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Abstract—NTRU is a public key cryptosystem 
operating on the ring Z[X]/(XN  1), which is known as 
the ring of convolution polynomials of rank N, where N 
is a prime. Reducing the decryption failure probability 
is a big challenge associated with such type of 
cryptosystem and is related to the ring that NTRU is 
based on. In this paper, a new multidimensional public 
key cryptosystem is proposed using commutative ring of 
quaternions that is not fully fit within Circular and 
Convolutional Modular Lattice. The decryption failure 
of this new algebraic structure is reduced. Furthermore, 
its complexity is four times the complexity of the 
classical NTRU. This results in high secured system 
resistance to some well-known attacks. Despite this 
advantage, the computational time analysis shows that 
the proposed system is slower than the original NTRU.  

Keywords— public key cryptography; NTRU; lattice; 
quaternion algebra; non-associative cryptosystem. 

I. INTRODUCTION

RYPTOGRAPHY is the science of protecting the 
privacy of information during communication 

under hostile conditions. Modern telecommunication 
networks, especially, the Internet and mobile-phone 
networks have tremendously extended the limits and 
possibilities of communications and information 
transmissions. Associated with this rapid 
development, there is a growing demand for 
cryptographic techniques, which have spurred a great 
deal of intensive research activities in the study of 
cryptography 

   In mid-1990, a software company needed a 
cryptosystem that deals with a few bits processors 
and small numbers. Three mathematicians, Jeffry 
Hoffstein, Jill Pipher and Joseph Silverman [1] 
suggested a new cryptosystem, NTRU (Number 
Theory Research Unit). This system is a public–key 
cryptosystem. The computational and space 
complexity problems motivated them to propose this 
system that was fully presented in 1998. It is not 
based on integer factorization and discrete logarithm 
problem, but, it is based on a class of arithmetic 
operations that are efficiently performed with 
insignificant storage and time complexity [2]. This 
property made NTRU very suitable choice for a large 
number of applications, such as mobile phones, 
portable devices, low-cost smart cards, and RFID 
devices [3]. 

Since the introduction of NTRU cryptosystem, 
many researchers tried to improve its performance 
during the past fifteen years. This was done through 
the development of its algebraic structure to some 
Dedekind domain and Euclidean rings such as Z[i],

and GF(2k)[x]. The first generalization of NTRU to 
Euclidean integer was proposed by Gaborit, et al. [4]. 
Through his initiative suggestion of replacing NTRU 
algebraic structure with other rings, he referred to it 
CTRU. In 2005, Coglianese et al. [5] improved the 
NTRU cryptosystem by replacing its original ring with 
a k k matrices ring of polynomial with order n, known 
as MaTRU. It has improved speed by a factor of O(k)
over NTRU. In 2009, Malekian et al. [6] presented the 
QTRU cryptosystem. It was a multi–dimensional 
public key using quaternion algebra extended ring, 
which is broader than Dedekind domain and 
Euclidean algebra. Their underlying algebraic 
structure was non–commutative.  This implied 
keeping the positive points of NTRU, and making it 
more resistant to some lattice-based attacks [7].  
Another framework based on the Eisenstein integers Z 
[w], was presented by Jarvis [8] in 2011. This ring is 
defined as a cube root of unity and the coefficients are 
integers from Z. They called it ETRU, and showed 
that ETRU had improved the NTRU security [9].  

In this paper a new NTRU cryptosystem is 
proposed using commutative ring of quaternions CQ. 
It has the same structure of QTRU but depends on the 
polynomial algebra with coefficients in CQ. It will be 
referred to as CQTRU. Some conditions on the 
parameter selection are placed to alllow the proposed 
system high chance for successful decryption. 

The text of this paper is organized in the following 
way: a brief summarization of the NTRU cryptosystem 
is presented in Section 2. Some mathematical 
description of the alternative CQ, as a base ring for the 
proposed system, is discussed in Section 3. In Section 
4, the proposed CQTRU is introduced, whereas the 
implementation of CQTRU with the improvement of 
the decryption failure probability is presented in 
Section 5. The performance analysis is discussed in 
Section 6, and the conclusions are presented in 
Section 7. 

