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Abstract— Time-lapse hyperspectral imaging technology
has been used for various remote sensing applications due
to its excellent capability of monitoring regions of interest
over a period of time. However, large data volume of four-
dimensional hyperspectral imagery demands for massive
data compression techniques. While conventional 3D hy-
perspectral data compression methods exploit only spatial
and spectral correlations, we proposed a novel lossless
compression algorithm that can achieve significant gains on
compression efficiency by also taking into account temporal
correlations inherent in the dataset. Experimental results
demonstrated the effectiveness of the proposed algorithm.
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1. Introduction
With more advanced remote sensing sensors being used,

the spatial and spectral resolutions of the images captured

by those sensors has increased rapidly, which naturally leads

to large data volume. Hyperspectral imaging technology

collects the image information across a wide-range electro-

magnetic spectrum with fine wavelength resolution. Hence,

a hyperspectral image (HSI) is a three dimensional data cube

with two spatial dimensions and one spectral dimension.

Given the fact that most of remote sensing sensors collect

data using either 12-bit or 16-bit precision, the size of a

hyperspectral image cube is typically very large.

Time-lapse hyperspectral imagery is a sequence of 3D

HSIs captured over the same scene but at different time

stamps (often at a fixed time interval). Actually, time-lapse

hyperspectral imagery can be considered as a 4D dataset

whose size increases significantly with the total number of

time stamps. Fig. 1 shows an illustration of one time-lapse

hyperspectral image dataset. Each stack represents one 3D

HSI. Furthermore, more stacks will be captured by the HSI

sensor with the time. Particularly, in the extreme case of

4D HSI data streaming, the captured data volume accumu-

lates very fast. This huge data volume does not only slow

down the data transmission within the limited bandwidth
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Fig. 1: A 4D time-lapse hyperspectral image dataset, where

X and Y are the spatial directions, and Z is the spectral

direction.

condition but also requires more storage space which could

be very expensive in many remote sensing applications.

Data compression techniques provide a good solution to

these problems. As captured images are most likely at high

fidelity for the accuracy demanding applications, lossless

compression is often chosen for these sensors over the lossy

compression.

Large efforts have been made to develop a lossless com-

pression algorithm for 3D HSI. LOCO-I [1] and 2D-CALIC

[2] utilize spatial redundancy to reduce the entropy of predic-

tion residuals. Since there exists strong spectral correlation,

3D methods including 3D-CALIC [3], M-CALIC [4], LUT

[5] and its variants, SLSQ [6] and CCAP [7] take this spec-

tral correlation into account and yield better compression

performance. Also, some transform-based methods, such as

SPIHT [8], SPECK [9], etc., can be easily extended to

lossless compression even though they were designed for

lossy compression. In addition to the goal of reducing the

entropy of either prediction residuals or transform coeffi-

cients, low computational complexity is another influential

factor because many sensing platforms have very limited

computing resources. Therefore, a new method named as

the “Fast Lossless" (FL) method, proposed by the NASA

Jet Propulsion Lab (JPL) in [10], was selected as the core

predictor in the CCSDS new Standard for Multispectral and

Hyperspectral Data Compression [11], to deal with 3D HSI

data compression.
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Fig. 2: Sample time-lapse hyperspectral image datasets at different time instants (from top to bottom: Levada, Nogueiro and

Gualtar).

To give an idea on the 4D image datasets tested in

this work, Fig. 2 shows the Levada sequence. Detailed

information about the Levada sequence can be found in

[12]. Note that only 2D color-rendered RGB images are

shown in Fig. 2 instead of the actual HSI data for display

purpose. Since time-lapse HSIs are captured over the same

scene at different time instants with gradually changing

natural illumination, there exists great similarity among these

HSIs at each time instant marked in Fig. 2. Therefore, this

temporal correlation can be further exploited to improve the

overall compression efficiency. To the best of our knowledge,

there is very few prior work on lossless compression of 4D

time-lapse HSI data in the literature. [13] proposed a 4D

lossless compression algorithm, albeit lacking details on the

prediction algorithms used for prediction. On the other hand,

in [14], a combination of Karhunen-Loeve Transform (KLT),

Discrete Wavelet Transform (DWT) and JPEG 2000 has

been applied to reduce the spectral and temporal redundancy

of 4D remote sensing image data. However, it is a lossy

compression method.

