
Debugging Multi-Threaded Applications using Pin-Augmented GDB
(PGDB)

Nachiketa Chatterjee1, Srijoni Majumdar2, Shila Rani Sahoo2, and Partha Pratim Das3
1A. K. Choudhury School of Information Technology,University of Calcutta, Kolkata, West Bengal, India

2School of Information Technology,Indian Institute of Technology, Kharagpur, West Bengal, India
3Department of Computer Science and Engineering, Indian Institute of Technology, Kharagpur, West Bengal, India

Abstract— In contrast to single threaded applications, de-
bugging multi-threaded applications is complex because of
the non-deterministic nature of concurrent programs. Mul-
tiple threads in concurrent programs introduce bugs like
datarace, deadlock and livelock. Popular debuggers like
GNU Debugger (GDB), Intel Debugger (IDB) and Microsoft
Visual Studio Debugger (MVSD) typically use static or
compile-time instrumentation and provide many features
to debug single threaded programs. However the features
dealing with debugging concurrency is limited. In this paper
we explore dynamic instrumentation using JIT (Just-In-
Time) compilation techniques for run-time behaviour using
dynamic instrumentation framework from Intel PIN [1].
Using PIN we augment GDB with support for datarace and
deadlock detection with automated breakpoint to GDB. We
call it PGDB or PIN-augmented GDB - a multi-threaded
debugging platform. We present here a prototype of PGDB
for detecting datarace and deadlock during the execution of
multi-threaded programs with the support of new commands
in PGDB.

Keywords: Multi-threaded debugging, datarace, deadlock,PGDB

or PIN-augmented GDB

1. Introduction
Debugging multi-threaded applications is complex be-

cause of the non-deterministic nature of concurrent pro-

grams leading to concurrency issues like race conditions and

deadlocks. Datarace occurs when two or more threads in

a program access the same memory location concurrently

without using any exclusive locks to serialize their accesses

and with atleast one access for write. Deadlock is a condition

in which two or more threads wait for each other to release

a shared resource before resuming their execution.

The classical approach to debugging single threaded appli-

cations (sequential programs) involves repeatedly stopping

the program, examining the state, and then either continuing

or re-executing to stop at an earlier point in execution.

Such debugging cycles help developers trace the sequential

execution paths well but unfortunately do not identify the

concurrency issues in multi-threaded programs.

Most popular debuggers like GNU Debugger (GDB)

[4], Intel Debugger (IDB) [5] and Microsoft Visual Studio

Debugger (MVSD) [6] provide many features to debug

single-threaded programs. However the features dealing with

debugging concurrency is limited (Table 1). Earlier Shi et

al [7] used PIN to extract different threaded behaviours of

applications by displaying the access / change history of a

shared variable, tracking locks held by threads and display-

ing information at the breakpoints but datarace or deadlock

was not detected. Also the method incurs huge overhead

for instrumentation. In this background our objective is to

augment the capabilities of existing debuggers with more

multi-threaded support to help debug concurrency issues.

A debugger typically uses static1 or compile-time in-

strumentation. However, we choose dynamic2 or runtime

instrumentation so that we can attach / detach debugging

support on-the-fly without changing compiled code.For dy-

namic instrumentation we use the PIN [3] framework from

Intel. Using PIN we augment GDB with support for datarace

and deadlock detection with automated breakpoint to GDB.

We call it PGDB or PIN-augmented GDB. Besides new GDB

commands for datarace and deadlock, we also support an

option to selectively enable/disable the detection mechanism

to reduce the overhead of dynamic instrumentation during

program execution.We have tested efficiency and accuracy

of PGDB by developing benchmark test cases.

Though the design of PGDB is agnostic to the platform,

the programming language or the multi-threading model,

our implementation here is based on GDB on Linux with

C/C++ language and pthreads [8] library for multi-threading

support.

This paper is organized as follows. In Section 2 we

outline the architecture of PGDB based on GDB, PIN and

their interconnection. The instrumentation mechanisms to

empower GDB detect concurrency issues like race condition

and deadlock are presented in Section 3 and the implementa-

tion aspects covering new GDB commands for concurrency

1In Static Instrumentation the source code is instrumented during com-
pilation and is used to identify the static program information.

