

A Systematic Mapping about Testing of Functional
Programs

Alexandre Ponce de Oliveira1 2, Paulo Sérgio Lopes de Souza1, Simone R. Senger de Souza1,

Júlio Cezar Estrella1, Sarita Mazzini Bruschi1
1: Universidade de São Paulo, ICMC, São Carlos, SP, Brazil

2: Faculdade de Tecnologia de Lins, Lins, SP, Brazil

Abstract - Functional languages, like Erlang, Haskell and
Scala allow the development of real-time and fault-tolerant
parallel programs. In general, these programs are used in
critical systems such as telephone switching networks and
must provide high quality, reliability and efficiency. In this
context, validation, verification and testing activities are
necessary and contribute to improving the quality of
functional programs. This paper presents a systematic
mapping concerning the testing of functional programs,
considering also their parallel/concurrent aspects. The
paper describes the three stages used during the systematic
mapping: planning, execution and presentation of results.
The mapping was able to identify only twenty-two relevant
studies. In these studies, fourteen considered test models,
three used data flow testing, twelve used/proposed testing
tools and five considered concurrent/parallel aspects of
such programs. The results indicate that there are few
researchers working on testing of functional programs and
that few studies are concentrated almost exclusively in the
Erlang language. The main testing technique found in the
papers is the structural one; however, it does not properly
consider the software testing methodology already
established for the imperative programming. Indeed, the
results show gaps in the area of testing of functional
programs, even for Erlang, the most considered language
by the studies. These gaps are presented and discussed at
the end of this paper.

Keywords: Testing, functional programs, Erlang, testing
criteria, test models.

1 Introduction
 Nowadays functional programs are an aim of research
in universities with distinct examples of research and
applications [12]. Parallel and soft-real time features are key
aspects related to functional applications, which stimulate
the interest for new research.
 Functional languages can be used also to build
programs utilizing expressions as mathematical functions,
avoiding both mutable data and changes in the state of the
program that do not depend on the function inputs. The
program behavior can be easier to predict when using this
paradigm, which motivates research on functional

languages. Some examples of functional languages are: Lisp
[24], Haskell [37], Scala [37] and Erlang [3] [4].
 The functional applications are often critical and
failures affect their quality, reliability and efficiency. In this
sense, the testing of functional applications is essential to
prevent potential failures and to ensure that all features are
according to what is expected [6].
 Software testing activity aims to find unrevealed
defects that are responsible for errors during the execution
of programs [25]. A number of studies have been conducted
in sequential and concurrent software testing, investigating
models, criteria and tools for testing.
 Considering the context of concurrent programs, for
example, Taylor et al. [38] proposes to apply coverage
criteria for concurrent programs. Yang et al. [52] adapts
All-Du-path testing criterion for concurrent programs.
 Souza et al. proposes structural coverage criteria for
C/MPI [33] [35], C/Pthreads [32], BPEL [11] and Java
[34]. However, this scenario is not true for the testing of
functional programs, since it is not trivial to find studies
already published in the context of functional programs
(sequential or concurrent).
 Functional programs present concurrent aspects and
therefore these aspects should be properly explored during
the testing activity. In order to contribute to this scenario, it
is important to consider state-of-the-art research on
functional program testing. We could not find a literature
review available in this context, which motivated this work.
Considering this scenario, a systematic mapping process
was used to collect, guide new research and analyze the
papers already published for the testing of functional
programs. A systematic mapping identifies, in the literature,
what type of studies can be considered in a systematic
review, pointing out mainly where those studies have been
published and their main results.
 A systematic mapping allows a wider view of primary
studies, which can reveal the evidences of research [27]. A
systematic mapping process is capable to contribute with
new research insights in a particular area, providing an
initial overview. The systematic review, on the other hand,
tries to identify, evaluate and interpret all the available
works, relevant for a specific research question [7].
 This paper identifies, through a systematic mapping,