II. THE NTRU CRYPTOSYSTEM

A simple description of the NTRU cryptosystem is 
summarized in this section. For more details, the 
reader is referred to [1, 10-14]. The NTRU system is 
principally based on the ring of the convolution 
polynomials of degree N-1 denoted by R=Z[x]/(xN-1). 
It depends on three integer parameters N, p and q,
such that, (p, q)=1. Before going through NTRU 
phases, there are four sets used for choosing NTRU
polynomials with small positive integers denoted by 
Lm, Lf, Lg and Lr R. It is like any other public key 
cryptosystem constructed through three phases: key 
generation, encryption and decryption. 
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A.  Key Generation phase 
To generate the keys, two polynomials f and g are 

chosen randomly from Lf and Lg respectively. The 
function f must be invertible. The inverses are denoted 
by Fp , Fq R, such that: 

      Fp * f   1 (mod p)    and Fq * f  1(mod q)

The above parameters are private.  The public key 
h is calculated by, 

                  h =p Fq  g mod q                            (1) 
Therefore; the public key is {h, p, q}, and the 

private key is: {f , Fp}.       

B.  Encryption phase 
The encryption is done by converting the input 

message to a polynomial m  Lm and the coefficient of 
m is reduced modulo p. A random polynomial r is 
initially selected by the system, and the cipher text is 
calculated as follows,  

                         e = r *h + m   mod q.                   (2)

C. Decryption phase 
The decryption phase is performed as follows: the 

private key, f, is multiplied by the cipher text e such 
that,

        f *e  mod q= f*(p.h*r+m ) m od q 

                          =p.f*h*r+f*m  mod q   

                          =p.f*Fp
-1*g*r+f*m  mod q 

                          =p.g*r+f*m   mod q 

The last polynomial has coefficients most 
probably within the interval (-q/2,q/2], which 
eliminates the need for reduction mod q. This equation 
is reduced also by mod p to give a term f*m mod p, 
after diminishing of the first term p.g*r. Finally, the 
message m is extracted after multiplying by Fp-1, as 
well as adjusting the resulting coefficients via the 
interval [-p/2, p/2). 

III. ALGEBRAIC STRUCTURE OF CQTRU
The suggestion of replacing the original ring of 

NTRU with other rings Gaborit et al. [4], and based on 
NTRU structure, a new scheme for NTRU
cryptosystem that depends on polynomial algebra with 
coefficients in the commutative ring of quaternions 
CQ is proposed to introduce a new cryptosystem 
called CQTRU. Prior to establishing the validity of the 
proposed system, The CQ ring should be defined with 
its addition and multiplication operations, and the 
existence of the multiplicative inverses [15-19].  

A. Commutative Quaternions (CQ) 
In a four-dimension vector space, a commutative 

quaternions set is denoted by CQ, and defined as:  

CQ = { a = t + xi + yj + zk : t,x,y,z  R and i,j,k  R}. 

Where; i, j, k satisfy the following multiplication 
rules: i2=k2 = -1, j2= 1 and ij= k.

In this paper, i, j and k are defined as i2= a, j2=b, 
k2 = ab and ij=k. By this definition, a general 
commutative algebraic system is defined. Assuming F
is an arbitrary field, the commutative quaternion 
algebra A can be defined over F as: 

A = {a + bi + cj + dk | a, b, c, d  F, i2 = a, j2 = b, i j 
= k}. 

Clearly, if we assume that a = -1, b = 1 and F be 
the field of real numbers R, then, based on the choices 
of a and b and the nature of the field F, the original 
definition of commutative quaternion is obtained. 

Let A0 and A1 be two commutative quaternion 
algebras such that: 

A0={f0 + f1.i+ f2 j + f3.k|f0, f1, f2, f3  Rp, i2= -1, j2=1, 
ij=k} and
A1={g0 + g1.i + g2.j + g3.k| g0, g1, g2, g3  Rq , i2= -1, 
j2=1, ij= k}. 
 

