? Feedback convergence to
a resonating bidirectional fixed-point attractor [1], [2] gives
a long-term or equilibrium answer to both the what-if and
why questions.

This bidirectional approach to neural learning applies to
big data because the BP algorithm [3], [4], [5] scales linearly
with training data. BP has time complexity O(n) for n
training samples because the forward pass is O(1) while the
backward pass is O(n). So the new B-BP algorithm still has
only O(n) complexity. This linear scaling does not hold in
general for most machine-learning algorithms. An example
is the quadratic complexity O(n2) of support-vector kernel
methods [6].

We present the bidirectional results in two parts. The
first part proves that there exist fixed-weight multilayer
threshold networks that can exactly represent some invertible
functions. Theorem 1 shows that this holds for all finite
bipolar (or binary) permutation functions. Figure 1 shows
such a bidirectional 3-layer network of zero-threshold neu-
rons. It exactly represents the 3-bit permutation function
f in Table 1 where {−,−,+} denotes {−1,−1, 1}. So
f is a self-bijection that rearranges the 8 vectors in the
bipolar hypercube {−1, 1}3. The forward pass converts the
input bipolar vector (1, 1, 1) into the output bipolar vector
(−1,−1, 1). The backward pass converts (−1,−1, 1) into
(1, 1, 1) over the same fixed synaptic connection weights.
These same weights and neurons convert the other 7 input
vectors in the first column of Table 1 to the corresponding
7 output vectors in the second column and conversely.

Theorem 1 requires 2n hidden neurons to represent a per-
mutation function on the bipolar hypercube {−1, 1}n. Using
so many hidden neurons is neither practical nor necessary.
The representation in Figure 1 uses only 4 hidden neurons.
It is just one example of a representation that uses fewer
than 8 hidden neurons. We seek instead an efficient learning

Int'l Conf. on Advances in Big Data Analytics | ABDA'16 | 3

ISBN: 1-60132-427-8, CSREA Press ©

algorithm that can learn bidirectional representations (or at
least approximations) from sample data.

The second part extends the BP algorithm to just this
bidirectional case. This takes some care because training the
same weights in one direction tends to overwrite or undo
the BP training in the other direction. The B-BP algorithm
solves this problem by minimizing a joint error. It found
representations of the permutation in Table 1 that needed
only 3 hidden neurons.

The learning approximation also improves by adding more
hidden neurons. Figure 2 shows the effect of training with
100 hidden neurons. Figure 3 shows how the B-BP training
error falls off as the number of hidden neurons grows when
learning the 5-bit permutation in Table 2.

2. Bidirectional Function Representa-
tion of Bipolar Permutations

This section proves that there exists multilayered neural
networks that can exactly bidirectionally represent some
invertible functions. We first define the network variables.
The proof uses threshold neurons while the B-BP algorithm
uses soft-threshold logistic sigmoids for hidden neurons and
uses identity activations for input and output neurons.

A bidirectional neural network is a multilayer network
N : X → Y that maps the input space X to the output
space Y and conversely through the same set of weights.
The backward pass uses the transpose matrices of the weight
matrices that the forward pass uses. Such a network is a
bidirectional associative memory or BAM [1], [2].

The forward pass sends input vector x through weight
matrix W from the input layer to the hidden layer and
then on through matrix U to the output layer. The backward
pass sends the output y from the output layer back through
the hidden layer to the input layer. Let I, J, and K denote
the respective number of input, hidden, and output neurons.
Then the I × J matrix W connects the input layer to the
hidden. The J ×K matrix U connects the hidden layer to
the output layer.

Table 1: 3-Bit Bipolar Permutation Function f .

Input x Output t

[+ + +] [−−+]
[+ +−] [−++]
[+−+] [+ + +]
[+−−] [+−+]
[−++] [−++]
[−+−] [−−−]
[−−+] [+−−]
[−−−] [+ +−]

The hidden-neuron input ohj has the affine form

ohj =
I∑

i=1

wjia
x
i (x

i) + bhj (1)

where weight wji connects the ith input neuron to the jth

hidden neuron, axi is the activation of the ith input neuron,
and bhj is the bias term of the jth hidden neuron. The
activation ahj of the jth hidden neuron is a bipolar threshold:

ahj (o
h
j) =

{
−1 if ohj ≤ 0

1 if ohj > 0 .
(2)

The B-BP algorithm in the next section uses soft-threshold
bipolar logistic functions for the hidden activations because
such sigmoid functions are differentiable. The proof below
also modifies the hidden thresholds to take on binary values
in (13) and to fire with a slightly different condition.