In this work, we conducted an information-theoretic anal-

ysis on the amount of compression achievable on 4D HSI

based on conditional entropy, by taking into account spec-

tral and temporal correlations. We then proposed a low-

complexity correntropy-based least mean square (CLMS)

learning algorithm, which was employed for the first time

as a predictor to achieve higher data compression by better

adapting to the underlying statistics of HSI data.

The rest of this paper is organized as follows. Section

2 introduces an information theoretic analysis framework

for time-lapse HSI lossless compression. Section 3 reviews

the CLMS learning algorithm. Furthermore, the proposed

lossless compression engine based on CLMS learning is

presented in detail. Experimental results are given in the

Section 4. The paper is concluded in Section 5 with a

discussion on the further work.

2. Problem Analysis
In order to evaluate the potential amount of compres-

sion we can achieve on the 4D dataset, we conducted an

information-theoretic analysis. Let Xt
j be a 4D hyperspectral

image source at the tth time instant and jth spectral band

producing K different pixel values vi (i = 1, · · · ,K).

Then the entropy of this source is computed based on the

probabilities p(vi) of these values by

H(Xt
j) = −

K∑
i=1

p(vi) · log2 [p(vi)] . (1)

If we assume that there are no dependencies between these

pixel values for Xt
j , at least H(Xt

j) bits must be spent on

average for each pixel of this source. However, for the 4D

hyperspectral images, this assumption does not hold given

the existence of strong spectral and temporal correlations.

The value of a particular pixel might depend on some other

pixels from its spatial, spectral or temporal neighborhoods.

Therefore, these correlations can be exploited to reduce the

H(Xt
j), i.e., less bits spent on average after compression.

Furthermore, the conditional entropy of this time-lapse hy-

perspectral image source can be computed as follows:

H(Xt
j |Ct

j) = −
K∑
i=1

p(vi|Ct
j) · log2

[
p(vi|Ct

j)
]
. (2)

where Ct
j denoted as context, which represents a group of

correlated pixels. As long as there is any correlation between

the context Ct
j and the current pixel, H(Xt

j |Ct
j) < H(Xt

j)
always holds, in other words, fewer bits are required after

compression.

The choice of context largely determines how much com-

pression we can achieve by using prediction-based lossless
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compression schemes. Intuitively, highly-correlated pixels

are expected to be included into the context. Given the

consideration that spectral and temporal correlations are

typically much stronger than spatial correlation in hyper-

spectral images, our focus in this work is on spectral and

temporal decorrelation. In fact, recent research [15], has

shown that explicit spatial decorrelation is not always nec-

essary to achieve good performance [16]. Also, in contrast

to nonlinearity nature of spatial decorrelation, a linear pre-

diction scheme is believed to be adequate for spectral and/or

temporal prediction because of high degree of correlations

[16]. In Section 4, we will investigate the actual compression

gains using different combinations of context pixels.

3. The Algorithm

Linear prediction based lossless compression method uses

a linear combination of those encoded pixels (causal context

pixels) adjacent to the current pixel as its estimate. For 4D

time-lapse HSI lossless compression, a linear prediction can

be generalized as follows:

x̂t,j
m,n = wT

t,jyt,jm,n. (3)

where x̂t,j
m,n represents an estimate of a pixel, xt,j

m,n, at

spatial location (m,n), jth band and tth time frame while

yt,jm,n and wt,j represent its causal context pixels and linear

weights respectively. Note that only adjacent spectral bands

and bands from previous time frames are included in this

context as mentioned in Section 2.

Prediction residuals are generated by subtracting the actual

pixel values from their estimates and then encoded using

entropy coders such as Golomb-Rice Codes (GRC) [17] and

Arithmetic Codes (AC) [18]. In order to produce accurate

estimates, linear weights must be adapted to the local

statistics of pixels in the time-lapse HSI data. Recently,

learning algorithms have gained some success to optimize

these weights in the applications of lossless compression of

3D HSI data [10], [19]. The FL method has been selected

as a new standard by CCSDS for its low-complexity and

effectiveness. The core learning algorithm of FL method

is least mean square (LMS). Traditional LMS methods use

mean square error (MSE) as the cost function. However, it is

well known that MSE is the optimal cost function for Gaus-

sian distributed signal [20], whereas the prediction residuals

more likely follow a Laplacian or Geometric distribution

[1]. So the performance of the conventional LMS predictor,

for example, the FL method may degrade in presence of

non-Gaussian signals, especially in those very structured

regions of one image. Some similar observations have been

noticed in [19]. To improve the robustness of the predictor,

we introduce an adaptive learning based on the Maximum

Correntropy Criterion (MCC) [20].