64 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

studies related to the testing of functional programs,
classifying and analyzing relevant papers in this context.
The eligible papers were classified under three main
features: a) work that proposes novel models of testing to
functional paradigms; b) work that presents testing criteria
related to this subject; and c) work that presents a software
tool to support the testing activity. This classification
facilitates the analysis of the selected papers.
 The main results indicate that there is little research on
testing of functional programs. These studies are focused,
almost exclusively, on the Erlang language, using the
structural testing technique. However, they do not properly
consider the software testing methodologies already
established for the imperative programming. It is important
to consider this previous research, because the knowledge
produced for imperative programming can guide the
definition of new approaches for new contexts. Indeed, the
results show gaps in the area of testing of functional
programs, even for Erlang, the most considered language by
the studies.
 This paper is structured as follows: Section 2 presents
some of the main features of functional languages that make
the testing of functional programs different from the testing
of imperative programs; Section 3 includes details of the
systematic mapping planning; Section 4 presents the
execution of the systematic mapping planned; The results
are discussed in Section 5 and in Section 6 the main
conclusions are drawn.

2 Functional Programs
Functional languages are based on mathematical

functions. An important feature of mathematical functions is
the use of recursion and conditional expressions to control
the order in which pattern matching is evaluated. The
variables in functional language are immutable, so once a
value is assigned, it cannot be changed; this feature does not
generate side effects to the functions [29].

Functional languages have no side effects (or state
change), because they define the same value given a same
parameter (referential transparency). Functional languages
also use higher-order functions; which are functions that
receive functions as parameters and can generate a function
as a result [43].

A function definition, in functional languages, uses
pattern matching to select a guard among different cases and
to extract components from complex data structures. Erlang
[3] works in that way, combining high level data with
sequences of bits, to enable functions of protocol handling.

Concurrency is a fundamental and native concept of
some functional languages, such as Erlang. Those languages
do not provide threads to share memory, thus each process
runs in its own memory space and has its own heap and
stack. These processes in Erlang employ the
Communicating Sequential Processes (CSP) model [17].
Hoare [17] described how sets of concurrent processes
could be used to model applications. Erlang explores this
idea in a functional framework and uses asynchronous

message passing instead of the synchronous message
passing of CSP. Each process has a mailbox to store
incoming messages, which are selectively obtained [8].

Some functional applications may run transparently in
a distributed environment. In Erlang, a VM (Virtual
Machine) instance is called node. One or more computers
can run multiple nodes independently from the hardware
architecture and even operating system. Processes can be
created in remote nodes, because processes can be
registered in Erlang VM.

Fault Tolerance is a necessary resource for
concurrency applications, in this context. Erlang has
libraries that support supervisors, worker processes,
exception detection and recovery mechanisms. Thus,
processes create links to each other to receive notifications
as messages. This is used, for example, when a process
finishes [23].

3 Systematic Mapping Planning
This systematic mapping was performed according to

the process defined by Kitchenham and Charters [18] and
Petersen et al. [27]. This process consists of three stages: a)
planning – definition of a protocol specifying the plan that
the systematic mapping will follow; b) execution – the
execution of the protocol planned; and c) presentation of the
results [7].

Primarily, our main objective with the systematic
mapping was to identify studies that explore the testing of
concurrent aspects of functional programs. However, we
found few studies in this more restrict context and therefore
we decided to make this systematic mapping broader, in
order to find a wider range of publications about functional
software testing as a whole. Considering this scenario, three
research questions were defined and used to conduct the
systematic mapping carried out in this paper:
Question 1 (Q1): What aspects related to the testing of
functional languages have been identified? Our interest
here is to identify the main features in the functional
paradigm that make the test activity more complex in this
context.
Question 2 (Q2): How is the testing activity of the
functional programs conducted? The aim is to find studies
that apply testing methodologies and to establish which/how
testing criteria are used.
Question 3 (Q3): Are there testing tools for functional
programs? Identifying testing tools that support the testing
activity is important due to the complexity of the testing
activity and the difficulty to apply it manually.

