
On the Agile Development of Virtual Reality Systems

F. Mattioli1, D. Caetano1, A. Cardoso1, and E. Lamounier1
1Faculty of Electrical Engineering, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil

Abstract— Processes for Agile software development pre-
sent an iterative and incremental approach to computer
systems, which focus on users’ needs and embraces changes.
Virtual Reality projects are strongly tied to rapid evolution
of technology, and to the need for clients’ feedback, during
the whole project’s life-cycle. In this work, a comparative
evaluation of existing methodologies is presented and the
application of agile software development methodologies in
Virtual Reality projects is argued. Then, a proposal for
an agile software development process for Virtual Reality
systems is presented and its benefits are discussed.

Keywords: Agile Development, Virtual Reality, Software Engi-

neering

1. Introduction
Agile Software Development has, among its main fea-

tures, an iterative and incremental approach to Software

Engineering principles. This approach is suitable for Virtual

Reality projects and offers, by its evolving nature, many

benefits associated to risk management in software projects

[1].

The word “agile” was first used in Software Engineering

at 2001, by a consortium of software development methods

specialists, who have written, at that time, the “Agile Ma-

nifesto” [2]. This manifesto highlighted some principles,

shared by many different software development methods,

which were thereafter called “Agile Methods” or “Agile

Processes” [2], [3]:

• Individuals and interactions over processes and tools.

• Working software over comprehensive documentation.

• Customer collaboration over contract negotiation.

• Responding to change over following a plan.

Virtual Reality based systems require knowledge in diffe-

rent subjects, such as Computer Graphics, geometric mode-

ling, multimodal interaction among others [4]. Some charac-

teristics of these applications reveal the need for continuous

improvement in their development process. Some of these

characteristics can be highlighted:

• Rapid evolution of visualization and graphical proces-

sing technology [5].

• Customer’s indecision and change of opinion, a critical

concern when high-cost equipment is used [5].

• Need for implementation of prototypes, used to help

customers in the solution’s evaluation process.

Therefore, evolutionary development, adaptive planning

and response to requirements’ changes are major impro-

vements to be considered on agile development of Virtual

Reality systems.

2. Agile Software Development
Agile Software Development is an approach of software

production focused on adaptability, which can be understood

as the process’ capability of responding to changes in

markets, requirements, technology and development teams

[6].

Sections 2.1 and 2.2 present a brief description of two

agile methods: XP and Scrum.

2.1 Extreme Programming (XP)
Extreme Programming (XP) had its origins guided by

the needs of small software development teams, working

on projects with highly volatile requirements. XP is a light

development method, which fundamentals include [7]:

• Unit tests are written before the code being tested.

These tests are executed throughout the project life-

cycle.

• Integration and testing are performed continuously,

many times a day.

• The project begins with a simple architecture, that

constantly evolves in an effort to increase flexibility

and reduce unnecessary complexity.

• A minimal system is rapidly implemented and de-

ployed. This minimal system will evolve according to

project’s directions.

Amongst the main benefits of Extreme Programming, the

following are worth mentioning [7]:

• Do not force premature specialization of team mem-

bers. All team members play different roles inside the

development team, in a daily basis.

• Analysis and design are conducted throughout the

whole project life-cycle, favoring adaptability and rapid

response to project environment changes.

• Project infrastructure is built in an iterative way, fol-

lowing project’s evolution and meeting its real needs.

Figure 1 presents the main elements of the XP process’

life-cycle. User Stories are collected and used in require-

ments’ specification and also in test scenarios definition. An

Architectural Spike is conducted to elucidate the relevant

solution elements, resulting on a System Metaphor.

10 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

Fig. 1: XP life-cycle [8].

During Release Planning, architectural problems may

arise. Each time an architectural problem is detected, a Spike

is conducted to solve this problem. The resulting artifact is

the Release Plan.

Each iteration targets a subset of functionalities. If a

problem is detected during the iteration, Release Planning

is carried again, and an updated Release Plan is written.