3.1 Correntropy-Based LMS (CLMS) Cost
Function

Correntropy was developed as a local similarity measure

between two random variables X and Y in [21], defined by:

Vσ(X,Y ) = E [κσ(X − Y )] , (4)

where κσ is a positive definite kernel with kernel width

controlled by the parameter σ, and the expectation E(·) is

practically computed using sample arithmetic average. By

following [20], we choose the normalized Gaussian kernel

with variance σ as the kernel κσ(·) = 1√
2πσ

e−
(·)2
2σ2 .

In [21], Taylor series expansion was applied on the

exponential term in the kernel in Eq. (4) so that the

Correntropy can be viewed as a generalized correlation

function containing even higher order moments of the error

signal X − Y . Also, it is justified in [21] that localization

introduced by the kernel can reduce the detrimental effects

of outliers and impulsive noise, while second-order statistics,

like MSE, may suffer from bias in these conditions. The

good behavior of second order moment and fast conver-

gence of the higher order moments are combined into this

Correntropy measure. An adaptive filter was developed by

replacing the conventional MSE with this Correntropy as the

cost function. The detailed properties of Correntropy with

derivation and analysis can be found in [21]. Assume we

have a pair of random variables with a finite number of

samples {di, yi}Ni=1 where N is the number of samples in

each random variable. For example, di and yi can be viewed

as the actual pixel value and its estimate, respectively, in

this work. Furthermore, the estimate yi can be computed as

yi = WT
i Xi, a linear weighted average of input vector Xi.

The Correntropy based cost function, at nth time instant,

can be written as:

Jn =
1

N
√
2πσ

n∑
i=n−N+1

exp

[
−(di −WT

nXn)
2

2σ2

]
, (5)

where Wn is the filter weight at nth time instant. To find

the weight W to maximize this cost function analytically,

iterative gradient descent method is used with a small

learning rate μ. After computing the gradient of Jn with

respect to Wn, we obtain:

Wn+1 = Wn +
μ

N
√
2πσ3

n∑
i=n−N+1

[
exp

(−ei2
2σ2

)
eiXi

]
,

(6)

where ei = di−WT
nXn. Inspired by the stochastic gradient,

N is set to 1 to approximate the sum in Eq. (6). Therefore,

Wn+1 = Wn +
μ√
2πσ3

exp

(−en2

2σ2

)
enXn, (7)

which is very similar to the weight updating function of

LMS. In fact, this Correntropy-induced updating function

can be viewed as LMS with a self-adjusting learning rate,
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which reflects the outlier rejection property of the Corren-

tropy. It is worth noting that this CLMS is more robust to

the outliers with almost no additional cost of algorithmic

complexity compared to the conventional LMS.

In many remote sensing applications, images of scenes

have complex structures as shown in Fig. 2. These structures

will be reflected in the hyperspectral images as strong

edges and corners. This non-linearity property of the image

signal directly contributes to relatively larger residual values

and consequently outliers for the residual data distribution

because linear predictors cannot fully reduce the redundancy

in these cases. To improve the compression performance,

we utilize the CLMS to tackle structured regions in the HSI

data for its outlier rejection property. On the other hand,

convergence speed of the adaptive filtering plays a crucial

role in the prediction. Slow convergence often leads to less

accurate estimation in the prediction. CLMS provides a ro-

bust performance in the non-Gaussian condition with a faster

convergence compared to the conventional LMS. Therefore,

CLMS can help greatly enhance the prediction accuracy,

which will further contribute to better compression.