3.1 Search String and Source Selection
The search string was defined as follows: first, the

main search keywords were established based on our
research questions. We considered terms such as functional
language, software testing and testing tools. The languages
Erlang, Haskell and Lisp have been inserted in our search
string because they are the most used functional languages

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 65

for both academic and industrial purposes. However, it must
be observed that the string did not restrict the search just for
these three languages. Next, a set of relevant synonyms for
the search keywords was identified, based on the
terminology used in a set of relevant contributions in the
area of software testing and functional language. Thus, the
main keywords were combined with the chosen synonymous
using the Boolean operators AND and OR. The search
string used in the systematic mapping is:

[(“functional language” or “erlang” or “lisp” or “haskell”)
AND (“software testing” or “structural testing” or “mutation
testing” or “functional testing” or “blackbox” or “whitebox”
or “tools” or “test” or “criteria” or “coverage”)]

In Table 1 the digital libraries selected to conduct the

systematic mapping are presented. These libraries were
chosen because they present the most relevant sources in
software engineering.

Table 1. Selected Digital Libraries.
Digital Library Link

ACM http://dl.acm.org/

IEEE Xplore http://ieeexplore.ieee.org/Xplore/home.jsp

SCOPUS http://www.scopus.com/

3.2 Studies Selection

The following inclusion criteria (IC) were defined in
order to obtain primary studies that could provide answers
to the research questions. It is important to observe that just
one valid inclusion criterion is enough to include a primary
study in the next step (eliminate primary studies).

IC1: Primary studies presenting testing models for
applications written in functional languages;
IC2: Primary studies proposing tools and research for the
context of functional language;
IC3: Primary studies applying case studies in the context of
functional program testing.

The following exclusion criteria (EC) were defined to

eliminate primary studies when they are not related to the
research questions:

EC1: Primary studies presenting testing approaches not
related to functional languages;
EC2: Primary studies presenting approaches related to
hardware testing;
EC3: Primary studies presenting tutorials about software
testing or functional languages.

3.3 Data extraction
A form was filled with the extracted data. This form

was used to record information obtained from primary

studies, as described in Kitchenham and Charters [18]. The
data extraction provides information such as: extraction
source, title, year and authors. The procedure to extract the
data was carried out after the studies. A summary was
written for each examined study, in order to facilitate the
documentation of the responses for the research questions.

4 Systematic Mapping Execution
The systematic mapping was carried out with the

support of the tool StArt (State of the Art through
Systematic Review) [30]. Despite its name, related to
systematic review, this tool offers facilities to support all the
activities of the systematic mappings, including planning,
execution and summarization.

The studies were selected in September, 2014 and
there were three different stages, as described in the
sequence. Initially, 556 studies were retrieved.

In Stage 1, duplicate studies were identified and
eliminated (done automatically by the StArt tool).
Furthermore, we eliminated non relevant data, such as
conference proceedings, abstracts and unavailable papers.
After this stage, only 44 studies remained.

In Stage 2, we applied the inclusion and exclusion
criteria based on title, abstract and keywords. Moreover, we
read the conclusion and the introduction sections of each
study in order to apply the inclusion and exclusion criteria.
After this stage, only 22 studies remained.

At the final phase (Stage 3), the studies were analyzed
completely. In this phase we selected 17 studies. According
to our preliminary studies, five other studies were included:
[47], [48], [49], [50] and [51]. Such studies were not
indexed by digital libraries but were published in local
workshops. Thus, 22 studies were selected.

Table 2 shows the number of studies selected at each
stage, considering the total studies retrieved from the digital
library. All the results of the search procedure were
documented and are available1. If necessary, the search
procedure can be repeated considering, for example, a
different period of time.

5 Systematic Mapping Results
This section presents the mapping results, grouping the

selected studies according to the research question. The
aims of the studies are described as follows.

Q1. What aspects related to the testing of functional
languages have been identified?

Widera [51] explains that generating a control flow
graph (GFC) for functional programs is more complex than
for traditional programs due to the existence of higher-order
functions. The difference in the control structures of
functional languages in relation to imperative languages
also makes the application of the coverage criteria more
complex, in the functional context.

1 http://labes.icmc.usp.br/~alexandre/mapping.pdf, 2014.

