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Abstract— A fairly general model of the elevator system
is presented. Coloured Petri Nets (CPN) and CPN tools are
adopted as modeling tools. The model, which is independent
of the number of floors and elevators, covers different stages
of the elevator system in substantial detail. The model assists
simulation-based analysis of different algorithms and rules
which govern real elevator systems. The results prove the
compatibility and applicability of this model in various situa-
tions and demonstrate the expressive power and convenience
of CPN.
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1. Introduction
The elevator system is one of the software engineering

benchmarks which are frequently used to test the expressive

power, readability, and convenience of various formal speci-

fication techniques [1]. Petri Nets is one formal specification

technique.

In [2] and [3], dynamic scheduling of the elevator system

was modeled by Petri Nets, and hybrid Petri Nets. Timed

Petri Nets, Abstract Petri Nets and Elevator Control Petri

Nets were used in [4], [5], and [6] respectively. Furthermore,

the elevator system was modeled by Coloured Petri Nets in

[7], and Timed Coloured Petri Nets in [8] and [9].

Nevertheless, all of these previous models are either static

or dependent on a particular number of elevators and floors

(often one place was required for each elevator car), the

concept of colour as a data type was not fully utilized, or

other formalisms such as UML were substantially involved.

Our model is independent of the number of floors and

elevators and covers different stages of the elevator system

in substantial detail. We believe our model is flexible enough

to be adapted to different algorithms and rules, and may

eventually evolve into a ’standard’ formal model of the

elevator system.

2. The Elevator System
Elevator systems are an integral aspect of buildings from

the point at which they are first designed. With high-rise

buildings being the typical candidate for elevator systems,

such systems are usually very complex. Multiple elevators

must be controlled by a centralized control mechanism. The

complexity of these elevator systems arises from factors

such as scheduling needs, resource allocation, and stochastic

control, to name a few. Handling these jobs usually results

in systems behaving as discrete event systems [10].

The elevator system is usually defined as follows [1]: An

elevator system is to be installed in a building with m floors

and n cars. The elevator and the control mechanisms are

supplied by the manufacturer. The internal mechanism of an

elevator system is assumed (given). The problem concerns

the logistics of moving cars between floors according to the

following constrains:

a. Each elevator’s car has a set of buttons - one for each
floor. Pressing these buttons signals the elevator to move to
the corresponding floor.

b. On the wall outside the elevator each floor has two
buttons (with the exception of the ground and the top floors).
One button is pressed to request an upward moving elevator
and another button is pressed to request a downward moving
elevator. If both buttons are pressed, then each direction is
assigned to a different car.

c. When an elevator has not received any requests for
service, it should be held at its parking floor with its doors
closed until it receives further requests.

d. All requests for elevators from floors (i.e. hall calls)
must be serviced eventually. The applied algorithm controls
the priority of floors.

e. All requests for floors within elevators (i.e. car calls)
must be serviced eventually, with floors usually serviced
sequentially in the direction of travel.

f. Each elevator’s car has an emergency button which
when pressed causes an alarm. The elevator is then deemed
"out of service". Each elevator has a mechanism to cancel
its "out of service" status.

Our model is based on the above description.

3. Coloured Petri Nets
Coloured Petri Nets (CPN), first proposed in [11] and later

substantially modified and enhanced in [12], are an extension

of Petri Nets which are often used to model behaviours

of rather complex systems. CPN have preserved the useful

properties of Petri Nets while at the same time extending

the initial formalism to allow for distinction between to-

kens. Coloured Petri Nets (CP-nets or CPNs) is a graphical

language for constructing models of concurrent systems and
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analysing their properties. CP-nets is a discrete-event mod-

elling language combining the capabilities of Petri Nets with

the capabilities of a high-level programming language. Petri

Nets provide the foundation of the graphical notation and the

basic primitives for modelling concurrency, communication,

and synchronisation. Coloured Petri Nets allow tokens to

have a data value attached to them. This attached data value

is called token colour. Although the colour can be of any

arbitrarily complex type, places in CPNs usually contain

tokens of one type. This type is referred to as the colour

set of the place.

A semi-formal definition can be given as follows:

A Coloured Petri Net is a tuple:

N = (P, T,A,Σ, C,N,E,G, I)

where:

• P is a set of places.