The input oyk to the kth output neuron from the hidden
layer is also affine:

oyk =
J∑

j=1

ukja
h
j + byk (3)

where weight ukj connects the jth hidden neuron to the
kth output neuron . Term byk is the additive bias of the kth

output neuron. The output activation vector ay gives the
predicted outcome or target on the forward pass. The kth

output neuron has bipolar threshold activation ayk:

ayk(o
y
k) =

{
−1 if oyk ≤ 0

1 if oyk > 0 .
(4)

The forward pass of an input bipolar vector x from
Table 1 through the network in Figure 1 gives an output
activation vector ay that equals the table’s corresponding
target vector y. The backward pass feeds y from the output
layer back through the hidden layer to the input layer. Then
the backward-pass input ohbj to the jth hidden neuron is

ohbj =
K∑

k=1

ukjy
k + bhj (5)

where yk is the output of the kth output neuron. The
backward-pass activation of the jth hidden neuron ahbj is

ahbj (ohbj) =

{
−1 if ohbj ≤ 0

1 if ohbj > 0 .
(6)

The backward-pass input oxbi to the ith input neuron is

oxbi =
J∑

j=1

wjia
hb
j + bxi (7)

where bxi is the bias for the ith input neuron. The input-layer
activation ax gives the predicted value for the backward pass.
The ith input neuron has bipolar activation

axi (o
xb
i) =

{
−1 if oxbi ≤ 0

1 if oxbi > 0 .
(8)

4 Int'l Conf. on Advances in Big Data Analytics | ABDA'16 |

ISBN: 1-60132-427-8, CSREA Press ©

We can now state and prove the bidirectional
representation theorem for bipolar permutations. The
theorem also applies to binary permutations because the
input and output neurons have bipolar threshold activations.

Theorem 1: Exact Bidirectional Representation of
Bipolar Permutation Functions. Suppose that the invertible
function f : {−1, 1}n → {−1, 1}n is a permutation. Then
there exists a 3-layer bidirectional neural network
N : {−1, 1}n → {−1, 1}n that exactly represents f in the
sense that N(x) = f(x) and N−1(x) = f−1(x) for all x.

Proof: The proof strategy picks weight matrices W and
U so that only one hidden neuron fires on both the forward
and the backward pass. So we structure the network such
that any input vector x fires only one hidden neuron on the
forward pass and such that the output vector y = N(x) fires
only the same hidden neuron on the backward pass.

The bipolar permutation f is a bijective map of the
bipolar hypercube {−1, 1}n into itself. The bipolar hy-
percube contains the 2n input bipolar column vectors
x1,x2, . . . ,x2n . It likewise contains the 2n output bipolar
vectors y1,y2, . . . ,y2n . The network will use 2n corre-
sponding hidden threshold neurons. So J = 2n.

Matrix W connects the input layer to the hidden layer.
Matrix U connects the hidden layer to output layer. Define
W so that each row lists all 2n bipolar input vectors and
define U so that each column lists all 2n transposed bipolar
output vectors:

W =

...

...
...

...
...

x1 x2

...
... x2n

...
...

...
...

...

U =

. . . y1

T . . .
. . . y2

T . . .
.
.
. . . y2n

T . . .

We now show that this arrangement fires only one hidden

neuron and that the forward pass of any input vector xn

gives the corresponding output vector yn. Assume that every
neuron has zero bias.

Pick a bipolar input vector xm for the forward pass. Then
the input activation vector ax(xm) = (ax1(x

1
m), . . . , axn(x

n
m))

equals the input bipolar vector xm because the input acti-
vations (8) are bipolar threshold functions with zero thresh-
old. So ax equals xm because the vector space is bipolar
{−1, 1}n.

The hidden layer input oh is the same as (1). It has the

matrix-vector form

oh = WTax (9)

= WTxm (10)

= (oh1 , o
h
2 , ..., o

h
n, ..., o

h
2n)

T
(11)

= (xT
1 xm, xT

2 xm, . . . , xT
j xm, ..., xT

2nxm)
T

(12)

from the definition of W since ohj is the inner product of
xj and xm.

