
Security Overlay for Distributed Encrypted Containers
Florian Patzer1, Andreas Jakoby2, Thomas Kresken1, Wilmuth Müller1

1Fraunhofer Institute of Optronics, System Technologies and Image Exploitation – IOSB
Karlsruhe, Germany

2Bauhaus Universität, Weimar, Germany
florian.patzer / thomas.kresken / wilmuth.mueller@iosb.fraunhofer.de

andreas.jakoby@uni-weimar.de

Abstract: Storage services enable a high potential for
time and location independent access to information
particularly combined with smart mobile devices. In
combination with corporate and local storage, those
services can be a powerful extension to available
storage in enterprise or governmental environments. In
contrast, common secure storage strategies like
encrypted partitions or disks are static and remotely
inaccessible, but are comfortable to use in a local
scenario. However, storing sensitive data on public
servers is not an option due to the possibility that an
unauthorized third party can access it. Generally
security policies like corporate compliance prohibit
those services explicitly. Thus, sensitive data has to be
encrypted to allow its storage on public servers.

The paper at hand describes a security overlay using a
trusted environment to build a distributed virtual
encrypted container that supports OTFE (on-the-fly-
encryption). For this purpose, an easily extendable
security overlay is introduced where each file or data
set is encrypted independently. The overlay provides a
hierarchical key structure, which hierarchically
controls access to uploaded data and maps the data
structure at the same time. Additionally, the directory
structures and the meta-data are protected against
unauthorized access. Therefore, the presented concept
enables the creation of a deniable distributed file system
that can enable an implementation to make strong
security promises.

The trusted environment can be provided by a device
called CyphWay®, which has been developed at the
Fraunhofer IOSB and presented at ICCWS 2014. The
device guaranties that cryptographic keys are only
available within a Hardware Security Module. Thus, the
whole key structure and the keys themselves are
protected even against the user devices, which is
important regarding potentially insecure mobile
platforms.

Unlike several encrypted container solutions the
presented system allows to distribute encrypted data
over a huge number of divergent publically available
storage services, like cloud storages. In addition, it is

possible to combine those storages with private or
corporate storage.

Keywords: Security Architecture, Secure Cloud Storage,
Mobile Security, Information Security Management,
Secure Distributed Storage

1. Introduction
Within the last years, storage became available

anywhere at any time. The booming Storage-as-a-
Service (STaaS) market, advanced possibilities to access
corporate storage remotely and mobile devices as
smartphones, tablets or laptops make this flexibility
possible. But with the increasing amount of mobility
and storage diversity the types and numbers of possible
attacks on the stored data and the corresponding keys
increases also, even when modern cyber suits are
applied. Classical strategies like encrypted containers,
partitions and disks need to be mapped on mobile and
remote usage. Distributed storage is attractive to private
as well as professional users. STaaS or cloud storage
providers offer clients to remotely access their storage,
which is often enabled through applications for different
platforms like Android, Windows, Ubuntu and
(platform independent) web browsers. In addition, most
of the cloud providers offer different amounts of space
in their prizing model and some advertise small storages
free of charge. This makes them interesting for all kinds
of users. However, because of security policies and
corporate compliance, the usage of such services is not
common in corporate and governmental environments.
This is mainly because sensitive data can be easily read
by the storage providers. Many applications and
techniques addressing this problem do not consider the
storage provider as an attacker and are, for that reason,
no solutions for professional environments. As an
example, US cloud providers are forced to release even
sensitive data of their customers to the US government
due to the USA Patriot Act.

 However, users who are allowed to work with
cloud, local and corporate storage have to use several
clients to manage their data. There are very few
solutions that allow to combine those storages,

130 Int'l Conf. Security and Management | SAM'15 |

especially in mobile operating systems. Systems that
provide this desirable feature, do not meet security
requirements for sensitive data and are therefore often
useless in professional environments.

 Lately, new possibilities of assembling cloud
storage on the client side have been created ([1], [7],
[3]). Those clients are not satisfying in terms of the
provided security. Additionally, none of the available
products and concepts provides a satisfying directory
structure that contains distributed elements and can be
used as one single directory structure, like local
encrypted containers. In advance, some use cases might
require client software, where users do not have to care
about the distribution of their data over different storage
locations.