• T is a set of transitions.

• A is a set of arcs.

• In CPNs sets of places, transitions, and arcs are pairwise

disjoint P ∩ T = P ∩A = T ∩A = ∅
• Σ is a set of colour sets defined within CPN model.

This set contains all possible colour, operations, and

functions used within CPN.

• C is a colour function which maps places in P into

colour in Σ.

• N is a node function which maps A into (P × T ) ∪
(T × P ).

• E is an arc expression function which maps each arc

a ∈ A into the expression e. The input and output

types of arc expressions correspond to the type of nodes

which the arc is connected to.

• G is a guard function which maps each transition

t ∈ T into guard expression g. The output of the guard

expression should evaluate to Boolean value true or

false.

• I is an initialization function which maps each place

p into an initialization expression i. The initialization

expression must evaluate to a multiset of tokens with a

colour corresponding to the colour of the place C(p).

CPN support hierarchical modeling and are equipped with a

modeling language called CPN ML which is based on the

standard functional programming language ML. There are a

variety of tools that can be used. In this paper the tools from

[13] have been used.

For more details and theory of CPN, the reader is referred

to [14].

4. CPN-based Modelling of Elevator Sys-
tem

Due to the complexity of the elevator system and the

desired flexibility of the structure, the proposed model is

composed of five major interconnected but independent sub-

models. These sub-models include the car-structure sub-
model, the hall-call sub-model, the car-call sub-model,
the system-cycle sub-model, and the hierarchical parking-
optimizer sub-models. The functions and connections be-

tween sub-models are described as follows: The car-structure

sub-model represents the elevator’s cars. It is at the centre of

all other sub-models that concurrently control the elevator’s

cars. Typically, an elevator car is requested by two types of

controls: either a hall-call or a car-call. As the names suggest,

a hall-call is placed by pressing a button located in the

hallway of a given floor while a car-call is place by pressing

a button inside the car of the elevator. When a hall-call is

placed, by relying on algorithms the hall-call sub-model will

assign the hall-call to the appropriate car of the car-structure

sub-model. Similarly, the car-call sub-model coordinates the

placed car-calls with the cars of the car-structure sub-model.

The system-cycle sub-model operates the cars of the car-

structure sub-model to service the requested calls. Finally,

the parking-optimizer sub-models reduce the waiting time

between the placing hall-call and the arrival of the assigned

car by constantly electing the holding floors of the idle cars.

4.1 Car-Structure Sub-Model
This sub-model (Figure 1) consists of just two places Cars

and Database that also belong to other sub-models. The first

place has the colour set Cars, which is a record colour set

or the Cartesian product of the sets described in Table 1.

The second place has the set of colours Database (defined

in Table 2). In principle, this is a list of all the necessary

information about the states of cars. This list is used by

the algorithms of the hall-call sub-model. Both places are

initialized dynamically by the functions initialize cars and

initialize database respectively.

Fig. 1: The Car-Structure Sub-Model

Table 1: The definitions of colour set Cars

Colour Sets Definitions

Car ID {i | i ∈ Z
+ ∧ i ≤ total number of cars}

Range {r | r ∈ Z
+ ∧ lowest floor ≤ r ≤ highest floor}

Status {up, down, emergency, idle, out of service}
Desired Floors {[l] | l ∈ Range}
Call Issuer {request, system, non, reservation}
INT {n | n ∈ Z}
Cars { (car id, current floor, status, parking floor,

desired floors, call issuer) | car id ∈ Car ID,
current floor ∈ Range, status ∈ Status,
parking floor ∈ Range, desired floors ∈
Desired Floors, call issuer ∈ Call Issuer}
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Table 2: The definition of colour set Database

Colour Sets Definitions

Car Info {(current floor, status, destinations, car id) |
current floor ∈ Range, status ∈ Status,
destinations ∈ Desired Floors, car id ∈ Car ID}

Database {[d] | d ∈ Car Info}

In the colour set Cars, the parking floor indicates which

floor the car is held when idle. The initial value of the

parking floors is calculated in general by the following

equations:

Floor No. = (highest floor no. − lowest floor no.) +1
Scope = | floors no. ÷ numbers of cars |

Scope’s Head = ((scope * car id) − (scope − 1) +
(lowest floor no. −1))

Scope’s Tail = (scope ∗ car id) + (lowest floor no. −1)

Thus, a parking floor of a car is assigned optionally by either

Scope’s Head or Scope’s Tail. Otherwise the parking floor

may be typed manually for each car, especially in cases when

the above equations are impractical.