At the end of the iteration, a release is made available and

Acceptance Tests are conducted, using the test scenarios

defined from the User Stories. If bugs are found during tests,

another iteration is lead to fix them. If no bugs were found,

the next iteration is started. When customer acceptance is

confirmed, a Small Release (release of a working version of

the software) is performed.

2.2 Scrum
Scrum is an empirical approach for managing software

projects, based on the following principles: adaptability, fle-

xibility, and productivity [9]. In Scrum, projects are divided

into sprints. A sprint is a development iteration, with the

typical duration of 30 days. Each sprint is associated to a

set of tasks, whose priority is rather defined together with

the clients. For each task, the remaining time to finish is

estimated [10]. Tasks can be relocated, according to project’s

constraints.

In a nutshell, the Scrum process is composed by a set of

rules, procedures and practices, favoring software develop-

ment [8]. Figure 2 presents the Scrum process’ life-cycle.

In the Scrum life-cycle, known requirements are grouped

and prioritized in a product backlog [11]. A subset of these

requirements, known as the “Sprint Backlog”, contains the

tasks assigned to a given sprint. From the “Sprint Backlog”,

tasks are elucidated in detail.

During the sprint - which is scaled for no more than

30 days - a daily review meeting is conducted. This daily

meeting should not last long (15 minutes is a general

suggestion), so that all project members can attend it [12].

In the daily meeting, team members are required to briefly

answer three questions [13]:

1) What have I done since the last Daily Scrum?

2) What will I do between now and the next Daily

Scrum?

3) What obstacles and roadblocks are in my way?

These answers have the objective of providing managers

and developers with general information about the sprint’s
progress. Also, efforts can be grouped to help solving

common problems, while experience can be shared in a daily

basis.

Finally, at the end of each sprint, the new functionalities

are demonstrated and tested, looking forward to stakehol-

ders’ approval.

2.3 XP and Scrum
Although complementary, XP and Scrum have different

application, in different aspects of software development.

While Scrum can be considered an agile project management

tool, XP is more focused on the development side [14].

Scrum strengths include project’s visibility in the market’s

context, continuous project management and improved col-

laboration between team members. XP motivation include a

simplified requirements management approach and enhanced

product quality. Both methodologies are based on iterative

and incremental development [15].

Put together, Scrum and XP are valuable approaches,

both on management and technical practices [14]. Therefore,

in this work, an hybrid process is proposed. This hybrid

process can benefit from Scrum management practices (such

as “Sprint Backlog” and daily reviews), together with XP

engineering practices (product quality, short iterations and

test-driven development). This process is presented in detail

on Section 4.

3. Virtual Reality Systems Development
The develpment of Virtual Reality Systems (VRS), as

well as the development of any software, requires processes

and development methods. In the particular case of VRS,

methods and processes should be adequate to a rapidly

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 11

Fig. 2: Scrum life-cycle [8].

changing technological environment and to the particular

aspects of user interaction.

Tori et al. present a development process that aggregates

prototyping with iterative and evolutionary software deve-

lopment [5]. This process is based on Software Engineering

models, adapted to the particularities of Virtual Reality

Systems. The proposed process is composed of 5 stages,

executed in each iteration: Requirement Analysis, Design,

Implementation, Evaluation and Deployment. These stages

are graphically represented in Figure 3.

Another development approach, also suitable for use

on Virtual Reality Systems development is presented by

Kim [16]. At first sight, this approach can be seen as an

extension of the classic spiral model, adapted to Virtual

Reality Systems characteristics, such as interaction models

and scene modeling. Figure 4 presents the main elements of

the proposed process.

Although both processes addressed in this section present

strong influences from the structured approach, some VRS

features are closely related to agile practices. Among them,

one can highlight:

• The evolutionary nature of Virtual Reality Systems.

• The need for models that represent, iteratively, form,

function and behavior of Virtual Reality Systems com-

ponents.

• The better acceptance of systems which are developed

with active participation of stakeholders, due to the

constant need for evaluation and feedback.

• The need for exhaustive tests, aiming at reducing in-

teraction problems between users and Virtual Reality

Systems.