2In Dynamic Instrumentation the binary (executable) code is instru-
mented using JIT (Just-In-Time) compilation to collect run-time informa-
tion.

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 109

Table 1: Comparison of PGDB with Existing Debuggers
Feature/Debugger PGDB GDB [4] IDB [5] MVSD [6]
Examining state of
existing threads

� � � �

Thread specific
breakpoints

� � � �

Thread synchroniz-
ing breakpoints

� � � �

Thread data sharing
events

�� × � �

Automatic notifica-
tion of new threads

� � � �

Logging Feature �� × × ×
Replay Feature × × × ×
Datarace detection �� × × ×
Deadlock detection �� × × ×
Livelock detection × × × ×

�� - Additional Feature �- Feature Present × -Feature Absent

support and enhancement of GDB GUI for user feedback

are discussed in Section 4. We present a sample debugging

session with PGDB in Section 5. The results debugging and

detection for a set of benchmark codes, designed specifically

to cover the corner cases of correctness of PGDB, are

discussed in Section 6. We conclude in Section 7 with

directions for future work.

2. Architecture of PGDB
To augment GDB with the intended multi-threaded de-

bugging features we need the following primitives:

• Control over memory accesses used by program to

identify memory instructions.

• Identification of read and write accesses to know the

purpose (reading or writing) of memory access by an

instruction.

• Control over thread granularity to find the thread ID

executing a given instruction and to notify when a

particular thread gets created or destroyed.

• Control over routine granularity to notify the start and

completion of a routine3.

• Control over lock to notify when the locks of a shared-

exclusive memory are acquired or released.

• Control over memory barrier to identify the user de-

fined synchronization using memory barrier.

We use the dynamic instrumentation framework of

PIN4 to create pintools that extract the above primi-

tives during the execution of an application under the

control of GDB. Since we use pthreads the events

of acquiring and releasing the locks are captured

from the invocations of pthread_mutex_lock() and

3A function is referred to as routine by PIN.
4PIN [1] is a binary instrumentation framework on Linux or Windows.

A wide variety of program analysis tools, called Pintools [3], can be built
using PIN. PIN is a JIT compiler that can inject instrumentation routines
in instruction, basic block, routine or image level units. An instrumentation
routine is attached as a callback either before or after an instrumentation
unit. The design of these callbacks decide the behaviour of the pintool.

pthread_mutex_unlock() functions respectively. The

resulting architecture of PGDB is shown in Figure 1 A. To

use PGDB a developer needs to compile the source code in

debug mode to create a GDB-compatible binary. The binary

then executes in remote mode with PIN having custom

instrumentations (as pintools). Finally, GDB is started and

connects to PIN through remote port to debug and detect

concurrency issues. The developer controls the debugging

by issuing our new concurrency detection commands from

GDB.

2.1 Interconnection of GDB with Pin
GDB supports a remote mode where it can communicate

to the remote stub that understands GDB protocol via a

Serial or TCP/IP connection. In PGDB PIN connects to

GDB via its remote debugging protocol. The communication

with the debugger is two-way as shown in Figure 1 B. GDB

sends commands to PIN and PIN sends notifications back

whenever the program stops on intended breakpoints or ter-

minates. Note that every program instruction that is executed

under the control of the debugger is still instrumented with

the PIN.

(a) (b)

Fig. 1: (A) The Basic Architecture of PGDB (B) Intercon-

nection of GDB with Pin via Remote Debugging Protocol

2.2 Breakpoint Propagation to GDB
PIN provides an API to generate breakpoint in GDB to

stop during program execution. When the Data Race Monitor

pintool identifies a potential Datarace or the Deadlock De-

tection pintool finds a deadlock event, a suitable breakpoint

is generated from within the respective pintool and is passed

on to the GDB console to stop the program execution. This

carries the thread ID and message for GDB console.

3. Design of PGDB
In PGDB we augment GDB with features to detect the

race condition and deadlock. These features may be turned

on or off dynamically during the execution of an application

under debug. We instrument RecordLockBefore()
and RecordLockAfter() before and after the

calls to pthread_mutex_lock() respectively.