The other elements of the colour set Cars are self-

explanatory.

4.2 The Hall-Call Sub-Model
This sub-model assigns a hall-call to the most appropriate

car based on the applied given algorithms (which are sub-

ject to changes and replacements). Furthermore, the model

generates hall-calls from arbitrary floors and a selected floor

in order to facilitate efficiently the examination of various

rules and algorithms during the simulation-based analysis.

The processing of hall-calls is initialized from place

requested call where each token represents a placed hall-

call of colour set Hall Call. Every token has an appropriate

direction and a floor number where the hall-call was placed.

Assigning a hall-call to a car requires the firing of transition

Assign Hall Call. Transition Assign Hall Call is enabled if

and only if its guards, which represent appropriate rules,

are holding. The specific rules that must be satisfied are

comprised of the following:

1) the selected car is either idle or traveling toward the

direction of the hall-call;

2) the selected car is not reserved; and

3) the selected car is elected by the applied algorithm.

After firing transition Assign Hall Call, the token of a placed

hall-call is removed from place requested call and assigned

to the desired-floors list of a selected car in place Cars with

a guided direction, i.e. up or down, if the selected car is idle.

Two algorithms - namely the nearest-car algorithm [15]

and the scope algorithm which process the assignment of

hall calls to cars - are implemented separately to examine

the model’s ability of adopting various algorithms and rules.

Place Database facilitates the adoption of multiple differ-

ent algorithms that require simultaneous access to all cars’

states; hence, other algorithms can easily be adopted.

Table 3: The definition of colour set Hall Call

Colour Set Definition

Hall Call {(hall call floor, status) |
hall call floor ∈ Range, status ∈ Status}

The nearest-car algorithm starts by analysing the token

of place Database from Table 2. First, the cars with proper

status (i.e. cars that are travelling toward the hall call request

or that are servicing no calls) are extracted from the token.

Each car is represented by a single tuple, so selection of

cars occurs by extracting appropriate tuples. Once the proper

cars are elected, the distances between the hall-call floor and

cars’ current floors are calculated by the absolute value of the

difference between current floors and the hall-call floor for

each car. Accordingly, the hall-call is assigned to the car with

the minimum distance to the hall-call floor. Additionally,

in this paper we have improved the nearest-car algorithm

by further calculation of time consumed by the car’s stops

between the hall-call floor and the car’s current floor. Thus,

travel times plus the number of served calls between car’s

current floor and the hall-call floor are calculated for each

car. Based on this, the car with the expected minimum

waiting-time is assigned to serve the hall-call.
The scope algorithm is usually employed in express

elevators and sky-lobby floors where each car is forced to

serve a specified range of floors with an allowance of transit

floors. We implement the scope algorithm as extra guards

on transition Assign Hall Call. For instance, a guard that

identifies the range of floors for each car is written as:

H ≤ A ≤ T.

where:

H = the head floor of the car’s scope
A = the answered hall-call floors
T = the tail floor of the car’s scope

The hall-call model also allows for a simulation-based

analysis of different algorithms by controllably producing

two classes of floors’ numbers: arbitrary, where numbers

range from lowest to highest floors; and an identified num-

ber of a specific floor that is requested repeatedly. Some

parameters (in Table 4) are defined for controlling the pro-

duction of hall calls. Moreover, a produced floor’s number

is associated with a direction based on the two rules. First,

a floor’s number equates the highest floor that is associated

restrictedly with the down direction. Conversely, a floor’s

number equates the lowest floor that is associated restrictedly

with up direction. The other floors’ numbers are associated

non-deterministically (modeled as a uniformly distributed

random choice) to upward or downward direction.
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Fig. 2: The Hall-Call Sub-Model

Table 4: The Parameters of The Hall-Call Sub-Model

Parameters Legal values

Producing mode {finite, infinite}
Times of finite hall calls {y | y ∈ Z ∧ 0 ≤ y}
The most requested floor {r | r ∈ Range}
Duplication of requested floor {d | d ∈ Z ∧ 0 ≤ d}
The applied algorithm {minimum waiting, nearest, scope}
Production’s pause number {p | p ∈ Z

+}

4.3 The Car-Call Sub-Model
This sub-model provides a coordination between the cars

and the car-calls. Additionally and similarly to the hall-

call sub-model, this sub-model includes generators for both

arbitrary and identified floors’ numbers.