3.2 CLMS Based Predictor

To eliminate spatial correlation effect, local mean sub-

traction is conducted in every band of these datasets. In

Fig. 1, suppose the red pixel is the one we are predicting

and the arithmetic average of the three blue pixels from its

spatial causal neighborhood is computed and subtracted from

the red pixel value. We apply this local mean subtraction

to every pixel in the dataset. Denote Ns and Nt as the

number of pixels from previous spectral bands at the current

time instant (yellow pixels in Fig. 1) and the number of

pixels from the same spectral bands from previous time

frames (green pixels in Fig. 1), respectively. Then we define

the aforementioned causal context as the feature vector X
(shown in Eq. 7) for our CLMS learning algorithm. In

order to simplify the expression, we replace xt,j
m,n defined

in Eq. (3) with xt,j . The causal context is constructed as

Ct
j =

[
xt,j−1, xt,j−2 · · ·xt,j−Ns , xt−1,j , xt−2,j · · ·xt−Nt,j

]
.

Thus, for all pixels in one specific spectral band at any time

frame, the number of their context pixels are always the

same according to Ns +Nt determined by the user.

For each band, we initialize the wt,j to be all zeros and

carry on the CLMS learning algorithm to all the pixels in a

raster-scan order when it reaches the end of this band. Once

the algorithm stops, the weight vector will be initialized

again for the next band until the end of the entire HSI dataset.

Algorithm 1 shows the details of the whole procedure of this

CLMS predictor. We emphasize that all the residuals will be

mapped to integers before sending to entropy encoder in a

reversible manner.

Algorithm 1 CLMS Predictor

Initialize:

1) T (# of time frames)

2) B (# of spectral bands for each time frame)

3) μ = 0.3 and σ = 50
4) Local mean subtracted data X
for t = 1:T do

for b = 1:B do
initialize: w = 0
for each pixel in this band do

Output residual x− x̂ using Eq. (4).

Updating w using Eq. (7).

end for
end for

end for

3.3 Entropy Coding
Both the Golomb-Rice code (GRC) and the arithmetic

code (AC) have been widely used to encode the prediction

residuals in hyperspectral image compression methods. Al-

though AC may produce slightly better coding efficiency,

GRC can yield comparable performance with accurate data

modelling. Also, GRC is known for its simplicity and

minimal memory capacity requirement while AC very often

requires much more computations. Given the limited on-

board computing power in most remote sensing applications,

in this work, we employ GRC on prediction residuals of

time-lapse HSI data to generate the final bit sequence for

the data transmission and storage. The readers are referred

to [10] for details of entropy coding.

4. Experimental Results
We conducted our experiment on three 4D time-lapse

HSI test datasets, Levada, Gualtar and Nogueiro. Basic

information of these three datasets are listed in the Table 1.

Detailed information of these datasets can be found in [22].

Each single HSI has the same spatial size, 1024 × 1344,

with 33 spectral bands. Both Gualtar and Nogueiro have

nine time stamps while Levada has seven. Note that the

original data for these datasets has been mapped into [0, 1]
and stored using “double" data format (64 bits). So we

recover the data to its original precision by applying a

linear remapping. Since our algorithm is a learning-based

method which predicts the value regardless of the data scale,

we believe these post-processed datasets are suitable for

evaluating the lossless compression algorithm. While the size

of a single dataset we tested is not very large, ranging from

454.78 MB (for 7 frames) to 584.71 MB (for 9 frames), the

data can easily grow to a huge size with increased number

of time frames and higher spatial and spectral resolutions.

Besides, HSI data streaming can become a challenging task,

where efficient data compression is essential.
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There are two parameters to be determined in CLMS

before the prediction: σ in kernel function (shown in Eq. 7)

and initial learning rate μ. Small σ value will lead to

relatively large actual learning rate and vice versa. We

experimented with different parameters to achieve the best

results. As a result, we fix μ and σ in Eq. (7) at 0.3 and 50

in our test.

Table 1: Datasets Used.

Dataset Size # of time frames Precision(bits)
Levada 1024× 1344× 33 7 12
Gualtar 1024× 1344× 33 9 12

Noguerio 1024× 1344× 33 9 12

As discussed in Section 2, we applied our algorithm using

different combinations of Ns and Nt causal pixels from

spectral and temporal bands. Given the limited space, we

only provide compression bit rate (bits/pixel) results for

Levada in Table 2. As we can see, local mean subtraction

without spectral and temporal decorrelation (Ns = 0 and

Nt = 0), was effective in removing great deal of signal

correlation as the bit rate drops from 12 to 7.0604 bits/pixel.