Assume that   a0, a1  A0 (or A1 ), such that,  a0 = 
t0 + x0.i + y0.j + z0.k  and a1 = t1 + x1.i + y1.j + z1k.
Then, the operation on these two commutative 
quaternions; i.e. addition, multiplication and 
multiplicative inverse, will be given as: 

a0 + a1 = (t0 + t1) + (x0 + x1)i + (y0 + y1)j + (z0+z1)k 

a0 • a1 = (t0 t1 – x0 x1 + y0 y1 z0 z1) + (x0 t1 + t0 x1 + 
z0 y1 + y0 z1)i + (t0 y1 + y0 t1 – x0 z1 – z0 x1)j + (z0 t1 + t0 
z1 + x0 y1 + y0 x1)k. 

B. Multiplicative invers in CQ Algebra 
In NTRU public key cryptosystem scheme, the 

most important factor is the existence of the 
multiplicative inverse. For any element a in CQ to be 
used in CQTRU, the existence of its multiplicative 
inverse module p and q has to be checked. 

For each a CQ, a can be represented by a 2 2 
complex matrix, such that, if a=a0+b0i+c0j+d0k CQ,
then a can be uniquely represented as a=c1+jc2, where 
c1=a0+b0i, and c2=c0+d0i, c1, c2 C.  Here C is the set 
of complex numbers [10]. 

Hence, for a=c1+jc2,
12

21)(
cc
cc

a , where  is a 

bijective map. 

Knowing 1)(a , the multiplicative inverse a-1 of 
a CQ is calculated as follows:  

If ( )2+( )2 0, then 1a = 0+ 1i+ 2j+ 3k,, where 
=[ 2

0
2
0

2
0

2
0 dcba ], = [2a0*b0-2c0*d0].  

 

Let ( 2+ 2)-1 = , then we have [ 0= ( *a0– *b0), 
1= ( *b0+ *a0), 2= ( *d0– *c0), and 
3= ( *d0+ *c0)]. 
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IV. THE PROPOSED CQTRU CRYPTOSYSTEM

In order to obtain a full understanding of how the 
CQTRU cryptosystem works, the algebraic structure 
for key generation, encryption and decryption, is 
designed as follows. 

At the beginning, the parameters N, p, q have the 
property that N is an integer, p and q are relatively 
prime, and in all the algorithms, the parameter m
represents either p or q depending upon which one is 
passed into the function. 

A. Key Generation phase 
To generate the public key, two small 

commutative quaternion F and G are randomly 
generated, such that 

F = f0 + f1 i + f2 j + f3 k  Lf . 
G = g0 + g1i + g2j +g3 k  Lg. 

As it was mentioned above, F is invertible over A0
and A1 if ( 2+ 2) is invertible in Zcp and Zcq.
Otherwise; a new commutative quaternion is 
generated. The inverses of F over Zcp and Zcq are 
denoted by Fp and Fq respectively.  

Now, the public key is calculated as follows: 

H = Fq • G  mod q
= (fq0 * g0 – fq1 * g1 – fq2 * g2 – fq3 * g3 )+
   ( fq1 * g0 + fq0 * g0 + fq2 * g3 + fq3 * g2 )i+ 
   ( fq0 * g2 + fq2 * g0 – fq1 * g3 – fq3 * g1 )j+ 
   ( fq0 * g3 + fq3 * g0 + fq2 * g1 + fq1 * g2 )k . 

The commutative quaternions F, Fp and Fq will be 
kept secret in order to be used in the decryption phase.  
It is obvious that the estimated time to generate a key 
for the proposed scheme is 16 times slower than that 
of NTRU, when the same parameters (N, p and q) are 
selected for both cryptosystems. However, with a 
lower dimension N, we can achieve the original NTRU
speed.  

As mentioned previously, the new system is a 4- 
dimension space. Hence, if one chooses the 
coefficients of i, j and k to be zeros in the 
commutative quaternions F and G, then the system 
will be completely similar to NTRU. Moreover, this 
choice of zero coefficients for j and k will yield a 
cryptosystem based on complex numbers. Finally, if 
one of the coefficients of I, j or k is equal to zero, we 
obtain a tridimensional scheme. 