Further we instrument RecordUnLockAfter() after

110 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

calls to pthread_mutex_unlock(). Following

instrumentations implement these features:

3.1 Data Race (Detection) Monitor
PIN provides APIs to identify memory accesses and to

detect if the thread holds a lock on it or not during the

access. Thus, to detect datarace we first identify the shared-

exclusive memory locations and then monitor these locations

for accesses with or without lock by a thread.

Instrumentation Policy
To identify whether or not a memory location is

shared among multiple threads, we maintain a hash ta-

ble MemTracker where the key-field is a (32- or 64-

bit) memory address and the value-field is a memory re-

gion structure containing the Thread ID and the Access

type (READ/WRITE). We perform image instrumentation

to get the address range of the main executable image

as loaded into memory and shared library images to fil-

ter out memory accesses for the main executable only as

thread-local and read-only memory accesses do not induce

dataraces.We instrument every instruction belonging to the

main executable image and shared library images. Identify-

ing memory locations is performed in two analysis routines

namely RecordMemRead() andRecordMemWrite()
before Load and Store instructions respectively. We use

thread IDs assigned by PIN for thread identification within

analysis routine

• RecordMemRead Routine is called before the exe-

cution of a Load instruction to analyse read accesses

from memory. The memory address, thread ID and

context are passed to this routine. When a memory

address is accessed for the first time a memory region

structure is populated with READ and is added to the

MemTracker. For subsequent accesses for a memory

location for which a memory region structure already

exists in MemTracker we have the following situa-

tions:

– Existing Access type is READ: This is a case of

READ-after-READ and there is no datarace.

– Existing Access type is WRITE: This is a case

of READ-after-WRITE. There is no action (and

no race) if the thread IDs are same. If the thread

IDs are different, this memory location should be

marked as a shared-exclusive memory.

• RecordMemWrite Routine is called before the exe-

cution of a Store instruction to analyse write accesses

to memory. The memory address, thread ID and context

are passed to this routine. When a memory address

is accessed for the first time a memory region struc-

ture is populated with WRITE and is added to the

MemTracker. For subsequent accesses for a memory

location for which a memory region structure already

exists in MemTracker we have the following situa-

tion:

– Existing Access type is READ or WRITE: This

is a case of WRITE-after-READ or WRITE-after-

WRITE. Hence this memory location should be

marked as a shared-exclusive memory if the thread

IDs are different.

(a) (b)

Fig. 2: (A) Race Detection (B) Identification of Safe / Unsafe

Access

We maintain a boolean variable flag (initialized to false)

for each thread for race detection (Figure 2 B). When

RecordLockAfter() is called, say, by Thread 1, we

enter the critical section and set flag for Thread 1 as

true. Later when RecordUnlockAfter() is called, we

know that the thread has left the critical section and we

reset the flag for Thread 1. Hence any access to a shared-

exclusive memory location is a safe access while flag is

true. Otherwise it is unsafe.A memory location if marked as

shared-exclusive and has an unsafe access is a potential for

datarace invoking the breakpoint.

The above characterization of safety, however, changes

when users employ barriers for explicit synchronization. We

enumerate different cases of safety with and without barriers

in Table 2 and use them to formulate the following analysis

strategy for exploring datarace in the presence of barriers.

• BarrierDetect Routine is called before every call

of pthread_barrier_wait() to track the mem-

ory barriers. The MemTracker is now extended with

additional fields to store the barrier variable associated

with a thread and the order of the occurrence (Before /

After) of variables relative to the barrier. And if there

is no barrier at all then these fields will be NULL.

– When we encounter a variable X in a thread
before crossing a barrier, we insert a new

row in Memtracker as {<Mem_Addr>,
<Thread_ID>, <Access_type>, <No>,
<NULL>}. Now we have two possibilities either

we cross a barrier after this variable or the barrier

is not at all available.

∗ if variable occurs before a barrier then

during crossing the barrier named, say

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 111

BAR_VAR, the pthread_barrier_wait()
callback will update the above row

in Memtracker as {<Mem_Addr>,
<Thread_ID>, <Access_type>,
<BAR_VAR>, <Before>}.

