
Deception in Dynamic Web Application Honeypots: Case of
Glastopf

B. Mphago, O. Bagwasi, B. Phofuetsile, and H. Hlomani
College of Information Communication and Technology

Botswana International University of Science and Technology

Palapye, Botswana

Abstract— Websites contain critical information to both the
organization and the customers. With the cyber security
threats currently on the rise, websites are getting easily
compromised which prompts administrators to find ways to
secure them from the black hat community. The use of honey
pots as an alternative to other methods of securing web sites
had brought with it advantages as well as disadvantages.
Glastopf as one of the web application honeypots brings
with it features that emulates a real server. It replies to
the attack using the response that the attacker is expecting
from his attempt to exploit the real server. However, Glastopf
has its disadvantages too. Once deployed, Glastopf can be
easily identified by the attackers due to the simplicity and
static nature of its web-page templates. This paper seeks to
improve the camouflage nature of the honeypot by proposing
a new frame work which will produce dynamic web pages
that will completely disguise the fake pages from the users.

Keywords: honeypot security, deception, dynamic web pages,

cyber attack

1. Introduction

Honeypots have emerged as great tools in tracking hackers

and learning their attack methods. Traditional security tools

such as firewalls, intrusion detection systems, and proxy

servers, and as such, a tool that learns hacking mechanisms

becomes evidently important to the security community.

Many honeypots designs have been proposed and some of

their configurations have been a challenge in many aspects

[1]. The main intended purpose of a honeypot is to deceive

an attacker by re-directing him/her to spoof hosts lines

that will provide phoney information that appears to be

informative or important after an analytic process was done

on the attack signature. This suggest that the honeypot needs

to be as dynamically deceptive as possible in all aspects in-

order to achieve its goal of making attackers believe they

have managed to gain access to real system, and most of

honeypots are unable to achieve dynamicity to conceal the

fact that they are honeypots, Glastopf being an example

hence failing its primary task as a honeypot.

2. Background

As part of changing technologies, a honeypot can be

involved in different aspects of security such as prevention,

detection, and information gathering [2]. Lance Spitzner,

defined a honeypot as a security resource whose value lies

in being probed, attacked, or compromised [3], and for the

purpose of this paper, we will adopt this definition mainly

because it covers all the aspects that we believe a honeypot

should be. A web application honeypot (WAH) in particular,

is a basic web server with an attack surface [4]. This attack

surface is the public HTML content which is indexed by

search engines, and it contains links to files with known

vulnerabilities.

Honeypots can be classified according to their purpose (re-

search and production honeypots) and the level of interaction

(low, medium, and high). A research honeypot is designed

to gain information about black-hat community and does not

add any direct value to an organization [3]. They are used to

gather intelligence on the general threats organizations may

face, allowing the organization to be better protected against

those threats. A production honeypot is one used within an

organizational environment to help protect the organization

and mitigate the risk. Honeypots deployed in a production

environment serve to alert administrators to the potential

attacks in real time [5]. Low interaction honeypots are

primarily production honeypots that are used to help protect

a specific organization [3]. They only simulate services that

cannot be exploited to gain total access to the honeypot.

Medium interaction honeypots are slightly more sophisti-

cated than low interaction honeypots but less sophisticated

than high interaction honeypots [2], and like low interaction

honeypots, they do not have an operating system installed,

but simulated services are more complicated technically.

High Interaction honeypots are actual systems with full-

blown operating systems and applications. They are the

extreme of honeypot technologies.