 On the server side assembling storage that is
situated on different locations is currently done by
distributed file systems like Andrew File-System [5] or
Google File System [4]. Those have been developed to
fulfill the needs of data centers and are mostly limited to
the file system used by the respective center. A user
accessing those systems is bound to their technology.

 There are techniques available that partially
provide more flexibility. Distributed file systems such
as Tahoe [10] and its advancements like [9] allow the
combination of diversely located storages with different
underlying file systems. However, as every location
needs to run the same virtual file system or server
software, those techniques do not address the desired
usage of STaaS, which requires the support of diverse
interfaces. That is why they are only used in
environments where a standardized file system or server
software is deployed. In the domain of the global web
business, this alignment would be against the desires of
one provider to dissociate oneself from the competition,
keeping their customers dependent. Additionally, a
migration could imply tremendous costs.

 There is also work available that concentrates on
the security of distributed file systems [8]. Those
methods depend on a trustworthy environment that is
assumed as given when deploying the client software.
The work that is been made on the field of security of
distributed file systems does not fulfill the need of an
appropriate level of security when mobile devices are
used as clients. That is because the trustworthy
environment that is used to perform cryptographic
operations in the mentioned concepts is the mobile
device itself. The security of those devices is widely
contentious. Especially law enforcement and military
usage of storage services needs a higher level of
protection in a mobile environment. This can be
achieved by using an external hardware device like the
CyphWay® that provides such a trusted environment
and is explained later in this document.

 The paper at hand provides a technique to map
classical encrypted containers to modern storage
strategies, like the storage of critical data on public
services. The document presents a security overlay that
can be applied to create a distributed virtual encrypted
container to achieve a high degree of security and good
user experience when combining several unprotected
storage locations. A storage location is defined as
unprotected, if an unauthorized individual can access a
dataset that is stored on that location or available
anywhere within the network. We suppose that any
remote storage and any channel is insecure.
Additionally, we admit that user devices can be
compromised as mobile devices tent to have many
security issues. Therefore, the data to be stored needs to
be protected carefully by encryption and the keys,
applied to those encryption instances, need to be
protected even against the user devices. The overlay is
supported by an external trusted hardware device
(comparable to a hybrid of TPM1 and HSM2) to perform
cryptographic operations. This device is the only
location where keys ever appear in plaintext. The
resulting environment is supplemented by a specially
designed key management system. The stored data and
its meta-data are being encrypted and controlled by
access rights. In addition, the overlay achieves the
protection of the data structure by hiding it completely
from unauthorized individuals.

2. Overlay Structure
 At first, the overlay structure of our concept is
presented. This is the key to allow the desired high level
of security and uses the necessary level of abstraction to
build a distributed container. Therefore, it is shown how
the data and also the meta-data get protected and hidden
by this technique. This will be achieved by separating
the meta-data from the actual data.

 Data Structure: Let be a directed
graph, where the vertices denote directories or files.
Edges represent associations in the following way:

If then represents a directory
which includes a sub-directory or a file
represented by . In other words, is parent of

.

 Note that files are always represented by sinks and
that in this document file-level granularity is used, but
in general different granularity levels are conceivable.
This might even be a recommendable parameter for
implementations. In addition, a bijective function

Int'l Conf. Security and Management | SAM'15 | 131

 is defined that maps the graph elements to
a set of indices, in order to identify them.

 Now, a simple notation to navigate through is
provided. This will later be mapped on a key-based
navigation. For let

 and denote the
outgoing end entering edges of . For every vertex

 it is assumed that there exists a given order
within and within in . Let in denote the
first edge in and let out denote the first edge
in . For edges let in denote
the direct successor of within the edges in and
let out denote the direct successor of within the
edges in .

 Meta-data Structure: The meta-data, mentioned
before, includes information like file and/or directory
names, additional access restrictions, location of
storage, etc. In the following, meta-data will be
extracted from the respective file or directory in order to
build a meta-graph.