∗ if there is no barrier at all then the row in

Memtracker will remain unchanged.

– If we have already crossed a barrier, say

BAR_VAR, before accessing the variable then

we insert {<Mem_Addr>, <Thread_ID>,
<Access_type>, <BAR_VAR>, <After>}
in Memtracker.

Here BAR_VAR will be the barrier variable name to deal

with multiple barriers. If the memory access in two

(a)

(b)

Fig. 3: (A) No Race Due to Barrier (B) Updating Mem-

tracker

threads appear before and after the barrier respectively

(or vice-versa) like in Figure 3 A we can exclude this

condition from potential data-race factors. Then we

can formulate the additional logic for any variable X
appearing in threads T1 and T2 before or after a barrier

as cases 3, 4 and 5 of the Table 2.

If (((Occurrence of X in T1 is before barrier)
AND
(Occurrence of X in T2 is after barrier))

OR
((Occurrence of X in T2 is before barrier)
AND
(Occurrence of X in T1 is after barrier)))

then NO DATA RACE.

3.2 Deadlock (Detection) Monitor
To detect deadlock we use a Resource Allocation Graph

(RAG). An RAG is a directed bipartite graph with two types

of nodes and two types of edges. A RAG represents a thread

by a Thread Node and a resource by a Resource Node. If

a thread t owns (holds a lock on) a resource r, we draw

an Acquired Edge(Figure 4 B) from r to t. If a thread t
is blocked on a resource r, we draw a Waiting Edge(Figure

4 A) from t to r. Clearly, there is deadlock if and only if

there is a cycle in the RAG. Thus, we can detect deadlock

by building the RAG (Figure 4 C).

Instrumentation Policy

To construct a RAG we identify the waiting and acquired

edges as follows:

• A waiting edge from thread t to resource (mu-

tex) r is added to the RAG when t is blocked in

pthread_mutex_lock(&r) routine because some

other thread holds the lock on the mutex r. This is done

in RecordLockBefore().

• An acquired edge from thread t to resource

(mutex) r is added to the RAG when t ac-

quires the lock on the mutex r by completing

pthread_mutex_lock(&r). While an acquired

edge is added the existing waiting edge is removed.

This is done in RecordLockAfter().

• An acquired edge is removed from the RAG

when thread t releases mutex r by completing

pthread_mutex_unlock(&r). This is done in

RecordUnLockAfter().

(a)

(b)

(c)

Fig. 4: (A) Waiting edge in RAG (B) Acquired edge in RAG

(C) Deadlock detection by RAG

Once the RAG is constructed we detect deadlocks by finding

cycles in it and the deadlock breakpoint is invoked.

112 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

4. Implementation of PGDB
We have implemented the above design over GDB to

create PGDB. For this we have added a set of new commands

to GDB (Section 4.1). The users can use these command as

input to PGDB to control the debugging of concurrency. Fur-

ther we have enhanced the GUI mode of GDB (Section 4.2)

to output debugging information back to the user.

4.1 PGDB Commands
To use the detection monitors from PGDB, we have

designed the following simple commands that the developer

can issue to PIN through PGDB:

• monitor help: Display all customized commands to

debug concurrency issues.

• datarace detection on: Start the detection of shared-

exclusive memory access (datarace).

• datarace detection off: Stop the detection of shared-

exclusive memory access (datarace).

• datarace detection status: Shows whether the detec-

tion of datarace is ON or OFF.

• deadlock detection on: Start the detection of deadlock.

• deadlock detection off: Stop the detection of deadlock.

• deadlock detection status: Shows whether the detec-

tion of deadlock is ON or OFF.

4.2 Enhancement of GUI Mode of GDB
We have enhanced the support of graphical framework of

GDB and built the infrastructure to generate breakpoints by

our profilers. Among all existing graphical gdb in the market,

we have chosen DDD for this purpose which is a well-known

graphical gdb with clean and simple interface. Once DDD

layer comes on top of our PGDB, whenever a breakpoint is

generated by our profiler, it needs to be propagated to the

GUI layer from GDB so as to highlight the cause of the

detection by profiler in the source code of the application.

