
A Java Implementation of a Multisignature Scheme

V. Gayoso Martínez1, L. Hernández Encinas1, A. Martín Muñoz1, and M. A. Álvarez Mariño2
1Information Processing and Cryptography (TIC), Institute of Physical and Information Technologies (ITEFI)

Spanish National Research Council (CSIC), Madrid, Spain
2SACYL, Gerencia de Atención Primaria, Zamora, Spain

Abstract— Multisignature protocols are digital signature
schemes that allow a group of users to sign a message
so that the signature thus produced is valid only if all the
members of the group participate in the signature process. In
general, these schemes need the collaboration of a Trusted
Third Party, which computes and securely stores some of the
parameters associated to the scheme.

In this work, we present our results and conclusions
after implementing as a Java application a multisignature
scheme based on the Integer Factorization Problem and the
Subgroup Discrete Logarithm Problem.

Keywords: Digital Authentication, Java, Multisignatures

1. Introduction
In multisignature schemes, a group of users, typically

denoted as G, signs a document such that the signature is

valid only if all the members of the group take part in the

process and the signature verifies a specific condition. These

schemes have a direct application in corporate scenarios for

signing contracts, validating agreements, etc.

From a naive point of view, the easiest way to carry

out a multisignature consists in computing the individual

signatures of all the signers and concatenating them, so the

multisignature is composed of the sequence of individual

signatures. However, this method is not practical for large

groups of users, since the length of the multisignature is

proportional to the number of signers.

The first practical multisignature scheme was proposed in

[1], where a modification of the RSA cryptosystem was used

in such a way that the RSA module consisted in the product

of three primes instead of just two. In [2], another scheme

was proposed where the signature length is similar to the

length of a simple signature and shorter than the signature

obtained from the scheme presented in [1]. However, this

scheme can be used only if the cryptosystem is bijective,

making it difficult to implement. Other proposals based on

the RSA cryptosystem are, for example, those described in

[3], [4], [5], [6], [7].

Regarding multisignature schemes based on the Discrete

Logarithm Problem, in the scheme described in [8] the group

of signers must cooperate in order to sign the message and

send the signature to a given group of verifiers, but only

through the union of all the verifiers it is possible to validate

the multisignature. In addition to that, when producing the

multisignature the signers not only must use their own

private keys, but also the public key of each verifier, which is

an important limitation [9], [10]. In the scheme proposed in

[11], a multisignature can be performed only if the verifiers

of the signature belong to a previously specified group, but

apart from that limitation the scheme has some weaknesses

[12], [13].

From a more general point of view, a generic public key

multisignature scheme is presented in [14]. In that model,

each one of the signers must have a certified public key with

its corresponding private key, which must be generated by

the signer himself. The signers interact completing a number

of rounds, where in each round each signer receives a mes-

sage, performs several calculations and sends the resulting

message to the next signer. In this generic model, it should

be computationally infeasible to forge a multisignature if

there exists at least one honest signer in the group.

In comparison with the previous proposals, the multisig-

nature scheme presented in [15] by one of the authors of

this contribution has the advantage that each signer has his

own private key, but all of them share the same public key.

Besides, the procedure is secure, efficient, and independent

of the number of signers. In addition to that, the signature is

determined by all the signers in a certain pre-established

order and the scheme allows to add new signers at the

end of the signing chain, making it easier to update old

signatures. Regarding the validation procedure, the scheme

requires the verification of a certain property involving the

signature itself, the original message, the number of signers,

and some of the scheme’s public parameters.

This work presents the results obtained when imple-

menting a modified version of the multisignature scheme

described in [15] using the Java language, where the mod-

ifications introduced have the goal of adapting the scheme

to devices with limited resources and making the signing

procedure more flexible by allowing the users to operate the

scheme in any given order.

The rest of this paper is organized as follows: In Section

2, a detailed description of the mulsignature scheme is

included. Section 3 describes the Java application developed

in order to test the feasibility of the scheme. Section 4

provides a numerical example of the parameter and signature

generation procedures. In Section 5, we offer to the readers

the experimental results obtained with our Java application.