 The partial functions and
represent mappers that link the real data to the related
meta-data, where denotes a universe of indices,
denotes the universe of the meta-data extracted from the
vertices of and denotes the universe of meta-data
extracted from the edges of . Consequently, the
resulting meta-graph is defined as .
Furthermore, in favor of an intuitive understanding

 are written as synonyms for

 The location of a real file is part of its meta-data.
Therefore, the function is needed which maps
an index onto a storage location where
denotes the set of all storage locations that shall be
included in the desired storage distribution. To map the
storage location onto the graph element and its
meta-data we define x x . As a
result, we can use to access the storage location
where the graph element is stored for any

.

 Design: Because every stored structure and
information within this overlay will be protected by
using encryption, the following abstract encryption
scheme is introduced. It is intentional that
the overlay does not rely on a particular encryption
scheme and by abstracting from such schemes, their
exchangeability is guaranteed. Let denote the
encryption and let denote the decryption function.
The encryption of the data is denoted by

 and the decryption is denoted by
 where and are the

respective encryption and decryption keys. In favor of
simplicity we assume

 for all
possible data instances . The encryption strategy works
as follows:

• is encrypted using an (approximately)
unique key pair , for every vertex

.
• is encrypted using an (approximately)

unique key pair , for every .
This is a simplified exposition of the key
structure. It will be extended within the next
paragraphs.

• The meta-data set of each vertex includes keys
that are needed to encrypt and decrypt the
meta-data of the incident edges. For example,
let then contains

.
• The meta-data set of each edge includes keys

that are needed to decrypt the meta-data of its
connected vertices.

• In addition, the meta-data set of any edge is
encrypted by an access-right key which
guarantees that only users with access rights to
the end-vertices can gain any information about
the corresponding vertex.

 Consequently, the minimal content of each
 and each is set as follows: The

meta-data set of a vertex contains

• The name of the represented directory or file.
• The values in , in , in as

well as out , out , out .
• A set of key pairs used to encrypt the

meta-data of the edges in and a set of
key pairs used to encrypt the meta-data of
the edges in . These entries are of the
form for the adjacent edges.

 The meta-data set of an edge
contains:

• The name of the directory or file represented
by and .

• The values u , u as well as ,
.

• The values in , in , in as

well as out , out , out .
• A key pair head used to encrypt the

meta-data of and the key pair tail tail

used to encrypt the meta-data of .

132 Int'l Conf. Security and Management | SAM'15 |

 As mentioned, there is more to the encryption of
. An additional encryption of the meta-data edges is

needed to handle access rights (see Section 3). Thus,
every will be encrypted using an additional
key pair where

, before encrypting it using . Therefore,
the meta-data structure can be implemented as tuples as
follows:

• for every
• in out

for every

 At this point, the original data structure is fully
mapped by the meta-data structure. As a result, the
original data can now be diversified on arbitrary
storages. This data has to be encrypted. Therefore, one
may add additional keys and encryption schemes, but it
is suggested to use the key pair for a file or
dataset represented by a vertex .

 The presented overlay allows the implementation
of an encrypted container that can be used on several
devices simultaneously and not only stores the data in a
cloud but facilitates the user to include multiple
corporate and external STaaS entities. Furthermore, the
overlay is designed to create comfortable client software
which provides a container that can be utilized like a
local directory.

 Algorithmic Examples: The following algorithms
are minimalistic in favor of simplicity and focus on the
overlay manipulation. Some details like extractions
through decryption are avoided as they are implicitly
clear. The content of a directory associated with a given
vertex is computed as follows:

determineDirectoryContent()
begin

decrypt using
e = out
determine e

loop until the successor edge is not defined
 determine by
decrypting e

from
in out

if the user has access to then
decrypt
add the necessary content

information from
to the content of

 end
out by decrypting

out

 end
end

A new vertex can be added to as follows:

appendFileOrDirectory()
begin

determine
create where
generate

 add as and
 as to

 add to of and to
of
 determine in and do in

determine out and do out
do

end

Moving a vertex from parent to parent can be
easily done by applying the following algorithm:

appendFileOrDirectory(

)
begin

determine where
remove (resp.)

from
remove from
remove from of
add to
add to of
add as to

end

 To speed up the access on objects that are usually
used at the same time, like the edges which represent
the content of a directory, we can group these objects
and store them within a meta-object at the same
location.