This is done very interactively using a cursor pointing the

exact line causing the detection of deadlock, datarace.

To integrate our new features with GDB, we designed a

shell script to automatically establish the connection between

PIN and GDB, and instantiate DDD irrespective of the

system architecture on which it is running.Higher level steps

are given below:

• Instantiate PIN with the designed Pintool or Profiler

• Start DDD interface which will run the GDB engine in

the background

• Establish remote connection between GDB and PIN, as

the application to be debugged will be running in PIN

which is outside GDB

• Open a separate source window of DDD displaying the

source code of test application

• Open a separate data window where variable values will

be shown while debugging

• Open the GDB command window to input the custom

commands and run the program

5. Sample Debugging Session in PGDB
We present example debugging in PGDB implementation.

5.1 Data Race Breakpoint Feature
Consider the following code being executed by Thread 1.

Suppose Thread 2 increments shared variable x without a
lock. Hence the value of y is not deterministic due to race.

if (x == 5) // The "Check"
{ y = x * 2; // If another thread changed x

// in between "if (x == 5)" and "y = x * 2";
// y will not be equal to 10.}

PGDB identifies the race and halts the program with a

breakpoint. When Thread 1 reads the value of x, it is

registered as a READ operation in MemTracker and when

Thread 2 increments its value, the race condition is detected

(Figure 2 A).

5.2 Deadlock Detection Breakpoint Feature
An example of deadlock is shown below where two

threads, Thread 1 and Thread 2, invoke transfer() as

shown:

void transfer(Account from_account,
Account to_account, double amount) {
pthread_mutex_lock(&from_account);
pthread_mutex_lock(&to_account);

from_account.withdraw(amount);
to_account.deposit(amount);

pthread_mutex_unlock(&to_account);
pthread_mutex_unlock(&from_account);

}
Thread 1: transfer(account#1, account#2, 1000);
Thread 2: transfer(account#2, account#1, 500);

As Thread 1 starts executing transfer() it holds lock

on account#1 and is suspended as it waits for lock

on account#2. Meanwhile Thread 2 acquires lock on

account#2 and waits indefinitely for Thread 1 to release

account#1. Deadlock results. A cycle in this RAG (Figure

4 C) implies deadlock.

6. Test Result
The benchmark test suite for test datarace and deadlock

are demonstrated in Sections 6.1 and 6.2 respectively. The

behaviour and performance on the benchmarks have been

presented in Sections 6.3 and 6.4.

6.1 Correctness for Datarace
The following scenarios are needed to test the correctness.

• Benign Datarace can occur when:
– One shared variable-two threads: 2 threads T1 and T2 share a variable

x with 2 different modes Read(R) or Write(W).
T1:
A1 x = x +1;
A2 printf("x=%d\n",x);

T2:
B1 x = x +1;
B2 printf("x=%d\n",x);

Datarace is detected in T2 at line B1 and in T1 at line B1 for the
execution sequence A1, B1, A2, B2 and B1, A1, A2, B2 respectively.

– Two shared variables-two threads: 2 threads T1 and T2 share 2 variables
x and y with 2 different modes Read (R) or Write (W).
T1:
A1 x = y +1;
A2 printf("x=%d\n",x);

T2:
B1 y = x +1;
B2 printf("y=%d\n",y);

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 113

Datarace is detected in T2 at line B1 and in T1 at line B1 for the
execution sequence A1, B1, A2, B2 and B1, A1, A2, B2 respectively.

– Datarace in only one thread: T1 and T2 share 2 variables x and y with
2 different modes Read (R) or Write (W).
T1:
A1 pthread_mutex_lock

(&mutex);
A2 x = y +1;
A3 pthread_mutex_unlock

(&mutex);
A4 x++;

T2:
B1 pthread_mutex_lock

(&mutex);
B2 y = x +1;
B3 pthread_mutex_unlock

(&mutex);

Datarace is detected in T1 at line A4 for the execution sequence A1,
A2, A3, B1, B2, A4, B3.