The coordination between cars and requested car-calls are

represented by tokens in place car call with the colour set

Range, which is a floor number in the range between the

lowest and the highest floor. Placing the car-call in a car

demands firing transition Coordinate which is enabled when

its guards are satisfied in respect to the producing mode’s

state and the applied algorithm on the hall-call sub-model.

For instance, in the scope algorithm the car serves only

within the floors of the car’s defined scope. After firing

transition Coordinate, the placed car-call is removed from

place car call and inserted into the car’s desired-floors list

with an appropriate direction if the car is idle. Similarly, the

list of the specified calls, in place specific floors’ num by

colour set Specific Floors (see Table 5), is also merged.

Table 5: The definition of colour set Specific Floors

Colour Set Definition

Specific Floors {(car id, specific calls, repeated times) |
car id ∈ Car ID, Specific calls ∈ Desired Floors,
repeated times ∈ Z}

The car-call model also features two mechanisms that pro-

duce arbitrary car-calls where each call is placed individually

into a car and a list of specified calls are placed entirely to

each available car by transition Coordinate. Table 6 outlines

some of the parameters of car control.

Table 6: The Parameters of The Car-Call Sub-Model

Parameters Legal values

Producing mode {finite, infinite}
Times of finite car calls {x | x ∈ Z ∧ 0 ≤ x}
Most desired floors {[f ] | f ∈ Range}
Frequency of desired floors {d | d ∈ Z ∧ 0 ≤ d}
Production’s pause number {p | p ∈ Z ∧ 0 < p}

4.4 The System-Cycle Sub-Model
This sub-model deals with the system cycle of the eleva-

tor’s cars during the operation of the elevator system. Each

elevator’s car experiences three separate stages of mainte-

nance, arrival, and transition (see Figure 4). Furthermore, the

system-cycle sub-model has basic parameters which are very
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Fig. 3: The Car-Call Sub-Model

convenient for simulation-based analysis (defined in Table

7).

Table 7: The Parameters of The System-Cycle Sub-Model

Parameter Legal value

Car’s number {i | i ∈ Z
+}

Lowest floor number {n | n ∈ Z
+ ∧ n < highest floor}

Highest floor’s number {m | m ∈ Z ∧ lowest floor < m}
Restart cars automatically {yes, no}

The maintenance stage models the suspension of a car

which is caused either by an emergency case when the car’s

emergency button is pressed, or by an operation failure case

when an error occurs during the execution of the elevator-

system model. The suspension is the result of firing transition

Maintain which has the highest priority in the entire model

(i.e. when it is enabled, all other transitions in the model are

blocked). Therefore, when the status of a car is "emergency"

or "out of service", then transition Maintain fires and the

car’s token is transferred temporarily from place Cars to

place out of service. At this point the token in place Database
is updated accordingly. Hence, the car is not accessible

by any other sub-models that have no access to place out
of service. Later, a pending car can be restarted either

automatically or manually based on the value of parameter

restart cars automatically. If it is assigned to "yes", then

transition Restart is enabled immediately. However, if the

parameter is set to "no", then restarting pending cars requires

manually altering the status of the car to a different value

other than "emergency" or "out of service". In both cases,

firing of transition Restart results in a car’s token being

returned to place Cars and place Database being updated;

therefore, the car is accessible by other sub-models.

The transition stage describes the process of moving

elevator cars between floors. This is modeled by the firing of

transition Transfer, which is enabled if transition Maintain
is not, the car’s desired-floors list is not empty, and the

car’s current floor matches no calls of the desired-floors list.

After firing transition Transfer, the car’s token is updated as

follows. If the car’s desired-floor list has calls beyond the

car’s current floor, it continues shifting in the same direction.

Otherwise its direction is reversed. In both cases, the token

in place Database is updated accordingly.