 If a user navigates through the visible directories
he gets some knowledge on the hidden vertices of the
directory tree, like the number of entries or the number
of predecessors. To hide this kind of information we can
add some dummy entries to our system. A dummy entry
consists of a random edge “cipher”, which appears
within the lists and of a vertex , but has
no meaningful decrypted meta-data, i.e. the ciphertext
will be a random string.

Int'l Conf. Security and Management | SAM'15 | 133

3. Handling Access Rights
 In Section 2, the basic overlay structure and its
encryption was presented. However, there is still no
access handling regarding different users. To control the
access rights of an individual user it has to be
distinguished between two scenarios:

1. The initial access to a directory or file within
the container, i.e. the first access of the user to
an element within the file system.

2. The user has currently access to a directory.
Therefore, her or his access rights regarding the
directory content and the parent directories has
to be controlled.

 The control of the initial access within the first
scenario follows the method to control the access on
data records in a cloud as presented in [6]. An example
can be found within Figure 1

 For each user a user key pair is
introduced. It is assumed that this key pair is stored in

such a way that no unauthorized person has access to
this pair (i.e. within the trusted environment that
unlocks the key pair, if the user has authenticated
himself via fingerprint). To manage the access rights it
might be possible that some kind of a super-user within
an organization must have access to these keys and is
able to add new user keys (i.e. in the trusted
environment).

 If a user has access to a vertex within the file
graph structure, the key pair and the
corresponding storage location are stored as an entry
point. This kind of information is called adaptor data
and is protected through encryption .
Thus, if a user would like to access a directory or a
file represented by a vertex , he reads the
corresponding encrypted adaptor data

 . After extracting he or
she can access the meta-data set

Figure 1: Illustration of an encrypted meta-data tree with an access example

134 Int'l Conf. Security and Management | SAM'15 |

 To add another entry point for a user one can
simply add the corresponding encrypted adaptor data for
this user to the system. Analogously, if one would like
to remove an entry point of a user one can remove the
corresponding encrypted adaptor data from the system.

 To control the access rights within the first
scenario the key pairs for

 have been introduced.

 It is possible to group the graph elements
according to users who can access them. For any vertex

 let denote the set of users that have access to
. Then represents the access key

pair that is used to encrypt the meta-data of the edges
with tail . Analogue to the adaptor data these keys are
stored encrypted by the user keys for every user

.

4. Trusted Environment
 As mentioned before, the trusted environment
needed for cryptographic operations and access control
within the presented overlay, can be provided by a
hardware security device like the CyphWay®. The
CyphWay® was developed at the Fraunhofer Institute
of Optronics, System Technologies and Image
Exploitation. The implemented demonstrator uses
Android devices to visualize the data and is

implemented on Raspberry Pi’s using FPGAs for the
necessary cryptographic operations and for the storage
of administratively entered or cached keys. Overview of
this demonstrator system is illustrated within Figure 2.

 To access data the demonstrator tries to decrypt
the corresponding encrypted meta-data. If the required
key is not locally available for the CyphWay®, it tries
to fetch the necessary key. Therefore it invokes a remote
storage lookup to obtain a cipher of this key that can be
decrypted by applying the current user key. If a user
would like to access a directory where she or he is not
authorized to access all subdirectories and included
files, the CyphWay® filters the elements of the
directory. It only forwards that information to the user
which has been decrypted successfully. Consequently,
elements the user is not authorized to see will be
invisible for him or her.

 The smartphone as well as any other final user
device is only used to connect the CyphWay® to the
storage and to manage the content of the directories and
files. Plaintext keys are never available outside the the
hardware security module of the CyphWay®. In
addition, no cryptographic operations take place on the
user device, which only signals encryption and
decryption interests to the CyphWay®.

Figure 2: Illustration of the IOSB demonstrator and the distributed file system

Int'l Conf. Security and Management | SAM'15 | 135

 Figure 2 illustrates the access to a specific file. The
encrypted file is send from the storage to the
smartphone and from the smartphone (e.g. via an
encrypted Bluetooth channel) to the trusted hardware
environment. There, the file is decrypted. In the next
step the file is sent (e.g. via an encrypted Bluetooth
channel) back to the smartphone, where it can be
visualized and accessed.