The input ohj to the jth neuron of the hidden layer obeys
ohj = n when j = m and ohj < n when j 6= m . This holds
because the vectors xj are bipolar with scalar components
in {−1, 1}. The magnitude of a bipolar vector in {−1, 1}n
is
√
n. The inner product xT

j xm is maximum when both
vectors have the same direction. This occurs when j = m .
The inner product is otherwise less than n .

Now comes the key step in the proof. Define the hidden
activation ahj as a binary (not bipolar) threshold function
where n is the threshold value:

ahj (o
h
j) =

{
1 if ohj ≥ n,

0 if ohj < n .
(13)

Then the hidden layer activation ah is the unit bit vector
(0, 0, ..., 1, ..., 0)

T where ahj = 1 when j = m and
where ahj = 0 when j 6= m . This holds because all 2n

bipolar vectors xm in {−1, 1} are distinct and so exactly
one of these 2n vectors achieves the maximum inner-product
value n = xT

mxm.
The input vector oy to the output layer is

oy = UT ah (14)

=
J∑

j=1

yj a
h
j (15)

= ym (16)

where ahj is the activation of the jth hidden neuron. The
activation ay of the output layer is:

ay(oyj) =

{
1 if oyj ≥ 0
−1 if oyj < 0 .

(17)

The output layer activation leaves oy unchanged because
oy equals ym and because ym is a vector in {−1, 1}n. So

ay = ym . (18)

So the forward pass of an input vector xm through the
network yields the desired corresponding output vector ym

where ym = f(xm) for bipolar permutation map f .
Consider next the backward pass over N .
The backward pass propagates the output vector ym from

the output layer to the input layer through the hidden layer.
The hidden layer input oh has the form (5) and so

oh = U ym (19)

Int'l Conf. on Advances in Big Data Analytics | ABDA'16 | 5

ISBN: 1-60132-427-8, CSREA Press ©

where oh = (yT
1 ym, yT

2 ym, ..., yT
j ym, ..., yT

2nym)
T .

The input ohj of the jth neuron in the hidden layer ohj
equals the inner product of yj and ym. So ohj = n when
j = m and ohj < n when j 6= m . This holds because
again the magnitude of a bipolar vector in {−1, 1}n is√
n. The inner product ohj is maximum when vectors ym

and yj lie in the same direction. The activation ah for
the hidden layer has the same components as (13). So the
hidden-layer activation ah again equals the unit bit vecgtor
(0, 0, ..., 1, ..., 0)

T where ahj = 1 when j = m and
ahj = 0 when j 6= m .

Then the input vector ox for the input layer is

ox = W ah (20)

=
J∑

j=1

xj ah (21)

= xm . (22)

The ith input neuron has a threshold activation that is the
same as

ax(oxi) =

{
1 if oxi ≥ 0
−1 if oxi < 0

(23)

where oxi is the input of ith neuron in the input layer. This
activation leaves ox unchanged because ox equals xm and
because the vector xm lies in {−1, 1}n. So

ax = ox (24)
= xm . (25)

So the backward pass of any target vector ym yields
the desired input vector xm where f−1(ym) = xm. This
completes the backward pass and the proof. �
.

3. Bidirectional BP Learning
We now develop the new bidirectional BP algorithm for

learning bidirectional function representations or approxi-
mations. Bidirectional BP training minimizes both the error
function for the forward pass and the backward pass. The
forward-pass error Ef is the error at the output layer. The
backward-pass error Eb is the error at the input layer.
Bidirectional BP training combines these two errors.

The forward pass sends the input vector x through the
hidden layer to the ouput layer. We use only one hidden
layer. There is no loss of generality in using any finite
number of them. The hidden-layer input values ohj are the
same as (1). The jth hidden activation ahj is the bipolar
logistic that shifts and scales the ordinary logistic:

ahj (o
h
j) =

2

1 + e−2ohj
− 1 (26)

and (3) gives the input oyk to the kth output neuron. The
hidden activations can also be logistic or any other sigmoidal

function. The activation for an output neuron is the identity
function:

ayk = oyk (27)

where ayk is the activation of kth output neuron. The error
function for the forward pass was the squared error Ef

Ef =
1

2

K∑
k=1

(yk − ayk)
2 . (28)

where yk is the value of kth neuron in the output layer.
Ordinary unidirectional BP updates the weights and other
network parameters by propagating the error from the output
layer back to the input layer.