Based on these observations, the application of agile

methods in Virtual Reality Systems development is discussed

in Section 4.

4. Agile Development of Virtual Reality
Systems

No software development process can guarantee, by itself,

any improvement in productivity and reliability [17]. Howe-

ver, some characteristics are common in successful processes

[18]:

• Iterative development: complex projects, with many

modules, are more likely to face integration issues. An

12 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

Fig. 3: VRS development process. Adapted from [5].

Fig. 4: VRS development process [16].

adequate iteration planning can reduce these integration

issues and favor development process management.

• Process’ continuous evaluation: even requirement-

oriented development processes cannot make software

projects totally immune to changes on development

teams and on user requirements. The evaluation (and

consequent adaptation) of the development process has

a major importance throughout the project’s life-cycle.

• Best practices: improvements associated to the use of

development best practices [19], [20] and also design

patterns [21] should be considered and discussed in

software projects.

When adapting an existing process to a given context,

the suggested approach is to customize the existing process,

iteratively testing and refining this customization, in accor-

dance with each project’s characteristics [22]. During this

customization, some principles might be observed [23]:

1) Larger teams require robust processes and methods.

2) Carried-over process complexity represent additional

costs.

3) Critical applications require highly-detailed methods.

4) Clients’ feedback and team communication reduce the

need for intermediate documentation.

5) As the number of legal issues involved in a project

increase, methods’ level of detail should also increase.

From the presented literature review, this work’s objective

was defined: to propose a process model for the agile

development of Virtual Reality systems. The proposed model

- detailed in Section 5 - consists of a hybrid model, gathering

elements from both XP and Scrum, adapted to the context

of Virtual Reality systems development.

5. Results
In this section, a development process for Virtual Reality

systems is proposed. The presented process is composed

by 8 main activities: User stories / storyboards definition,

architectural spike, interactivity requirements elucidation,

iteration planning, spike, development, integration tests and

client tests. Development is executed iteratively, and feed-

back received in past iterations is used to help planning the

next ones.

By reviewing the state of the art of VRS development

methods, some key features of these systems were defined:

• The evolutionary nature of VRS.

• Iterative building of high-fidelity models.

• The need for clients’ feedback.

• The need for interaction and usability tests.

• The need for system modularization.

A VRS development process should keep these features

in focus during the entire project life-cycle, in each of the

activities presented above. In Figure 5, a graphical repre-

sentation of the flow of activities in the proposed process is

displayed. In the following sections, each of these activities

is detailed.

5.1 User stories/storyboards
An user story is a brief description of a system functiona-

lity, from the user point of view. User stories are very helpful

on requirement analysis because they provide developers

with users’ real expectations about the system.

When developing high-complexity graphical systems -

such as VRS - text based user stories can be limited to

detail users’ needs. To overcome this, the proposed process

suggests the use of storyboards, used to complement user

stories. Storyboards are graphical sketches, elaborated by

clients (or with their supervision), whose objective is to help

developers on performing an accurate requirement analysis.

5.2 Interactivity requirements’ analysis
Interactivity is the central aspect of many Virtual Reality

systems, having a major role in these systems’ usability.

Thus, the detailed analysis and definition of interactivity

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 13

Fig. 5: Agile development process for VRS.

requirements has a prominent position ind the development

process. In this activity, test applications - implementing the

desired interaction methods - can be used. These applications

should help developers and clients in the evaluation and

viability analysis of the required interaction methods.

5.3 Architectural spike
In the architectural spike, a viability analysis of the new

requirements is conducted. The requirements are extracted

from user stories, storyboards and interactivity requirements’

analysis. This activity has the goal of reducing risks related

to unknown technology (for example, third-party libraries).

The architectural spike results in the metaphor definition.

This metaphor will be used by the development team to

represent the subset of requirements in focus at the current

iteration.

In the architectural spike, the resources available for

requirements’ implementation are investigated. This activity

is very important in VRS development, since it suggests and

encourages experimentation. Together with the “Interactivity

requirements analysis”, this activity is strongly related to

technological advances in Virtual Reality.