 Within the demonstrator the trusted environment is
partitioned into a connector module and a core crypto
module (the HSM). Thus, the used Bluetooth channel
can be easily replaced against an arbitrary other secured
communication channel, e.g. WLAN (which might lead
to high energy consumption), or the crypto device can
be connected directly to the smartphone or any other
device via USB.

 No keys will ever be available outside the trusted
environment. As a result, even active attacks like Man-
in-the-Middle attacks or information gathering Malware
are not useful to extract any of the keys, if the
underlying encryption scheme is sufficiently secure.

5. Conclusion
 In this paper we presented a security overlay that
allows the implementation of a distributed virtual
encrypted container which supports OTFE. Because of
the design of this concept, the overlay can be applied on
a variety of underlying platforms, operating systems and
file systems. The shown security overlay allows the
combination of several storages, like STaaS, corporate
datacenters and private clouds. Every data that gets
stored within the virtual container gets encrypted, access
controlled and is, therefore, protected from Dolev-Yao
attackers [2] and even the storage owners. Additionally,
the keys and meta-data are protected and access
controlled. Utilizing the described demonstrator
CyphWay® as a trusted environment makes it possible
to protect the keys against every adversary, even against
the owner’s system. Therefore, we suggest the proposed
security overlay for modern distributed storages that are
accessed by mobile or other insecure clients. Since
storing data on one encrypted partition is not a common
use case anymore the presented technique can be used
to meet the needs of modern storage strategies. In the
future we will work on an implementation of a
distributed virtual encrypted container using the overlay
to demonstrate the potential of this concept.

References

[1] CloudFuze (2014) [online],
https://www.cloudfuze.com/

[2] Dolev, D., Yao, Andrew C., “On the security of
public key protocols”, in: IEEE Transactions on
Information Theory, Vol. 29, Issue 2, IEEE 1983, pp.
198-208

[3] Dongju, Y., Chuan, R. (2014) “VCSS: An
Integration Framework for Open Cloud Storage
Services”, Proceeding of 2014 IEEE World Congress on
Services (SERVICES), (pp. 155-160). Anchorage, AK.

[4] Ghemawat, S., Gobioff, H., Leung, S.-T. “The
Google File System” Proceedings of the nineteenth
ACM symposium on Operating systems principles
SOSP '03 (29-43). New York, USA: ACM

[5] Howard, J. et al. (1988) “Scale and performance in
a distributed file system”. ACM Transactions on
Computer Systems (TOCS), Volume 6 Issue 1, Feb.
1988, pp. 51-81.

[6] Jakoby, A., Müller, W., and Vagts, H. "Protecting
Sensitive Law Enforcement Agencies Data - Data
Security in the Cloud", Proc. of International Conf. on
Cyber Warfare and Security (ICCWS 2014).

[7] Machado, G. S., Bocek, T., Ammann, M., Stiller,
B. (2013) “A Cloud Storage Overlay to Aggregate
Heterogeneous Cloud Services” Proceedings of the 38th
Conference on Local Computer Networks (pp. 597 -
605). Sydney, NSW : IEEE.

[8] Pletka, R., Chachin, C. (2007) “Cryptographic
Security for a High-Performance Distributed File
System” Proceedings of 24th IEEE Conference on Mass
Storage Systems and Technologies, 2007, MSST 2007.
(S. 227 - 232). San Diego, CA : IEEE.

[9] Tseng, F.-H., Chen, C.-Y., Chou, L.-D., Chao, H.-
C. (2012). “Implement A Reliable and Secure Cloud
Distributed File System”. Proceeding of the 2012
International Symposium on Intelligent Signal
Processing and Communications Systems (ISPACS),
(pp. 227 - 232). New Taipei : IEEE.

[10] Warner, B., Wilcox-O'Hearn, Z. (2008) “Tahoe –
The Least-Authority Filesystem”, Proc. of the 4th ACM
international workshop on Storage security and
survivability (pp. 21-26). Alexandria, VA, USA

136 Int'l Conf. Security and Management | SAM'15 |