The backward pass sends the output vector y from the
output layer to the input layer through the hidden layer.
The input to jth hidden neuron ohj is the same as (5). The
activation ahj for jth hidden neuron is:

ahj =
2

1 + e−2ohj
− 1 . (29)

The input oxi for the ith input neuron is the same as (7). The
activation at the input layer is the identity function:

axi = oxi . (30)

A nonlinear sigmoid (or Gaussian) activation can replace the
linear function.

The backward-pass error Eb is

Eb =
1

2

I∑
i=1

(xi − axi)2 . (31)

The partial derivative of the hidden-layer activation in the
forward direction is

∂ahj
∂ohj

=
∂

∂ohj

(2

1 + e−2ohj
− 1
)

(32)

=
4e−2ohj

(1 + e−2ohj)2
(33)

=
2

1 + e−2ohj

[
2− 2

1 + e−2ohj

]
(34)

= (ahj + 1)(1− ahj) . (35)

Let ahj
′

denote the derivative of ahj with respect to the
inner-product term ohj . We again use the superscript b to
denote backward pass. Then the partial derivative of Ef with
respect to weight ukj is

∂Ef

∂ukj
=

1

2

∂

∂ukj

K∑
k=1

(yk − ayk)
2 (36)

=
∂Ef

∂ayk

∂ayk
∂oyk

∂oyk
∂ukj

(37)

= (yk − ayk)× 1× ayk . (38)

6 Int'l Conf. on Advances in Big Data Analytics | ABDA'16 |

ISBN: 1-60132-427-8, CSREA Press ©

The partial derivative of Ef with respect to wji is

∂Ef

∂wji
=

1

2

∂

∂wji

K∑
k=1

(yk − ayk)
2 (39)

=
(K∑

k=1

∂Ef

∂ayk

∂ayk
∂oyk

∂oyk
∂ahj

) ∂ahj
∂ohj

∂ohj
∂wji

(40)

=
K∑

k=1

(yk − ayk)ukj × a
h
j

′

× xi . (41)

The partial derivative of Ef with respect to the bias byk of
the kth output neuron is

∂Ef

∂byk
=

1

2

∂

∂byk

K∑
k=1

(yk − ayk)
2 (42)

=
∂Ef

∂ayk

∂ayk
∂oyk

∂oyk
∂byk

(43)

= (yk − ayk)× 1× 1 . (44)

The partial derivative of Ef with respect to the bias bhj of
the jth hidden neuron is

∂Ef

∂bhj
=

1

2

∂

∂bhj

K∑
k=1

(yk − ayk)
2 (45)

=
(K∑

k=1

∂Ef

∂ayk

∂ayk
∂oyk

∂oyk
∂ahj

) ∂ahj
∂ohj

∂ohj
∂bhj

(46)

=
K∑

k=1

(yk − ayk)ukj × a
h
j

′

× 1 . (47)

The partial derivative of Eb with respect to wji is

∂Eb

∂wji
=

1

2

∂

∂wji

K∑
k=1

(xi − axi)2 (48)

=
∂Eb

∂axi

∂axi
∂oxi

∂oxi
∂wji

(49)

= (xi − axi)× 1× axi . (50)

The partial derivative of Eb with respect to ukj is

∂Eb

∂ukj
=

1

2

∂

∂ukj

I∑
i=1

(xi − axi)2 (51)

=
(I∑

i=1

∂Eb

∂axi

∂axi
∂oxi

∂oxi
∂ahbj

) ∂ahbj
∂ohbj

∂ohbj
∂ukj

(52)

=
I∑

i=1

(xi − axi)wji × ahbj
′

× yk . (53)

The partial derivative of Eb with respect to the bias bxi of

the ith input neuron is:

∂Eb

∂bxi
=

1

2

∂

∂bxi

I∑
i=1

(xi − axi)2 (54)

=
∂Eb

∂axi

∂axi
∂oxi

∂oxi
∂bxi

(55)

= (xi − axi)× 1× 1 . (56)