– Datarace in two threads: 2 threads T1 and T2 share 2 variables x and
y with 2 different modes Read (R) or Write (W).
T1:
A1 x = y +1;
A2 y = x;
A3 printf("x=%d\n",x);

T2:
B1 y = x +1;
B2 x = y;
B3 printf("y=%d\n",y);

Datarace is detected in T2 at line B1 and in T1 at line A2 for the
execution sequence A1, B1, A2, A3, B2, B3. Another is detected in T1
at line A1 and in T2 at line B3 for the execution sequence B1, B2, A1,
A2, B3, A3.

• Fatal Datarace can occur when:
– Case 1: 2 threads T1 and T2 share 2 variables x and y with 2 different

modes Read (R) or Write (W).
T1:
A1 x=(int*)

malloc(2*sizeof(int));
A2 x[0] = 1;

T2:
B1 x[1]=1;
B2 free(x);

Datarace is detected in T1 at line A2 for the execution sequence A1,
B1, A2, B2. Also segmentation fault at A2.

– Case 2: 2 threads T1 and T2 share 2 variables x and y with 2 different
modes Read (R) or Write (W).
T1:
A1 x++;
A2 if(x == 0){
A3 free(obj);
A4 }
A5 x--;

T2:
B1 x++;
B2 if(x == 0){
B3 free(obj);
B4 }
B5 x--;

Datarace is detected in T2 at line B1 and in T1 at line A2 for the
execution sequence A1:1, B1, A1:2, A2, A3, B2, B3, B4, A4, A5, B5
and Crash will happen at B3. Here A1:1 is "compute x+1" and A1:2 is
"assign to x".

– Case 3: 2 threads T1 and T2 share a variable x with in Write (W) mode.
T1:
A1 x = x+4;

T2:
B1 x=3;

Datarace is detected in T2 at line B1 for the execution sequence A1:1,
B1, A1:2 where A1:1 is "compute x+1" and A1:2 is "assign to x".

• Benign/Fatal Datarace can occur when:
– Case 1: 2 threads T1 and T2 share 2 variables x and y with 2 different

modes Read (R) or Write (W).
T1:

A1 if (x<y) {
A2 z = x+4;
A3 y = z;
A4 }
A5 z++;
A6 printf("x=%d",x);

T2:
B1 x=y-1;

Datarace is not detected even though there is potential datarace in the
program for the execution sequence B1, A1 , A2, A3, A4, A5, A6.

– Case 2: 2 threads T1 and T2 share 2 variables x and y with 2 different
modes Read (R) or Write (W).
T1:

A1 if (y<0) {
A2 sleep(10);
A3 y = x+4;
A4 }
A5 y++;
A6 printf("x=%d",x);

T2:
B1 x=y-1;

Datarace detected due to execution of sleep(10) by T1 as there is potential
datarace in the program for the execution sequence A1, A2, B1, A3, A4,
A5, A6.

– Case 3: 2 threads T1 and T2 share variable x with 2 different modes
Read (R) or Write (W).

T1:
A1 x=(int*)

malloc(2*sizeof(int));
A2 x[0] = 1;

T2:
B1 x[1]=1;
B2 sleep(10);
B3 free(x);

There exists a Fatal Datarace but it is not detected due to execution of
sleep (10) by T2 for the execution sequence B1, B2, A1, A2, B3.

6.2 Correctness for Deadlock
Since PGDB works on dynamic analysis, there are cases

of deadlock which get overlooked:

• Deadlock detected for the following case:
T1 and T2 share 2 variables x, y with 2 different modes Read(R) or Write(W)
with locking variables mutex1, mutex2.

T1:
A1 pthread_mutex_lock(&mutex1);
A2 pthread_mutex_lock(&mutex2);
A3 x = y+1;
A4 pthread_mutex_unlock(&mutex2);
A5 pthread_mutex_unlock(&mutex1);

T2:
B1 pthread_mutex_lock(&mutex2);
B2 pthread_mutex_lock(&mutex1);
B3 y = x+1;
B4 pthread_mutex_unlock(&mutex1);
B5 pthread_mutex_unlock(&mutex2);

Deadlock is detected in T2 at line B2 and datarace is also detected in T1 at line
A2 for the execution sequence A1, B1, A2, B2, B3, B4, A3, A4, A5, A5 and
for sequence A1, B1, B2, A2, A3, A4, A5, B3, B4, B5 respectively. Though
potential deadlock exists in the application, no deadlock occurred and hence
not detected by PGDB for execution sequence A1, A2, B1, A3, A4, A5, B2,
B3, B4, B5.