66 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

Table 2. Number of Studies Selected During the Search Procedure
Digital
Library

Return
Stage 1 Stage 2 Stage 3

Included Excluded Included Excluded Included Excluded

ACM 72 19 53 8 11 6 2

IEEE 171 4 167 1 3 1 -

SCOPUS 315 23 292 15 8 10 5

Total 556 44 512 22 22 17 7

An example of this occurs when higher-order functions

can receive and send functions as parameters. This dynamic
creation of functions makes the control flow unpredictable
and must be considered during the testing activity.

In this same context, Tóth and Bozo [41] cite that the
aim of a Data Flow Graph (DFG) is to determine how far a
variable definition can reach. This is because variables are
immutable in functional languages. In the context of data
flow, it is important to analyze a value from its first
definition to its last use [50].

Considering the objective of this research question, we
identified two main aspects of functions programs that
impact the testing activity: higher-order functions and
immutable feature of variables. Higher-order functions
influence the control flow, which requires a proper analysis
of the data flow. The immutable feature of variables brings
the necessity of a variable to be copied to another one after
its use, so it is important to identify this sequence of copies
from its first definition up to its last use. All the studies were
related to Erlang language (although, the authors argue that
the studies could be extended to consider other functional
languages, such as Haskell).

Q2. How is the testing activity of the functional
programs conducted?

Tóth and Bozo [41] presented the Semantic Program
Graph (SPG), a model to represent the semantic and
syntactic information from Erlang programs. SPG is the
basis to construct another three graphs: Data Flow Graph
(DFG), Control Flow Graph (CFG) and Dependency Graph
(DG).

The DG can be used to extract parts of the source code
and then identify components that can be parallelized
efficiently with inexpensive synchronization. Graphs are
integrated in the RefactorErl software, which analyzes the
source code and extracts parts of the Erlang code.

Toth et al. [39] investigated the use of SPG during the
regression testing aiming to reduce the number of test cases
that must be considered to rerun. A behavioral dependency
graph is specified and used to represent test cases affected by
changes in the program´s behavior, due to modifications. In a
similar way, Tóth and Bozo [40] investigate the use of a
dependency control graph to support the selection of
effective test cases during the regression testing for Erlang
programs.

Silva et al. [31] specified a graph called the Erlang
Dependency Graph (EDG), which shows the dependencies of

data and control in function calls. The authors propose a
testing tool, named Slicerl to extract relevant parts of the
Erlang program based on the proposed model. Guo et al.
[14] defined a model, named Complete Functional Binary
Tree (CFBT), which transforms each Erlang function into a
tree structure. Each node of the tree corresponds to a
predicate of the original function and the objective is to
represent all predicates in order to apply coverage criteria
based on the CFBT.

Five selected studies, described below in this (Q2)
research question, did not consider concurrent aspects of the
functional programs although all of them considered Erlang.
These studies explore the definition of test models and they
do not specify testing criteria.

Three studies discussed in the previous research
question (Q1) also contribute to the definition of models and
criteria for testing of functional programs. Widera [44]
describes a test model to include a subset of Erlang functions
and proposes a GFC for this model. This model covers only
sequential Erlang programs. In Widera [45] the model is
extended to include higher-order functions. Widera [46]
complements the model to include concurrency aspects of
Erlang programs.

In the context of testing criteria, four studies were
retrieved. Widera [47] proposes a set of coverage criteria
based on data flow testing adapted to functional programs.
These criteria are based on associations of definition and use
of variables (du-pair) that is a triple (v, d, u). In this triple, v
is a variable, d is a definition of v, u is a use of v and there is
a path w from d to u such that v is not redefined on w.
Widera [48] introduces the du-chain concept, which is a
sequence p1;….; pk of du-pairs, such that the definition of
p1 and the use of pk denote the same value. Based on this
concept and considering a flow graph G, a set of five testing
criteria was defined: a-aware (aliasing aware), s-aware
(structure aware), r-aware (result aware), f-aware (freeze
aware) and m-aware (message aware).

Tasharofi et al. [36] presents a scalable and automatic
approach to test non-deterministic behavior of actor-based
Scala programs [1]. This approach uses three schedule
coverage criteria for actor programs, an algorithm to
generate feasible schedules to increase the coverage and a
technique for deterministic execution. Le et al. [19] presents
new mutation operators for functional constructs and also
describes MuCheck, a mutation testing tool for Haskell
programs.