This also indicates that it is not necessary to explicitly

decorrelate spatially to achieve a competitive compression

performance for time-lapse HSI data. More importantly, our

algorithm can further compress 4D time-lapse HSI data by

using spectral and temporal correlation. The bit rate has

been reduced by approximately 1.2 bits by just adding one

previous spectral band and the same spectral band from

the previous time stamp in the context. Generally, the bit

rate decreases, i.e., yielding less bits after compression,

with more bands selected to form the learning context.

Furthermore, if we fix either Ns or Nt and increase only

Nt or Ns accordingly, the compression bit rate will drop

as well. However, this performance improvement gradually

becomes marginal as Ns or Nt increases. Fig. 3 shows three

surface plots of bit rates on these test datasets, showing how

the bit rate changes with different combinations of Ns and

Nt.

Table 2: Bit rates (bits/pixels) on “Levada".

Ns Nt = 0 Nt = 1 Nt = 2 Nt = 3 Nt = 4 Nt = 5

0 7.0604 6.2858 6.2686 6.2431 6.2400 6.2382
1 6.0476 5.8985 5.8898 5.8813 5.8795 5.8787
2 5.9807 5.8570 5.8497 5.8414 5.8395 5.8388
3 5.9592 5.8433 5.8360 5.8279 5.8260 5.8252
4 5.9487 5.8359 5.8289 5.8211 5.8191 5.8184
5 5.9410 5.8308 5.8239 5.8162 5.8146 5.8138

To further illustrate how bit rates respond to different

combinations of Ns and Nt, we arbitrarily fix Ns = 2
and Nt = 2 separately and adjust another variable Ns or

Nt from 0 to 5. The results of this experiment on three

datasets have been plotted in Fig. 4. First, it is obvious that

more bands used in the prediction will contribute to better

(a) Levada.

(b) Nogueiro.

(c) Gualtar.

Fig. 3: Bit rate surface plots on three datasets.

prediction in terms of smaller bit rates. But this performance

improvement decays really fast as what have we observed
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Fig. 4: Bit rate changes with Ns and Nt.

in the Table 2. Moreover, we can find that the performance

improvement caused by the spectral decorrelation is more

noticeable than temporal decorrelation. We believe this is

because for our test datasets spectral correlation is much

stronger than temporal correlation especially each HSI in

these 4D datasets is captured at approximately one hour

interval which leads to less strong correlation temporally. If

this imaging capture time interval is reduced, then adjacent

HSIs will likely to share more similarities in statistics

because of less illuminance condition change.

Overall, it is possible to increase Ns and Nt to achieve

higher compression ratio. On the other hand, prediction

using only one previous spectral band and/or the same

spectral band but from last time instant will also yield good

compression performance at a very low computational cost.

This feature also provides great flexibility in compression

performance and complexity.

5. Conclusions and Future Work
We have proposed a new predictive lossless compression

algorithm for 4D time-lapse hyperspectral image data using

a low-complexity Correntropy-induced LMS learning. The

Correntropy based cost function seemed to be effective in

capturing the non-linearity and non-Gaussian conditions of

the prediction residuals of time-lapse HSI data. Experimental

results have demonstrated the outstanding capability of this

proposed algorithm to compress 4D time-lapse HSI data

through spectral and temporal decorrelation.
Second, an information theoretic analysis based on con-

ditional entropy has been made to provide a framework to

guide and evaluate the actual compression. Increasing the

number of previous bands involved in the prediction will

absolutely yield better compression performance as long

as they are correlated statistically with the current HSI

band. We have seen the increasingly improved compression

efficiency from the experimental results.
We will investigate how to fully utilize this proposed

algorithm and analytic framework to handle HSI data stream-

ing, which is more challenging but also in better need for

compression. Additionally, ROI lossless compression of HSI

has begun to gain attention from researchers. Recently, some

work has been done to handle ROIs in HSI data. As long

as ROIs can be identified accurately, we can compress the

HSI data without any information loss at a high compression

ratio which is comparable to lossy compression. Since our

algorithm mainly utilizes spectral and temporal correlation

in the prediction, it can be extended to the compression of

ROIs in 4D time-lapse HSI data with minimal modifications.
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