The partial derivative of Eb with respect to the bias bhj of
the jth hidden neuron is

∂Eb

∂bhj
=

1

2

∂

∂bhj

I∑
i=1

(xi − axi)2 (57)

=
(I∑

i=1

∂Eb

∂axi

∂axi
∂oxi

∂oxi
∂ahbj

) ∂ahbj
∂ohbj

∂ohbj
∂bhj

(58)

=
I∑

i=1

(xi − axi)wji × ahbj
′

× 1 . (59)

Bidirectional BP training minimizes the joint error E of
the forward and backward passes. The joint error E sums
the forward error Ef and backward error Eb:

E = Ef + Eb . (60)

Then the partial derivative of E with respect to ukj is

∂E

∂ukj
=
∂Ef

∂ukj
+
∂Eb

∂ukj
(61)

= (yk − ayk)a
y
k +

I∑
i=1

(xi − axi)wjia
hb
j

′

yk (62)

from (36) and (51) . The partial derivative of the joint error
E with respect to the weight wji is

∂E

∂wji
=
∂Ef

∂wji
+
∂Eb

∂wji
(63)

=
K∑

k=1

(yk − ayk)ukja
h
j

′

xi (64)

+ (xi − axi)axi (65)

from (39) and (48) .
The partial derivative of E with respect to bhj gives

∂E

∂bhj
=
∂Ef

∂bhj
+
∂Eb

∂bhj
(66)

=
K∑

k=1

(yk − ayk)ukj × a
h
j

′

(67)

+
I∑

i=1

(xi − axi)wji × ahbj
′

. (68)

from (45) and (57) .

Int'l Conf. on Advances in Big Data Analytics | ABDA'16 | 7

ISBN: 1-60132-427-8, CSREA Press ©

The error for the input neuron bias is Eb only because
x = ox for the forward pass. The error for the output neuron
bias is Ef only for output neuron bias because y = oy for
the backward pass. Then

∂E

∂bxi
=
∂Eb

∂bxi
= xi − axi (69)

∂E

∂byk
=
∂Ef

∂byk
= yk − ayk . (70)

Then B-BP training updates the parameters as

u
(n+1)
kj = u

(n)
kj − η

∂E

∂ukj
(71)

w
(n+1)
ji = w

(n)
ji − η

∂E

∂wji
(72)

bxi
(n+1) = bxi

(n) − η ∂E
∂bxi

(73)

bhj
(n+1)

= bhj
(n) − η ∂E

∂bhj
(74)

byk
(n+1)

= byk
(n) − η ∂E

∂byk
(75)

where η is the learning rate. The partial derivatives are from
(61)−(70). Algorithm 1 summarizes the B-BP algorithm.

4. Simulation Results
We tested the bidirectional BP algorithm on a 5-bit permu-

tation functions in 3-layer networks with different numbers
of hidden neurons. The B-BP algorithm produced either an
exact representation or approximation. We report results for
learning a permutation function from the 5-bit bipolar vector
space {−1, 1}n. The hidden neurons used bipolar logistic
activations. The input and output neurons used identity
activations. Table 2 displays the the permutation test function
that mapped {−1, 1}5 to itself. We compared the forward
and backward forms unidirectional BP with bidirectional BP.
We also tested to see whether adding more hidden neurons
improved network approximation accuracy.

The simulations used 18,000 samples for network training
and 2,000 separate samples for testing. Forward-pass of
(standard) BP used Ef as its error while backward-pass BP
used Eb as its error. Bidirectional BP combined both Ef and
Eb for its joint error. We computed testing error for forward
pass and backward pass. Each plotted error value averaged
20 runs.

Figure 2 shows the results of running the three types of
BP learning on a 3-layer network with 100 hidden neurons.
The training error falls along both directions as the training
progresses. This in not the case for the unidirectional cases of
forward BP and backward BP training. Forward training and
backward training perform well only for function approxi-
mation in their preferred direction and not in the opposite
direction.