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 67

To summarize, we observed contributions that explore
mainly the structural testing for functional languages. These
papers present propositions to represent and to extract
relevant information for testing of functional programs.

Q3. Are there testing tools for functional programs?
Widera [49] considers data flow tracing of Erlang codes and
describes the properties and implementation of an interpreter
prototype for GFC. The interpreter instruments the source
code with the aim to evaluate parts of the GFC that are
covered by the test cases. The study does not evaluate the
coverage criteria; it only makes a comparison of the runtime
of small code examples with and without the interpreter.

Nagy and Vig [26] present a survey about the main
testing tools used by developers of Erlang systems. The
survey is focused on model-based testing and Test-Driven
Development (TDD). The tools mentioned by the developers
were Dialyzer, EUnit, Wrangler and RefactorErl and
QuickCheck, which was proposed by Claessen and Hughes
[10]. The survey specifies that the tools used by the
developers do not present information about the coverage of
test cases and that it is also difficult to know what was really
tested into the program. These aspects encourage the
improvement of tools available for concurrent functional
programs testing.

Christakis and Sagonas [9] present a technique for
detecting errors related to message passing in Erlang,
considering the dynamic process of creation and
communication based on asynchronous message passing.
Static analysis is used to build a communication graph from
a Dialyzer tool. This graph is traversed during the testing
activity, to obtain data about the message passing coverage.

Arts et al. [5] presented a testing tool called Quviq
QuickCheck to analyze properties in Erlang programs. This
tool uses a model to represent data type information from
specification and during the testing; it can be evaluated
whether the data types of the program meet its specification.

Wrangler and RefactorErl tools aim to support the
refactoring of Erlang programs, the aim of which is to detect
a similar code. Taking this into account, Li and Thompson
[20] used the Quviq QuickCheck testing tool to automate the
refactoring performed by the Wrangler tool. Li and
Thompson [39] and [41] proposed a technique to detect
syntactically identical codes, which was developed and
integrated into the Wrangler testing tool. The authors used
both syntactic analysis and code decomposition to remove
duplicated code and thus reduce code maintenance.

Gotovos et al. [13] developed the Concuerror testing
tool to assist the TDD process. This tool uses test sets to
detect errors related to concurrency, such as deadlocks and
race conditions in Erlang programs.

Therefore, six studies [9], [5], [20], [21], [22] and [13]
are related to model testing, refactoring and TDD. Two
studies [9] and [13] explore concurrency aspects.

5.1 Other Results

Figure 1 shows the number of selected studies by year.

The result of the mapping showed studies only from the last
11 years, while 2011 had the highest score with four selected
studies.

Figure 1. Numbers of studies by year.

Figure 2 groups studies by country, considering the

authors´ affiliation. The results show that the University of
Hagen in Germany has 8 studies, i.e., 36% of the selected
studies. An important feature of these studies is that only
four were conducted in partnership with universities in
different countries. Two studies were conducted by
universities in Greece and Sweden, one study was carried out
by universities in Sweden and Spain and one study between
universities in the USA and Switzerland.

Figure 3 shows the percentage of selected studies by
research question. According to the result, 50% of the
studies are related to Q2, which refers to a testing
specification models and testing criteria. Q3 is related to
testing tools, and 27% of the studies are in this context. Only
9% of the studies specify the challenges of testing activity
for functional languages (Q1). Finally, 9% of the studies are
in the context of Q1 and Q3 together and 50% of the studies
between Q2 and Q3.

6 Concluding Remarks
A systematic mapping conducted to find studies on

software testing for functional languages was presented in
this paper. These studies provide an overview for the testing
of functional languages, revealing the state of the art in terms
of knowledge production in this area. These studies point out
new research insights and can be used to guide further
contributions in this context.

Some studies ([36], [46], [47], [48] and [50]) present
the definition of data flow testing for functional programs in
Erlang, exploring the definition-use of variables. In this
group, five studies ([9], [13], [36], [46] and [48])
investigated the concurrency and parallel aspects existent in
functional programs.