B. Encryption phase 

At the beginning of the encryption process, the 
cryptosystem must generate a random commutative 
quaternion called the blinding quaternion. The input 
message should be converted into a commutative 
quaternion. The cipher text will be computed and sent 
in the following way: 

Let M = m0 + m1i + m2 j + m3 k  

where, m0, m1, m2, m3 , generate a random 
quaternion   R=r0 + r1 i + r2 j+ r3 k, and r0, r1,  r2 , r3

.

Hence, the encryption function used is: 

E = p.H • R + M mod q                              (3) 

In this phase, a total of four data vectors are 
encrypted at the same time.  

C. Decryption phase.  
After receiving the cipher text E, the original 

message is constructed as follows. 

The private key F is used to find B:

B = F • e mod q                          (4)

The coefficient of B should be reduced mod q into 
the interval (-q/2,q/2].

The next step in the decryption process is to 
calculate the commutative quaternion D.

D = Fp • B    mod p.                                   (5) 

The original message is obtained by reducing D in 
the interval [-p/2, p/2].

D. How Decryption Works : 

Since       B = F • E    mod q 
     = (F • ( p.H •R + M ))  mod q
     = (F • p.H •R + F • M ) mod q,

the value of H  is substituted to get, 

B = ( pF • Fq • G • R + F • M ) mod q  
    = ( pG • R + F • M ) mod q .                 

Since D = Fp • B mod p, then 

D = Fp •( pG • R + F • M ) mod p  
     = ( Fp • pG • R + Fp • F • M ) mod p  

The term (Fp • pG • R) will be disappear after 
reducing mod p, to obtain the term (Fp • F • M ). 

Since Fp • F = 1 mod p, normalizing the result into 
the interval (-p/2, +p/2] yields the original message M.
Therefore, the decryption speed is half the encryption 
speed because decryption includes 32 convolutions 
product. This is clearly analogous to the NTRU
cryptosystem. 

V. IMPLEMENTATION AND EXPREMENTS

Both CQRTU and NTRU are implemented in 
Matlab. The experiments were performed on a PC 
with 2.4 GHZ Intel Core 3, Quad processor and 4 MB 
Ram under windows 7, 32 bit operating system. For 
p=3, key generation, encryption and decryption speed 
with the probability of successful decryption are 
shown in Table 1. The probability of decryption 
failure depends on the choice of public parameters. 
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However, when N is fixed and the other parameters 
take larger values, the probability of decryption failure 
is decreased. 
Table 1. Speed & probability of successful decryption,  p=3

A. Decryption failure  

The probability of decryption failure is decreased if 
all commutative quaternion coefficients of 

F•E=(pG•R+F•M)  lie in the interval (
2

,
2

qq ]. For 

the CQTRU, this probability is computed as follows: 

To calculate var[ai, j], it is sufficient to assume that 
E[fi,k,] 0, E[gi,k]=E[ri,k]=E[mi,k]=0, E[ai,k]=0  where 
i=0, 1, 2, 3 and k=0,…,N-1, and E is the mean 
function. Since each coefficient of quaternion 
element is a polynomial of degree N, then we have 

2,,
4

,
N

dd
grVar gr

ijki

N
ppd

mfVar f
ijki 6

)1)(1(
, ,,

6
)1)(1(416 2

,0
ppd

N
ddp

aVar fgr
k

1)
2

1(2)
2

Pr( ,
qqa ki

Where;  denotes the distribution of the standard 
normal variable, and  

6
)1)(1(416 2 ppd

N
ddp fgr . ai,k’s are

assumed to be independent random variables. The 
successful decryption probability in CQRTU can be 
calculated by the following two observations:  

N
q 1
2

12 ,
N

q
4

1
2

12             (6) 

VI. PERFORMANCE ANALYSIS

After comparing NTRU to other cryptosystems, 
such as RSA and ECC, which are based on the number 
theoretic problem (e.g., factorization and discrete 
logarithm) [20], NTRU was found to have an 
advantage over them due to its fast and low space  
storage arithmetic operations. This turned NTRU into 
a very suitable choice for a large number of 
applications. 