Once a car reached its desired destination, it is in the

arrival stage. At this stage, transition Arrive is enabled if

transition Maintain is disabled and the car’s current floor

matches a requested call of the desired-floors list. After firing

transition Arrive, car’s token is updated by dropping the

requested floor from the car’s desired-floor list. Additionally,

the car’s state is set to one of three cases. If the car’s

desired-floor list has more calls, then it continues serving

the requested calls. Otherwise, the car is set to idle if

the car’s current floor agrees with its parking floor or

alternatively the car is dispatched to its parking floor with an

appropriate direction. Finally, place Doors represents doors’

operations. Since such operations are almost trivial, they

have been included in one place that can be converted into

an hierarchical sub-model to show all of the doors’ activities.

4.5 The Parking Optimizer Sub-Models
Holding idle cars on or near floors where most hall-calls

are placed substantially improves passenger satisfaction and

the system’s energy usage and efficiency [15]. Therefore,

cars are initially distributed in fair distances between the

lowest and highest floors. Subsequently, the parking op-

timizer sub-models continuously analyse the placed hall-

calls and then assign the elected floors to the cars. The

parking optimizer models include the election sub-model
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Fig. 4: The System-Cycle Sub-Model

and the position sub-model. In Table 9, the definitions of

the parameters which facilitate the control of the parking

optimizer model are presented.

Table 8: The Parameters of The Parking Optimizer Sub-

Models

Parameters Legal values

Parking system state {”enable”, ”disable”}
Analyzing hall calls { x | x ∈ Z }

All models of the parking optimizer sub-model are self-

explanatory. However, it is also important to first note that

the procedures of all models must be sequential. Therefore,

some transitions have priorities which are represented by

numbers that appear in the bottom-left corner of each

transition. The value of these numbers implies the order

of enabled transitions. Second, the fusion place Lock of
the system (Lock Sys) is functionally similar to an inhibitor

arc. If there is a token in a place, an inhibitor arc disables

a transition (see [16]). For example, if Lock Sys has the

value "0", then transition Count Call is disabled: this locks

the system from analysing more hall calls. This place is

critically important because when a car is in the maintenance

stage of the system-cycle sub-model and not accessible,

then the parking optimizer sub-models cannot successfully

assign all elected floors. Consequently, the parking optimizer

sub-models are suspended until the ongoing maintenance is

completed.

After election sub-model (in Figure 5(a)) counts the

repetition of all placed hall-calls and then nominates the

floors where most hall-calls have been repeatedly placed,

the position sub-model (in Figure 5(b)) alters the cars’

parking floors with respect to their scopes. This process

works to approximately guarantee fair distances between

cars to reduce the total wait times.

Table 9: The Colour Sets of The Parking Optimizer Sub-

Models

Colour Sets Definitions

Floors Statistics {(floor,times) | floor ∈ Range, reputation ∈ Z}
Scope {(scope id,prev,next,elected floors) | scope id ∈ Car ID,

prev ∈ Z, next ∈ Z, elected floors ∈ INT List}
Scope Statistics {(scope id,floors’ number) | scope id ∈ Car ID,

floors’ number ∈ Z}
Identified Floor {(floor id,floor’s number) | floor id ∈ Car ID,

floor’s number ∈ Range}

5. Analysis
Two analyses techniques were applied. The first technique

is the reachability analysis by means of the State Space tool

[17]. This tool verified and generated an automatic report.

The proposed model has dead markings that occur in cases

such as a placed hall-call with no available car. Transition

Maintain and transition Restart are dead transitions which

indicate no operation failure of the proposed model. The

second technique is the simulation-based analysis by means

of CPN Tools. Although this technique is flexible, it is

also time-consuming. However, the proposed model was
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(a) The Election Sub-Model

(b) The Position Sub-Model

Fig. 5: The Parking Optimizer Sub-Models

simulated repeatedly with different settings, and the entire

definition of the system was achievable.

6. Conclusion
We have provided a fairly general CPN-based model of

the elevator system. The model covers various aspects of

the elevator system and is divided into five sub-models that

can be analyzed independently. Such division allows for

easier tracking of errors and faults in the elevator system.

The flexibility of the model allows for easy adaptation of

different algorithms and rules depending on the actual needs.
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