5.4 Iteration planning
Iteration planning takes place at the beginning of each

iteration. The resulting artifact - the iteration plan - addresses

a subset of requirements, elucidated from the user stories,

storyboards and interactivity requirements analysis. During

iteration planning, each time a problem is detected, a spike

is conducted, in order to investigate and propose possible

solutions.

It’s very important to highlight the adaptive behavior of

iteration planning. Ideally, iteration planning should be flexi-

ble enough to embrace changes on application requirements

and solutions to the problems found inside the iteration.

5.5 Spike
A spike is a small development cycle, whose main ob-

jective is to provide developers with possible solutions to

a given problem. Inside the spike, test applications (or

prototypes) can be built, to help developers on testing and

discussing proposed solutions. If possible, clients’ feedback

can be used to guide the development team on the right

direction, according to users’ needs.

5.6 Development
Once the iteration plan is defined, development takes

place. Development is composed by 4 main tasks, adapted

from the consolidated Rational Unified Process [24]: analy-

sis, design, codification and tests.

Analysis and design share the common goal of structuring

the implementation of the iteration plan’s requirements. A

set of tests - proposed by the clients - is used to guide the

development team on the implementation of the most im-

portant requirements, from the clients’ point of view. Then,

developers are requested to propose their own tests. With

clients’ and developers’ tests defined, the codification task

begins. Development activity is finished when the system

successfully executes the proposed tests.

The evolutionary nature of the development activity

should be highlighted. In the beginning, the system is com-

posed by simplified models, that represent the main elements

of the VRS. As the system evolves, these models are refined,

14 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

resulting in components whose shape and behavior are each

time closer to the represented elements.

5.7 Integration tests
In each iteration, integration tests are conducted right after

the development activity. The modifications performed in the

current iteration will be integrated to the main system only

after successfully passing these tests. If any problem is found

during integration tests, development activity is restarted.

Developers will then propose and test possible corrections

to the problems found.

When the new version passes the integration tests, next

iteration planning takes place. New requirements will be

selected, according to the clients’ defined priority. When

a significant number of modifications is integrated to the

main stream, a working version, called “release candidate”,

is produced and submitted to tests by the clients.

5.8 Client’s tests
In this activity, clients are requested to perform functional,

usability and interaction tests on the release candidate. If

any problem is detected, or if any improvement is perceived

by the client, user stories and interactivity requirements

can be redefined. When clients’ approval is obtained, a

small version - which successfully implements a subset of

proposed requirements - is delivered.

Specifically for the case of VRS development, interactivity

tests play a major role in the overall development process.

Therefore, interaction tests should be exhaustively executed

by developers and clients, in order to avoid a significant

drop in system’s usability and efficiency, caused by poor

interactivity.

6. Conclusions and future work
Agile software development processes and practices can

be adapted to the development of Virtual Reality systems. In

particular, the iterative nature, the embrace of requirement’s

changes and the importance given to tests are some of the

characteristics that favors their application in VRS develop-

ment, since these same characteristics are shared by many

VRS projects.

Architectural spikes are considered a major improvement

in the VRS development process, since they allow developers

to conduct experiments in a constantly changing technology

environment. The correct elucidation and definition of inte-

ractivity requirements has a strong effect on system’s resul-

ting usability and efficacy. Finally, given the subjectivity of

some VRS concepts - such as systems’ interactivity quality -

stakeholders’ participation in the development process leads

to the production of improved quality systems, and results

in well satisfied clients.

A quantitative evaluation of the presented process’ appli-

cation in a case study is an interesting proposal for future

works. Also, the extension of the proposed process to other

domains - such as Augmented Reality or mobile application

development - is a valuable subject for future research.

Acknowledgments
This research is supported by FAPEMIG (Minas Gerais

State Agency) to which the authors are deeply grateful, as

well as to CAPES/Brazilian Ministry of Education & Culture

and to the National Counsel of Technological and Scientific

Development (CNPq).

References
[1] G. Booch, R. A. Maksimchuk, M. W. Engle, B. J. Young, C. Jim,

and H. K. A., Object-oriented analysis and design with applications,
3rd ed. Westford: John Wiley & Sons, 2007.