6.3 Benchmark Testing
To test the behaviour, accuracy and efficiency of PGDB,

we have used (with modification) a set of benchmarks of

popular dataraces detected by Google’s Thread-Sanitizer

Tool5.
• Case 1: No Datarace condition with one thread. Benchmark has only one

thread and does not have datarace. The result will be negative.
• Case 2: No Datarace condition with synchronization. Benchmark has two

threads accessing one global shared variable which is synchronized with proper
locking mechanism to prevent datarace. Thus the result will be negative.

• Case 3: Datarace condition with synchronized and non-synchronized shared
variables. Benchmark has two threads with two global shared variables. One
global is accessed using locks while the other is accessed without locks. So
access to one of them will lead to datarace. One datarace is reported.

• Case 4: Datarace leading to crash due to write to freed memory or double
freeing. Benchmark has two threads accessing a dynamically allocated memory
location which is freed based on a reference count and a non-synchronized
access to this reference count will lead to being freed more than once hence
leading to program crash. Reported in real time applications like Chrome,
SQLite etc.

• Case 5: Datarace on Boolean flag used for thread synchronization. Benchmark
has two threads and the synchronization between these two threads is done
using a boolean variable which is shared between the threads and due to out
of order execution in latest architectures leads to unexpected results. Datarace
will be reported on the shared Boolean flag.

• Case 6: No Datarace condition by adding memory barriers for in-order
instruction execution. This benchmark consists of two threads with two shared
variables using memory barriers which enforces ordering of memory access for
shared data synchronization to solve unexpected results caused due to out of
order instruction execution. Result of PGDB should be negative.

• Case 7: Datarace condition due to improper usage of memory barrier instruc-
tion. This benchmark consists of two threads with two shared variables. The
access to these shared data is not synchronized due to usage of memory barrier
instructions at improper places leading to datarace. Reported by PGDB.

• Case 8: Datarace condition due to Initializing objects without synchronization.
Benchmark has two threads trying to initialize an object by dynamically
allocating memory. Since the allocation is done without any synchronization,
it might lead to memory leaks. Should be detected by our PGDB.

• Case 9: Datarace on free. This benchmark has two threads where one thread
dynamically allocates memory in the heap whereas the other thread frees this

5https://code.google.com/p/thread-sanitizer/wiki/PopularDataRaces

114 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

Table 2: Different Scenarios of Barrier
Thread 1 Thread 2 Thread 3 Potential of

Datarace between
1 void* func1() { x = 1;

pthread_barrier_wait(&bar);}
void* func2() { x++;

pthread_barrier_wait(&bar); }
NA (T1 & T2)

2 void* func1() { x = 1;
pthread_barrier_wait(&bar);}

void* func2() { x++;
pthread_barrier_wait(&bar);}

void* func3() {
x = 2; }

(T1 & T2) or (T2 &
T3) or (T1 & T3)

3 void* func1() { x = 1;
pthread_barrier_wait(&bar);}

void* func2() {
pthread_barrier_wait(&bar);
y=x;}

NA None

4 void* func1() {
pthread_barrier_wait(&bar);
x = 1; }

void* func2() { y = x;
pthread_barrier_wait(&bar);}

NA None

5 void* func1() { x = 1;
pthread_barrier_wait(&bar);}

void* func2() {
pthread_barrier_wait(&bar);
y = x; }

void* func3() {
x = 2; }

(T1 & T3) or (T2 &
T3)

6 void* func1() { x = 1;
pthread_barrier_wait(&bar); }

void* func2() { y = x;
pthread_barrier_wait(&bar); }

NA (T1 & T2)

7 void* function1() {
pthread_barrier_wait(&bar);
x = 1; }

void* func2() {
pthread_barrier_wait(&bar);
y = x; }

void* func3() {
x = 2; }

(T1 & T2) or (T2 &
T3) or (T1 & T3)

area causing a crash due to datarace. So, the result of PGDB should be positive
with reporting of datarace.