Currently, there are five major web application honeypots

that are published and made available to the security commu-

nity: HIHAT [6], DShield Web Honeypot Project [7], Google

Hack Honeypot [8], PHPHoP [9], and Galstopf, being the

most recent and the most sophisticated ever produced by The

Honeynet Project. The first four honeypots above have one

104 Int'l Conf. Security and Management | SAM'15 |

thing in common: all of them use modified templates from

real web applications to pretend that they are vulnerable and

attractive to attackers. Thus, all of these honeypots are static,

meaning you have to write new templates to support new vul-

nerabilities, and this can be time consuming and is a reactive

process. However, the advantage to the template is that the

honeypot looks very similar to a real victim and eventually

will entice more manual and more complex attacks. The

static limitation of this honeypots led to the development

of another web application honeypot (Glastopf), which is a

dynamic low-interaction web application honeypot capable

of adapting to new and changing environments, thus making

it a more reliable web application honeypot. The second

reason that led to the development of Glastopf was the

limited ability of the previously mentioned honeypots to deal

with multistage attacks [9]. However, despite all the goods

and praises about this honeypot, Glastopf still have some

limitations in some quarters, the most notable one being

deception by its webpage templates.

3. Motivation
In this paper, we investigate the Glastopf’s deceptive

qualities when queried through specially crafted requests.

Our main focus is on the webpage templates it supplies

when queried. The avenue for this is to theorize on how

Glastopf web application honeypot can better deploy and

avail its webpage templates and still stay deceptive enough

from the black-hat community. We discovered that as of

current, the webpages supplied by Glastopf are too basic for

experienced hackers to see that they are not coming from a

real system. This may be due to, as stated by Cohen [10],

that the creators of Glastopf (The Honeynet Project) were

not directed so much at deception to defeat the attacker in

the tactical sense as at intelligence gathering for strategic

advantage, but rather, unlike most historic honeypots, the

creators are dedicated more at learning about the tool, the

tactics, and motives of the black-hat community and sharing

lessons learnt. This is despite the fact that a honeypot that

can not hide itself entirely loose its value once detected.

Its analogous to a trap without camouflage, attackers will

simply avoid it, and as such it will not serve its purpose. In

order to perform its function, a honeypot has to avoid being

discovered. Responses given by a honeypot need to ensure

they mimic that of the original system well so as not to raise

suspicion, and this is normally the most difficult part when

dealing with an attacker who has intimate, expert knowledge

of a service or particular protocol[11].

4. Conceptual Framework
This section discusses the theoretical framework advanced

by this paper. This is discussed by first exposing the limi-

tations in the current set of Glastopf and further detailing a

framework to address the identified weaknesses.

4.1 The Current Status
Glastopf is a low-interaction, dynamic web application

honeypot capable of emulating thousands of vulnerabilities

to gather data from attacks that target web applications [6].

It accomplishes its goal by deceiving the attackers that it is

a hosting application with a list of vulnerable paths/ scripts,

often referred to as dorks by its developers. These dorks are

published in search engines and crawlers, which are then

indexed and included in search results that attackers collect

when they search for vulnerable paths in the web. So, when

an attacker finds these published paths in search engines,

he will, most probably, attempt to perform an attack on

them, among other vulnerable paths that were not listed in

the search engine. When these new vulnerable paths are

detected, they will also be advertised and indexed in the

search engines, thereby attracting new attackers looking for

those paths.

Now, in the current situation, the webpage templates

supplied by Glastopf when queried are static and too basic

for experienced hackers to see that they are not legitimate

web pages from a legitimate web-server. What happens

now is when you install Glastopf you find templates in the

data file within the honeypot, that can be customized to

suit your needs. This means once customized, the template

becomes static and does not necessarily provide everything

the attackers wants to see.

4.2 The Proposed Framework
In this paper we therefore propose a framework which will

provide a more secure way to camouflage webpage templates

from the black hat community by introducing dynamic web

pages as a replacement to the current static web pages. We

employ a Content Management System, Wordpress to be

precise, in designing these templates, which will give them

a more realistic look that they are real web pages. Once

the honeypot determines what the hacker wants, it emulates

a response, either being the webpage itself or vulnerable

scripts within the page, and send it back to the attacker. In

our proposed solution, we build another module that tells the

honeypot to auto-populate the templates with the information

the hacker wants to see. Fig. 1 depicts the proposed model

overview of how the dynamic web page can be integrated to

the honeypot. This typically starts with an attacker sending

a query to the honeypot (1). Whereupon the honeypot

determines what kind of an attack this is and sends a request

for a web page template to the template distribution module

(2). The template distribution module then communicates

with the template population module, giving it information

on how to populate the required webpage template (3). The

population module then interfaces with the inference engine

and the knowledge base for the creation of the template (4).