[2] K. Beck, M. Beedle, A. Bennekum, A. Cockburn, W. Cunningham,
M. Fowler, J. Grenning, J. Highsmith, A. Hunt, R. Jeffries, J. Kern,
B. Marick, R. C. Martin, S. J. Mellor, K. Schwaber, J. Sutherland, and
D. Thomas, “Manifesto for agile software development,” Available:
http://www.agilemanifesto.org, 2001, accessed March 25, 2009.

[3] E. G. d. Costa-Filho, R. Penteado, J. C. A. Silva, and R. T. V. Braga,
“Padrões e métodos ágeis: agilidade no processo de desenvolvimento
de software [Agile patterns and methods: agility on software develop-
ment process],” 5th Latin American Conference on Pattern Language
of Programming, vol. 5, pp. 156–169, 2005.

[4] G. J. Kim, K. C. Kang, H. Kim, and L. Jiyoung, “Software engineering
of virtual worlds,” Proceedings of the ACM Symposium on Virtual
Reality Software and Technology, pp. 131–138, 1998.

[5] R. Tori, C. Kirner, and R. Siscoutto, Eds., Fundamentos e tecnologia
de realidade virtual e aumentada [Virtual and augmented reality
fundamentals and technology]. Porto Alegre: SBC, 2006.

[6] A. Cockburn, Agile software development. Boston: Addison-Wesley,
2002.

[7] K. Beck, Extreme programming explained: embrace change, 2nd ed.
Addison-Wesley Professional, 2004.

[8] J. Hunt, Agile software construction. London: Springer, 2006.
[9] M. A. Khan, A. Parveen, and M. Sadiq, “A method for the selection

of software development life cycle models using analytic hierarchy
process,” in Issues and Challenges in Intelligent Computing Techni-
ques (ICICT), 2014 International Conference on. IEEE, 2014, pp.
534–540.

[10] V. Subramaniam and A. Hunt, Practices of an agile developer.
Dallas: Pragmatic Bookshelf, 2006.

[11] G. Kumar and P. K. Bhatia, “Comparative analysis of software
engineering models from traditional to modern methodologies,” in
Advanced Computing & Communication Technologies (ACCT), 2014
Fourth International Conference on. IEEE, 2014, pp. 189–196.

[12] M. Cohn, Succeeding with Agile - Software development using Scrum.
Boston: Pearson, 2010.

[13] A. Stellman and J. Greene, Learning Agile: Understanding Scrum,
XP, Lean, and Kanban. "O’Reilly Media, Inc.", 2014.

[14] M. Cohn, “Scrum & xp: Better together,” Available:
https://www.scrumalliance.org/community/spotlight/mike-cohn/april-
2014/scrum-xp-better-together, 2014, accessed March 10, 2015.

[15] K. Waters, “Extreme programming versus scrum,” Available:
http://www.allaboutagile.com/extreme-programming-versus-scrum,
2008, accessed March 10, 2015.

[16] G. J. Kim, Designing virtual reality systems: the structured approach.
London: Springer, 2005.

[17] F. Brooks, “No silver bullet: essence and accidents of software
engineering,” IEEE computer, vol. 20, no. 4, pp. 10–19, 1987.

[18] D. Pilone and R. Miles, Head first software development. Sebastopol:
O’Reilly Media, 2008.

[19] B. W. Kernighan and R. Pike, The practice of programming. Reading:
Addison-Wesley, 1999.

[20] A. Oram and G. Wilson, Eds., Beautiful code. Sebastopol: O’Reilly
Media, 2007.

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 15

[21] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns:
elements of reusable object-oriented software. Pearson Education,
1994.

[22] J. Shore and S. Warden, The art of agile development. "O’Reilly
Media, Inc.", 2007.

[23] A. Cockburn, Agile software development: the cooperative game
(agile software development series). Boston: Addison-Wesley Pro-
fessional, 2006.

[24] P. Kruchten, The rational unified process: an introduction. Addison-
Wesley Professional, 2004.

16 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