The selected studies proposing testing tools for
functional programs, consider mainly structural aspects of
such programs.

68 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

Figure 2. Numbers of studies by country.

Figure 3. Numbers of studies by research questions.

However, in general, these tools do not apply properly
the testing techniques; they do not explore the testing
process, such as: generation of test cases and testing activity
evaluation.

In summary, 63% of the studies present test models for
Erlang programs; 45% of the studies applied a case study to
evaluate a testing tool; 18% of all papers define testing
criteria exploring sequential aspects of the programs and 9%
investigate concurrent aspects of the programs to define
testing criteria.

Furthermore, this mapping contributed to indicate lack
of research exploring how to derive tests from functional
programs and how to extract relevant information from these
programs, in order to guide the testing activity. Also, there is
a lack of experimental studies to analyze tools and testing
criteria.

These results indicate a gap in research related to
coverage testing applied to functional programs, mainly
related to concurrent aspects of these programs. Considering
this gap, we are investigating the definition of structural
testing, exploring the same aspects in Souza et al. [33] in this
context. We intend to define the coverage testing able to
explore intrinsic aspects of this program, for instance:
synchronization, communication, parallelism and
concurrency considering message passing and other language
features such as: higher order functions and functions call.

References
[1] Agha, G. Actors: a model of concurrent computation in

distributed systems. MIT Press, Cambridge, USA, 1986.
[2] Almasi, G.; Gottlieb, A. Highly parallel computing. The

Benjamin/Cummings series in computer science and
engineering. Benjamin/Cummings Pub. Co., 1994.

[3] Armstrong, J., Virding, R., Wikström, C., and Williams, M.
Concurrent Programming in Erlang. Prentice Hall Europe,
Herfordshire, Great Britain, second edition, 1996.

[4] Armstrong, J. Concurrency Oriented Programming in Erlang.
Invited talk, FFG. 2003.

[5] Arts, T.; Castro, L.M.; Hughes, J. Testing Erlang Data Types
with Quviq QuickCheck. In: Proceedings of the ACM
SIGPLAN Workshop on Erlang, ACM Press , 2008.

[6] Balakrishnan, A. and Anand, N. (2009). Development of an
automated testing software for real time systems. In Industrial
and Information Systems (ICIIS), 2009 International
Conference on, pages 193 - 198.

[7] Biolchini, J.C.A.; Mian, P. G.; Natali, A. C. C.; Conte, T.U.;
Travassos, G. H. Scientific research ontology to support
systematic review in software engineering. Advanced
Engineering Informatics, p.133-151, 2007.

[8] Cesarini, F. and Thompson, S. Erlang Programming - A
Concurrent Approach to Software Development. O’Reilly
Media, 2009. 496p.

[9] Christakis, M.; Sagonas, K. Detection of asynchronous
message passing errors using static analysis. In: Proceedings
of the 13th international conference on Practical aspects of
declarative languages, PADL’11, p.5-18, Austin, USA,
January 24-25, 2011.

[10] Claessen, K.; Hughes, J. QuickCheck: a lightweight tool for
random testing of Haskell programs, Proceedings of the fifth
ACM SIGPLAN international conference on Functional
programming, p.268-279, September 2000.

[11] Endo, A. T.; Simão, A. S.; Souza, S. R. S.; Souza, P. S. L.
Web services composition testing: A strategy based on
structural testing of parallel programs. In: TaicPart: Testing
Academic & Industrial Conference - Practice and Research
Techniques, Windsor, 2008, pp. 3–12.

[12] Erlang FAQ. Who uses Erlang for product development?
http://www.erlang.org/faq/introduction.html, 2014.

[13] Gotovos, A.; Christakis, M.; Sagonas, K. Test-driven
development of concurrent programs using concuerror. In
Proceedings of the 10th ACM SIGPLAN workshop on Erlang
(Erlang '11). ACM, New York, USA, 2011.