The inference engine makes use of the dummy database , UI

Elements and Vulnerable code to create the desired template

Int'l Conf. Security and Management | SAM'15 | 105

(5). The reverse of these steps end up with a template that

was requested by the honeypot being sent to the attacker.

An attacker normally sends a request to the honeypot

with the belief that they are attacking a real system. The

honeypot with its intelligent ability to process requests sends

a request to the template population module. This is an

expansion to the already existing mechanism of processing

requests and returning the dummy webpages to the attacker.

At the moment, the web pages generated by this honeypot

are static, this is the main loophole that makes the honeypot

less deceptive, and in the proposed frame work we seek

to address this issue by building the template with a CMS

and then build another module that directs the honeypot to

populate the template with what the attacker is expecting to

see.

The principle behind Glastopf is that a reply is sent to

the attacker using the response the attacker is expecting to

see from his attempt to exploit the web application. Our

query processor which is made of two parts, the inference

engine and the knowledge base lies as a middle framework

between the template population module and the web page

content. Once an attacker makes a request to the honeypot,

the honeypot already knows the kind of response to give back

to the attacker. Before giving the response to the attacker,

the Query processor is responsible for auto populating the

web template created using a CMS like word press. The

inference engine acts as an expert system which contains

rules responsible for mapping the page design commands

with retrieval of page elements from the UI Elements store.

The page elements which are prone to exploits are mixed

with the dummy data and other elements are combined using

rules defined in the inference engine. The knowledge base

provides the facts that are known to the world and these facts

are dynamically added to the page template as defined by

the rules in the inference engine. After the Query processor

successfully creates a dynamic web page, it is sent back to

the honeypot containing elements which have been requested

by the attacker.This process is depicted in Fig. 2.

5. Discussion
In this section we discuss and compare Glastopf with one

of the closely related adaptive web application honeypots

concepts, Heat Seeking Honeypots, and highlight on the

limitations depicted by both of the honeypots. The actual

reason for the comparison of the two honeypots is based on

the fact that they are the two widely known adaptive and

intelligent web application honeypots as of current.

Heat-seeking honeypots is not a honeypot per-se, but

rather a framework in adaptive web application honeypots.

These types of honeypots actively adapt to emulate the

most popular exploits and construct pages that are similar to

the ones targeted by attackers [9]. Heat-seeking honeypots

have four components: first, they have a module to identify

web pages that are currently targeted by attackers. Second,

web pages are generated based on the queries the honeypot

gets without manually setting up the actual software that

is targeted. Third, these links are advertised through search

engines and all the received attack traffic is logged. And

finally, the honeypot logs are analyzed to identify attack

patterns.

Fig. 3 summarizes the overall functionality of heat-seeking

honeypots. First, attacker queries from the feed are searched

using search engines, and the pages from the search results

are collected. Then the pages are encapsulated and put on the

heat-seeking honeypots, along with real software installed on

virtual machines. The next stage would then be to advertise

the pages in search engines and crawlers. In this case,

when attackers issue similar queries to search engines, the

honeypot pages are returned in the search results, and then

the interactions with the attackers are logged for further

analysis.

Just like heat-seeking honeypots, Glastopf is also an

adaptive and intelligent web application honeypot; Both

Glastopf and Heat-seeking honeypots have vulnerable scripts

in their webpages which are advertised in the search engines

for the attackers to attack. Unlike heat-seeking honeypots

where vulnerable pages similar to the ones attackers are

looking for being fetched from the web, in Glastopf, the

webpage templates are not fetched from the web, but rather,

they are pre-installed in the honeypot itself as static web page

templates. These templates can be customized by Glastopf

user according to their own specifications during installation,

and be fed to the attackers when queried.

The authors believe that the addition of these dynamic

auto populated web templates will fully give the honeypot

what it is lacking at the moment, complete deception.