0 20 40 60 80 100 120 140 160 180
Training Iterations

0

1

2

3

S
qu

ar
ed

 e
rr

or

Forward backpropagation using 100 hidden neurons
E

f

E
b

0 20 40 60 80 100 120 140 160 180
Training Iterations

0

1

2

3

S
qu

ar
ed

 e
rr

or

Backward backpropagation using 100 hidden neurons
E

f

E
b

0 20 40 60 80 100 120 140 160 180
Training Iterations

0

100

200

300

400

S
qu

ar
ed

 e
rr

or

Bidirectional backpropagation using 100 hidden neurons

E
f

E
b

Fig. 2: Training-set squared error using 100 hidden neurons with
forward BP training, backward BP training, and bidirectional BP
training. Forward BP tuned the network with respect to Ef only.
Backward BP training tuned it respect to Eb only. Bidirectional BP
training combined Ef and Eb to update the network parameters.

0 20 40 60 80 100 120 140 160 180 200
Hidden Neurons

0

0.2

0.4

0.6

0.8

1

S
qu

ar
ed

 e
rr

or

Testing Error with Bidirectional Backpropagation
Forward Pass
Backward Pass

Fig. 3: B-BP training error for the 3-bit permutation in Table 2 with
different numbers of hidden neurons. The two curves describe the
training error for the forward and backward passes through the 3-
layer network. Each test used 2000 samples. The number of hidden
neurons varied from 5, 10, 20, 50, 100, to 200.

Table 3 shows the forward-pass test errors for learning
3-layer neural networks as the number of hidden neurons
grows. We again compared the three forms of BP for
the network training–two forms of unidirectional BP and

8 Int'l Conf. on Advances in Big Data Analytics | ABDA'16 |

ISBN: 1-60132-427-8, CSREA Press ©

Table 2: 5-Bit Bipolar Permutation Function.

Input x Output t

[−−−−−] [+ + +−−]
[−−−−+] [+ + +−+]
[−−−+−] [−+−−+]
[−−−++] [−−−−+]
[−−+−−] [+−+−+]
[−−+−+] [−−+−+]
[−−++−] [+−−+−]
[−−+++] [+ +−+−]
[−+−−−] [−+−−−]
[−+−−+] [−+−++]
[−+−+−] [+−+−−]
[−+−++] [+−−−+]
[−++−−] [+ +−++]
[−++−+] [−−+−−]
[−+++−] [−+++−]
[−++++] [−−+−−]

Input x Output t

[+−−−−] [+−−−−]
[+−−−+] [+−−−−]
[+−−+−] [−−−−−]
[+−−++] [−−+++]
[+−+−−] [−−++−]
[+−+−+] [+ +−−+]
[+−++−] [−−−+−]
[+−+++] [+ +−−−]
[+ +−−−] [−+++−]
[+ +−−+] [+ + ++−]
[+ +−+−] [+−−++]
[+ +−++] [−+−+−]
[+ + +−−] [+−+++]
[+ + +−+] [+ + +++]
[+ + ++−] [+−++−]
[+ + +++] [−−−++]

Table 3: Forward-Pass Testing Error Ef

Backpropagation errors

Hidden Neurons Forward Backward Bidirectional

5 0.6032 1.2129 0.7600
10 0.1732 1.4259 0.4700
20 0.0068 1.4031 0.2307
50 1.5×10−4 1.5811 0.0430

100 2.0×10−6 1.4681 0.0043
200 5.0×10−8 1.6061 4.0×10−6

Table 4: Backward-Pass Testing Error Eb

Backpropagation errors

Hidden Neurons Forward Backward Bidirectional

5 1.2070 0.6016 0.8574
10 1.4085 0.1584 0.4900
20 1.2384 0. 0023 0.2895
50 1.3157 1.2×10−4 0.0498

100 1.4681 3.6×10−6 0.0039
200 1.7837 8.7×10−8 9.0×10−6

bidirectional BP. The forward-pass error for forward BP fell
significantly as the number of hidden neurons grew. The
forward-pass error of backward BP decreased slightly as
the number of hidden neurons grew and gave the worst
performance. Bidirectional BP performed well on the test
set. Its forward-pass error also fell significantly as the
number of hidden neurons grew. Table 4 shows similar error-
versus-hidden-neuron results for the backward-pass error

The two tables jointly show that the unidirectional forms
of BP performed well only in one direction while the B-
BP algorithm performed well in both directions. Hence
we propose using only the B-BP algorithm for learning
bidirectional function representations or approximations.