[14] Guo, Q.; Derrick, J.; Walkinshaw, N. Applying Testability
Transformations to Achieve Structural Coverage of Erlang
Programs. In Proceedings of the 21st International Conference
on Testing of Software and Communication Systems and 9th
International Workshop FATES, Eindhoven, Netherlands,
November 2-4, 2009.

[15] Grama, A; Gupta, A; Karypis, G; Kumar, V. Introduction to
Parallel Computing. 2nd Ed. Addison Wesley, 2003.

[16] Hansen, M. R.; Rischel, H. Functional Programming Using
F#. Cambridge University Press, 2013.

[17] Hoare, C.A.R. Communicating Sequential Processes. Prentice
Hall, Upper Saddle River, NJ, 1985.

[18] Kitchenham, B.; Charters, S. Guidelines for performing
systematic literature reviews in software engineering.
Technical Report. EBSE 2007-001, Keele University and
Durham University Joint Report, 2007.

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 69

[19] Le, D.; Alipour, M. A.; Gopinath,R.; Groce, A. MuCheck: an
extensible tool for mutation testing of haskell programs. In
Proceedings of the 2014 International Symposium on
Software Testing and Analysis (ISSTA 2014). ACM, New
York, NY, USA, p. 429-432. 2014.

[20] Li, H; Thompson, S. Testing Erlang Refactorings with
QuickCheck. In the 19th International Symposium on
Implementation and Application of Functional Languages,
IFL 2007, LNCS, pages 182-196, Freiburg, Germany.

[21] Li, H; Thompson, S. Clone detection and removal for
Erlang/OTP within a refactoring environment. In Proceedings
of the 2009 ACM SIGPLAN workshop on Partial evaluation
and program manipulation (PEPM '09). ACM, New York,
USA. 2009.

[22] Li, H; Thompson, S. Incremental clone detection and
elimination for erlang programs. In Proceedings of the 14th
international conference on Fundamental approaches to
software engineering: part of the joint European conferences
on theory and practice of software (FASE'11/ETAPS'11).
Springer-Verlag, Berlin, Heidelberg, 2011.

[23] Logan, M., Merritt, E., and Carlsson, R. Erlang and OTP in
Action. Manning Publications. 2010.

[24] McCarthy, John; Abrahams, Paul W.; Edwards, Daniel J.;
Hart, Timothy P.; Levin, Michael I. Lisp 1.5 Programmer´s
Manual. Cambridge, Massachusetts: The MIT Press, 1962.

[25] Myers, G. J. The Art of Software Testing. 2 ed. John Wiley &
Sons, 2004.

[26] Nagy, T., Víg, A.N. Erlang testing and tools survey.
Proceedings of the 7th ACM SIGPLAN workshop on
ERLANG, September 27-27, 2008, Victoria, BC, Canada.

[27] Petersen, K.; Feldt, R.; Mujtaba, S. and Mattsson, M.
Systematic mapping studies in software engineering. In
Proceedings of the 12th International Conference on
Evaluation and Assessment in Software Engineering
(EASE'08), 2008. British Computer Society, Swinton, UK,
68-77.

[28] Rauber, T.; Rünger, G. Parallel programming: for multicore
and cluster systems. Springer, 2010.

[29] Sebesta, R. W. Concepts of Programming Languages. 10. ed.
Pearson. 2012.

[30] StArt. State of the Art through Systematic Review.
http://lapes.dc.ufscar.br/tools/start_tool, 2012.

[31] Silva J.; Tamarit, S; Tomás, C. System dependence graphs in
sequential erlang. In Proceedings of the 15th international
conference on Fundamental Approaches to Software
Engineering (FASE'12). p.486-500, Tallinn, Estonia,
Springer-Verlag, 2012.

[32] Sarmanho, F.; Souza, P. S. L.; Souza, S. R.; Simao, A. S.
Structural testing for semaphore-based multithread programs.
In: ICCS ’08: Proceedings of the 8th international conference
on Computational Science, Part I, Berlin, Heidelberg:
Springer-Verlag, 2008, pp. 337–346.

[33] Souza, S. R. S.; Vergilio, S. R.; Souza, P. S. L.; Simão, A. S.;
Hausen, A. C. Structural testing criteria for message-passing
parallel programs. Concurrency and Computation: Practice
and Experience, p. 1893–1916, 2008.