6. Conclusion
Honeypots provide a very good starting point of pro-

tecting web applications against malicious attackers. They

accomplish this by hiding themselves from the attackers and

respond as if they are a compromised system, and by so

doing , they learn how an attacker is exploiting it and reports

back to the security administrators who can make use of

this information to secure their web applications. Glastopf

is the only adaptive and intelligent web application as of

current, which is believed to be the future of web application

honeypots. However, Glastopf also lacks in the aspect of

deception as it provides basic and static web pages which

experienced hackers can easily identify. The improvement

of this feature would be the production of dynamic web

pages which will completely emulate real web pages from

a real system, and as such the attacker has less chance

noticing that they are interacting with a honeypot rather

than a real system. The success of the implementation of

the proposed framework will not only be a breakthrough to

combat cyber security but will also serve as a platform for

greater innovations in the security industry as a whole.

106 Int'l Conf. Security and Management | SAM'15 |

Fig. 1: Generic architecture for dynamic web page generation

Fig. 2: An overview of the proposed model for dynamic web page integration into the honeypot

7. Future Works
In this paper, we discussed theoretical ideas on how

Glastopf webpage templates can be improved and made

dynamic in order for them to stay deceptive. We introduced

Word-press to build these webpage templates and then

discuss auto template population module for populating our

templates. In our next paper, we will extend these ideas by

employing empirical analysis and design of the proposed

ideas. The idea is to create a python script that will direct

the honeypot on what to populate the webpage template

based on what the attacker expects to see. Then we would

measure and analyze the response patterns of our content

population module, hence compare it with that of a normal

web server. This would basically give us an understanding

that our proposed ideas have been a success.

8. Acknowledgment
Our research activities are sponsored by the Botswana

International University of Science and Technology (BIUST)

and hence we would like to extend our gratitude to the

university for affording us the opportunity to contribute to

the body of knowledge web and cyber security.

Int'l Conf. Security and Management | SAM'15 | 107

Fig. 3: Heat Seeking Honeypots Functionality

References
[1] G. Wagener, S. Radu, E. Thomas, and A. Dulaunoy, “Adaptive

and self-configurable honeypots,” in 12th IFIP/IEEE International
Symposium on Integrated Network Management, Luxembourg, 211,
pp. 345–352.

[2] I. Mokube and M. Adams, “Honeypots: Concepts, approaches, and
challenges,” in Proceedings of the 45th Annual Southeast Regional
Conference, ser. ACM-SE 45. New York, NY, USA: ACM, 2007,
pp. 321–326.

[3] L. Spitzner, Honeypots:Tracking Hackers, 1st ed. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 2002.

[4] Honeypot Project. (2012) Cyber fast track: Web application
honeypot. [Online]. Available: https://honeynet.org/files/CFT-WAH-
FinalReport.pdf

[5] M. Gibbens and R. Vardhan. (2012) Honeypots. [On-
line]. Available: http://www.cs.arizona.edu/ collberg/Teaching/466-
566/2013/Resources/presentations/2012/topic12-final/report.pdf

[6] HIHAT. (2007) High-interaction honeypot analysis tool. [Online].
Available: http://hihat.sourceforge.net/index.html

[7] DShield Web Honeypot Project. DShield Web Honeypot Project.
[Online]. Available: https://sites.google.com/site/webhoneypotsite/

[8] R. McGeehan, G. Smith, B. Engert, K. Reedy, and K. Benes.
GHH, The Google Hack Honeypot. [Online]. Available:
http://ghh.sourceforge.net

[9] L. Rist, S. Vetsch, M. Koğin, and M. Mauer.
(2010) Know your tools: A dynamic, low-
interaction web application honeypot. [Online]. Avail-
able: https://www.honeynet.org/sites/default/files/files/KYT-Glastopf-
Final_v1.pdf

[10] F. Cohen, “The use of deception techniques: Honeypots and decoys,”
Handbook of Information Security, vol. 3, pp. 646–655, 2006.

[11] S. Innes and C. Valli, “Honeypots: How do you know when you are
inside one?” in Australian Digital Forensics Conference, 2006, p. 28.

108 Int'l Conf. Security and Management | SAM'15 |