A. Computational complexity 

For encryption, one commutative quaternion 
multiplication is needed in addition to 16 convolution 
multiplication and 4 polynomial addition; both with 
O(N) complexity. In the encryption phase, any 
incoming data is converted into polynomial with 
coefficients between –p/2 and p/2.  In other words,  
m0, m1, m2 and m3 are small polynomials modulo q.

B. Security Attacks 

1- Alternate keys analysis in CQTRU

 Compared to NTRU, any alternate of the private 
key f can be used to encrypt and decrypt the same 
messages as f. The attacker needs only to find one 
polynomial having the same properties of f. In 
CQTRU, to find the alternate private key F, the
attacker needs to find four polynomials of the same 
properties of the privet key F. Hence, CQTRU is more 
robust to this attack than NTRU. Accordingly, it is 
considered to be more secure than NTRU. 

2- Brute Force Attacks 

Compared to NTRU, to recover the privet key f; an 
attacker has to try using all possible f’ Lf  in an 
attempt to check if f * h mod q has small polynomial 
coefficients or not. Another way is to try all possible 
g’ Lg and check if g * h-1 mod q has small 
coefficients. In CQTRU, the attacker uses the same 
procedure, where he/she knows all the public 
parameters and constant dr, dg, df, q, p, and N. The 
attacker needs to look in the space of large order to be 
able to look in the spaces Lf and Lg, as follows:  

48

4

)!2()!(
)!(1

fff

f
N

f
f dNd

N
d
dN

d
N

L

48

4

)!2()!(
)!(1

ggg

g
N

g
g dNd

N
d
dN

d
N

L

The space of Lf is a bigger than the space of Lg.
For this reason, it is easier for the attacker to search in 
Lg. By using the brute force attack, an attacker can 
break a message encrypted by CQTRU. This can be 
done by searching in the space Lr because E=H•R+M
(mod q) is known. If the attacker has an ability to find 
the random commutative quaternion R then he/she 
will be able to find the original message by calculating 
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M=E-H•R (mod q). It is obvious that in a brute force 
attack, the security of any message depends on how 
hard it is to find R. The order of the space Lr is 
calculated using the same approach of calculating the 
order of Lf and Lg,

48

4

)!2()!(
)!(1

rrr

r
N

r
r dNd

N
d
dN

d
N

L

This comparison shows that CQTRU is more 
robust to this attack than NTRU.

3- Lattice based attacks 

It is known that every commutative quaternion is 
isomorphism to a matrix called the fundamental 
matrix given in (7): 

0123

1032

2301

3210

3210

qqqq
qqqq

qqqq
qqqq

kqjqiqqq              (7) 

The system parameters (df, dg, dr, p, q, N) are 
known to the attacker as well as the public key 
H=Fq•G=h0+h1i+h2j+h3k. When the attacker 
manages to find one of the commutative quaternions F 
or G, the CQTRU cryptosystem is broken. Note that, 
h0, h1, h2 and h3 are polynomials of order N over Z.
These polynomials can be represented as vectors over 
ZN as follows: 

H= h0+h1i+h2j+h3k  [h0  h1  h2  h3], where 
h0 = h0,0 +h0,1 x+………..+h0,N-1 xN-1 

           [h0,0  h0,1 …………………h0,N-1],

h1 = h1,0 +h1,1 x+………..+h1,N-1 xN-1 
    [h1,0  h1,1 …………………h1,N-1], 

h2 = h2,0 +h2,1 x+………..+h2,N-1 xN-1 
    [h2,0  h2,1 …………………h2,N-1],  

h3 = h3,0 +h3,1 x+………..+h3,N-1 xN-1 
    [h3,0  h3,1 …………………h3,N-1]

Since the polynomial ring Z is isomorphic to the 
circulant matrix ring of order N over Z, the 
polynomials h0, h1, h2 and h3 can be represented in 
their isomorphic representation for lattice analysis as: 

0,1,

1,2,

2,1,

1,0,

)(

ii

ii

NiNi

Nii

NN

hh
hh

hh
hh

ih                   (8) 

      where i=0, 1, 2, 3. 