• Case 10: Datarace on exit. This benchmark has two threads created by the
main program which are accessing a shared global object where before both
the threads end, the main program exits thereby making the shared object
unavailable to both of them. Should be detected and reported by PGDB.

• Case 11: Datarace on mutex. consists of two threads that are synchronized
by locking or unlocking a shared mutex and any change in mutex value or its
destruction by one thread will affect the other thread still in execution leading
to datarace of the mutex. This datarace should be reported by PGDB.

• Case 12: Datarace on file descriptor. consists of two threads that are accessing
the same file descriptor for read/write purpose without any synchronisation
leading to data being written on a wrong file or socket causing leaking of
sensitive data into an untrusted network connection in real time. Reported by
PGDB.

Table 3: PGDB Output for Datarace
Benchmark Case Expected Output PGDB Output
Case 1 No Datarace ×
Case 2 No Datarace ×
Case 3 Datarace Exists �
Case 4 Datarace Exists �
Case 5 Datarace Exists �
Case 6 Datarace Exists �
Case 7 Datarace Exists �
Case 8 Datarace Exists �
Case 9 Datarace Exists �
Case 10 No Datarace ×
Case 11 Datarace Exists �
Case 12 Datarace Exists �

�- Data Race detected × -Data Race not detected

6.4 Performance Testing
The user can selectively turn on or off the instrumen-

tation to increase performance. While instrumentation adds

considerable overhead on the execution time, we find that

with PGDB’s selective instrumentation it can be significantly

reduced.

7. Conclusion and Future Work
We have presented strategies to dynamically instrument

multi-threaded programs (written in C/C++ using pthreads

library) using PIN and to integrate the same with GDB

(on Linux) to debug for dataraces and deadlocks, if any.

The support has been implemented with new commands in

PGDB (Table 1). Going forward we would like to support

livelock detection in PGDB, extend the augmentations for

Microsoft Visual Studio Debugger [6] on Windows, and

support other thread libraries / models like Windows threads

[11], Intel TBB [9] and Boost [10]. We would also like to

improve the performance of the pintools to make PGDB

more effective.

References
[1] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur

Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim
Hazelwood. Pin: Building Customized Program Analysis Tools with
Dynamic Instrumentation in PLDI ’05 Proceedings of the 2005 ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation (Chicago, IL, USA, June 12 - 15, 2005). ACM SIGPLAN
Notices, Volume 40 Issue 6, June 2005, Pages 190-200.

[2] Moshe (Maury) Bach, Mark Charney, Robert Cohn, Elena
Demikhovsky, Tevi Devor, Kim Hazelwood, Aamer Jaleel, Chi-
Keung Luk, Gail Lyons, Harish Patil, and Ady Tal. Analyzing Parallel
Programs with PIN, Journal Computer, Volume 43, Issue 3, March
2010, Pages 34-41.

[3] PIN User Manual: http://www.pintool.org
[4] GDB: The GNU Project Debugger: http://www.gnu.org/software/gdb
[5] IDB: Intel Debugger: http://software.intel.com/en-us/articles/idb-linux
[6] Debugging in Visual Studio: http://msdn.microsoft.com/en-

us/library/vstudio/sc65sadd.aspx
[7] Xiaoming Shi, Venkatesh Karthik Srinivasan, Madhu Ramanathan,

and Yiqing Yang. PinDB: A PIN-based Debugger for Multi-threaded
Programming, http://pages.cs.wisc.edu/ madhurm/pindb/pindb.pdf.

[8] pthreads (POSIX Threads): https://computing.llnl.gov/tutorials/pthreads/
[9] Intel TBB (Thread Building Blocks):

http://threadingbuildingblocks.org/
[10] Boost Threads: http://www.boost.org/
[11] Windows Threads: http://msdn.microsoft.com/en-

us/library/windows/desktop/ms684847(v=vs.85).aspx

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 115