[34] Souza, P. S. L.; Souza, S. R. S.; Rocha, M. G.; Prado, R. R.;
Batista, R. N. Data flow testing in concurrent programs with
message-passing and shared-memory paradigms. In: ICCS -
International Conference on Computational Science,
Barcelona, Espanha, 2013b, pp. 149–158.

[35] Souza, P. S. L.; Souza, S. R. S.; Zaluska, E. Structural testing
for message-passing concurrent programs: an-extended test

model. Concurrency and Computation, v. 26, n. 1, pp. 21–50,
2014.

[36] Tasharofi, S.; Pradel, M.; Lin, Y. and Johnson, R. Bita:
Coverage-guided, automatic testing of actor programs. In
2013 IEEE/ACM 28th International Conference on
Automated Software Engineering (ASE), 2013.

[37] Tate, Bruce A. Seven Languages in Seven Weeks: A
Pragmatic Guide to Learning Programming Languages.
Pragmatic Bookshelf, 2010.

[38] Taylor, R. N.; Levine, D. L. and Kelly. C. D. Structural testing
of concurrent programs. IEEE Tr Softw Eng, 18(3):206–215,
1992.

[39] Tóth, M.; Bozó, I.; Horváth, Z.; Lövei,L.; Tejfel, M.; Kozsik,
T. Impact Analysis of Erlang Programs Using Behaviour
Dependency Graphs. Proceedings of the 3th Conference on
Central European Functional Programming School, p.372-
390, Komarno, Slovakia, May 25-30, 2009.

[40] Tóth, M. and Bozó I. Building dependency graph for slicing
erlang programs. Conference of PhD Students in Computer
Science, Periodica polytechnica, 2010.

[41] Tóth, M.; Bozó, I. Static analysis of complex software systems
implemented in erlang, Proceedings of the 4th Conference on
Central European Functional Programming School. Budapest,
Hungary, June 14-24, 2011.

[42] Trobec, R.; Vajteršic, M.; Zinterhof, P. Parallel computing:
Numerics, applications, and trends. Parallel Computing:
Numerics, Applications, and Trends. Springer, 2009.

[43] Watt, D. A. Programming Languages: Concepts and
Paradigms. Prentice Hall International Series in Conputer
Science, 1990.

[44] Widera, M. Flow graphs for testing sequential Erlang
programs. In Proceedings of the 3rd ACM SIGPLAN Erlang
Workshop. ACM Press, 2004.

[45] Widera, M. Towards flow graph directed testing of functional
programs. In Draft Proceedings of the 15th International
Workshop on the Implementation of Functional Languages,
IFL, 2003.

[46] Widera, M. Concurrent Erlang flow graphs. In Proceedings of
the Erlang/OTP User Conference 2005, Stockholm, 2005.

[47] Widera, M. Data flow coverage for testing Erlang programs.
In Marko van Eekelen, editor, Proceedings of the Sixth
Symposium on Trends in Functional Programming (TFP’05),
September 2005.

[48] Widera, M. Data flow considerations for source code directed
testing of functional programs. In H.-W. Loidl, editor, Draft
Proceedings of the Fifth Symposium on Trends in Functional
Programming, Nov. 2004.

[49] Widera, M. Flow graph interpretation for source code directed
testing of functional programs. In Implementation an
Application of Functional Languages, 16th International
Workshop, IFL'04. Institut für Informatik und Praktische
Mathematik, Christian-Albrechts-Universit at zu Kiel, 2004.

[50] Widera, M. Adapting structural testing to functional
programming. In International Conference on Software
Engineering Research and Practice (SERP 06), 86-92. CSREA
Press, 2006.

[51] Widera, M. Why Testing Matters in Functional Programming.
7th Symposium on Trends in Functional Programming,
University of Nottingham, TFP, 2006.

[52] Yang, C.-S. D.; Souter, A. L. and Pollock, L. L. All-du-path
coverage for parallel programs. In ISSTA, pages 153–162,
1998.

70 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