 

With respect to the above assumptions, to describe 
the partial lattice attack first, let the commutative 
quaternions F and G be represented by  F=[f0  f1  f2  
f3], and G=[g0  g1  g2  g3] where f0, f1,  f2,  f3 , g0,  g1,  
g2,  g3  Z[x]/(xN-1). In order to form the lattice, the 
vectors [u0 u1 u2 u3 v0 v1 v2 v3] must belong to Z8N.
This lattice is denoted by Lpartial and defined by: 

N

NNNN

NNNN
partial Z

qH
I

L 8

4444

4444 0
                    (9) 

where, I refers to the identity matrix, 0 is the zero 
matrix, and H is the fundamental matrix of hi's. Lpartial 
contains a vector in the form [u0 u1 u2 u3 v0 v1 v2 
v3] Z8N, that satisfies F•H=G. However, there is a 
major difference between NTRU and CQTRU lattices, 
such that all points spanned by the CQTRU lattice 
merely includes a partial subset of the total set of 
vectors satisfying F • H=G. To see this, let [u0  u1  u2  
u3  v0  v1  v2  v3] denote the vector satisfying F•H=G,
then [-u1  u0  -u3  u2  -v1  v0  -v3  v2] is the answer. Also, 
since iF • H=iG, therefore, L partial will not necessarily 
contain such vector.  The attacker may manage to use 
the lattice reduction algorithm [21-22] to find a short 
vector satisfying F• H=G. However, even with such 
promising assumption, L partial has a dimension that is 
four times larger than the lattice dimension of NTRU
with the same order N. Hence, the CQTRU with the 
parameters (N=107, p, q) offers the same level of 
security as NTRU with the parameters (N=428, p, q). 
Therefore, for any chosen parameters (N, p, q) to be 
used in CQTRU, the system will be four times slower 
than NTRU with the same parameters as it is shown by 
Tables (2) - (4), which demonstrate that for the three 
phases; key generating, encryption and decryption, 
CQTRU is also slower than NTRU under the same 
environments. However, the CQTRU security is four 
times as that offered by NTRU with the same 
parameters. On the other hand, NTRU with 4N
dimensions is sixteen times slower with respect to 
computational time than NTRU with N dimensions. 
Therefore, CQTRU has a security advantage over 
NTRU.  

Table 2. Key generating time in ms for NTRU and CQTRU 
N q df dg dr NTRU CQTRU 
73 128 10 8 5 20 67 
107 128 15 12 5 40 116 
149 192 20 15 10 52 142 
167 192 25 22 18 56 186 
211 256 28 25 22 76 278 
257 256 33 30 28 98 356 

Table 3. Encryption time in ms for NTRU and CQTRU  
N q df dg dr NTRU CQTRU 
73 128 10 8 5 3.1 10.9 
107 128 15 12 5 8 28 
149 192 20 15 10 9.5 32 
167 192 25 22 18 11 39 
211 256 28 25 22 14 53 
257 256 33 30 28 19 71 
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Table 4. Decryption time in ms for NTRU and CQTRU  
N q df dg dr NTRU CQTRU 
73 128 10 8 5 5.2 18

107 128 15 12 5 14 52
149 192 20 15 10 17 63 
167 192 25 22 18 19 70 
211 256 28 25 22 24 93 
257 256 33 30 28 33 126 

   The partial lattice attacks do not always give 
successful results because  Lpartial does not necessarily 
contain all solutions of F•H=G in such a way that f0, 
f1, f2, f3, g0, g1, g2, or g3 would be short vectors. 
Therefore, the attacker must find a lattice that 
contains all vectors which satisfy the congruence F • 
H=G.

VII. CONCLUSIONS

By changing the underlying ring of NTRU, the 
NTRU cryptosystem has been improved through the 
introduction of a new NTRU like public key 
cryptosystem. This is constructed by replacing the 
base ring of NTRU with a commutative quaternions 
ring that resulted in the emergence of CQTRU
cryptosystem. Despite the apparent increase in   
computational time, it is considered to be reasonable 
with consideration to its higher complexity. This 
generalization of the algebraic structure of the NTRU
resulted also in an improved security level over 
NTRU, and a significant improvement in the reduction 
of the decryption failure probability. 
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