Data: 𝑻 input vectors {𝒙1, . . ., 𝒙𝑇 }, 𝑻 target vectors {𝒚1, . . ., 𝒚𝑇 } such that 𝑓(𝒙𝒊) =
𝒚𝑖. Number of hidden neurons 𝑱. Batch size 𝑺 and number of epochs 𝑹.
Choose the learning rate 𝜼.

Result: Bidirectional network for function 𝑓.

Initialize: Randomly select the weights of 𝑾(0) and 𝑼(0). Randomly pick the bias

weights for input, hidden, and output neurons { 𝒃𝑥 , 𝒃ℎ , 𝒃𝑦. }

 while epoch 𝒓 : 𝟎 𝑹 do

Initialize: ∆𝑾 = 𝟎, ∆𝑼 = 𝟎, ∆𝒃𝒙 = 𝟎, ∆𝒃𝒚 = 𝟎, ∆𝒃𝒛 = 𝟎

while batch_size 𝒍 : 𝟏 𝑳 do

 Pick input vector 𝒙 and its corresponding target vector 𝒚.

 Compute hidden activation 𝒂ℎ and output activation 𝒂𝑦 for forward
pass.

 Compute hidden activation 𝒂ℎ and output activation 𝒂𝑦 for backward
pass.

 Compute the derivatives with respect to 𝑾 and 𝑼: 𝛁𝑾𝐸 and 𝛁𝑈𝐸.

 Compute the derivatives with respect to the bias weights: 𝛁𝒃𝒙𝐸,
𝛁𝒃𝒚𝐸, and 𝛁𝒃𝒚𝐸

 Compute change in weights: ∆𝑾 = ∆𝑾 + 𝛁𝑾𝐸 and ∆𝑾 = ∆𝑾 +
 𝛁𝑼𝐸

 Compute change in bias weights: (∆𝒃𝒙 = ∆𝒃𝒙 + 𝛁𝒃𝒙𝐸), (∆𝒃𝒚 =
 ∆𝒃𝒚 + 𝛁𝒃𝒙𝐸) and (∆𝒃𝒛 = ∆𝒃𝒛 + 𝛁𝒃𝒛𝐸).

End

Update: 𝑾(𝒓+𝟏) = 𝑾(𝒓) −
𝜼

𝑳
 ∆𝑼

𝑼(𝒓+𝟏) = 𝑼(𝒓) −
𝜼

𝑳
 ∆𝑼

𝒃𝒙(𝒓+𝟏)
= 𝒃𝒙(𝒓)

−
𝜼

𝑳
 ∆𝒃𝒙

𝒃𝒚(𝒓+𝟏)
= 𝒃𝒚(𝒓)

−
𝜼

𝑳
 ∆𝒃𝒚

𝒃𝒛(𝒓+𝟏)
= 𝒃𝒛(𝒓)

−
𝜼

𝑳
 ∆𝒃𝒛

End

Algorithm 1: The Bidirectional BP Algorithm

5. Conclusions
We have shown that a bidirectional multilayer network can

exactly represent bipolar or binary permutation mappings if
the network uses enough threshold or sigmoidal neurons.
The proof requires an exponential number of hidden neurons
for exact representations but much simpler representation
exist in general. The new B-BP algorithm allows bidi-
rectional learning of sampled functions. It can often find
efficient bidirectional representations or approximations with
a smaller set of hidden neurons.

References
[1] B. Kosko, “Bidirectional associative memories,” IEEE Transactions on

Systems, Man and Cybernetics, vol. 18, no. 1, pp. 49–60, 1988.
[2] B. Kosko, Neural Networks and Fuzzy Systems: A Dynamical Systems

Approach to Machine Intelligence. Prentice Hall, 1991.
[3] D. Rumelhart, G. Hinton, and R. Williams, “Learning representations

by back-propagating errors,” Nature, pp. 323–533, 1986.
[4] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol.

521, pp. 436–444, 2015.
[5] M. Jordan and T. Mitchell, “Machine learning: trends, perspectives,

and prospects,” Science, vol. 349, pp. 255–260, 2015.
[6] S. Y. Kung, Kernel methods and machine learning. Cambridge

University Press, 2014.

Int'l Conf. on Advances in Big Data Analytics | ABDA'16 | 9

ISBN: 1-60132-427-8, CSREA Press ©