Finally, our conclusions are presented in Section 6.

Int'l Conf. Security and Management | SAM'15 | 333

2. Description of the scheme
The security of the scheme described in [15] is based on

the Integer Factorization Problem (IFP) and the Subgroup

Discrete Logarithm Problem (SDLP), and as such it was

analysed in [15] (where, in addition to that, interested

readers can find a more detailed discussion about other

multisignature schemes).

As it is well known, the IFP can be described as follows

[16]: Given a positive integer n, find its prime factorization;

that is, write n = pe11 pe22 · · · pekk , where pi are pairwise

distinct primes and each ei ≥ 1.

Besides, the SDLP is defined as follows [16]: Let p be a

prime and q a prime divisor of p − 1. Let us consider g a

generator of the unique subgroup H of Z
∗
p of order q, and

y an element in H . The problem is that of computing the

integer x, 0 ≤ x ≤ q − 1, such that y = gx (mod p).
Let G = {U1, U2, . . . , Ut} be the group of t users

allowed to perform signatures, and T the Trusted Third

Party (TTP) managing the scheme’s parameter generation

process. The following subsections include all the details of

the multisignature scheme.

2.1 Setup phase
In this phase, T generates the system parameters, its own

private key, and the public key shared by the group. The

steps that T must complete are the following:

1) T chooses two large primes p and q, such that p =
u1rp1+1 and q = u2rq1+1, where r, p1, and q1 are

prime numbers and u1, u2 ∈ Z with gcd(u1, u2) = 2;

that is, u1 = 2v1, u2 = 2v2, where v1 and v2 are

prime numbers. In the original version [15], v1 and

v2 could be composite numbers; we have introduced

this modification so that the number of factors of λ(n)
(see next step) does not depend on v1 and v2, which

improves the iteration through the divisors of λ(n) in

the third step.

In order to guarantee the security of the scheme, the

bit length of r must be selected so that the SDLP of

order r in Z
∗
n is computationally infeasible.

2) T computes the values n, the Euler function φ(n),
and the Carmichael function λ(n), where n = p · q,

φ(n) = (p − 1)(q − 1) = u1u2r
2p1q1, and λ(n) =

lcm(p− 1, q − 1) = 2v1v2rp1q1.

3) T selects an element α ∈ Z
∗
n with multiplicative

order r modulo n, and that fulfils the condition

gcd(α, φ(n)) = 1. The element α can be efficiently

computed, as at this point T knows the factorization

of n and consequently it knows φ(n) and λ(n).
In practice, it is enough to find a random value g ∈ Z

∗
n

such that gλ(n) ≡ 1 (mod n) and check that none of

the 62 non-trivial divisors of λ(n) are the actual order

of g [17]. By non-trivial divisor we mean a divisor

of λ(n) different from 1 or λ(n). The number of

non-trivial divisors of λ(n) is derived from the fact

that λ(n) = 2v1v2rp1q1 and all the factors are prime

numbers. Once the value g is found, the generator is

obtained through the following computation [17]:

α = gλ(n)/r (mod n).

4) T generates a secret random number s ∈ Z
∗
r and

determines

β = αs (mod n).

5) T publishes the values n, r, α, and β, while the

elements p, q, and s are kept secret.

6) T sets up its private key by generating four random

numbers a0, b0, c0, d0 ∈ Z
∗
r .

7) T determines the shared public key for G by comput-

ing the elements

P = αa0 · βb0 (mod n) ≡ αh (mod n),
Q = αc0 · βd0 (mod n) ≡ αm (mod n),

where h ≡ (a0 + sb0) (mod r) and m ≡ (c0 +
sd0) (mod r).

2.2 User’s private key generation
In order to prevent T from impersonating any member

of G, the secret key of each user Ui is composed of four

values, two of which are only known to Ui. With that goal

in mind, the following steps must be completed:

1) Ui generates two secret integers bi, di ∈ Zr at random

and sends the values αbi (mod n) and αdi (mod n) to

T using a secure channel.

2) T computes

Ai = αh(αbi)−s (mod n) ≡ αai (mod n),
Ci = αm(αdi)−s (mod n) ≡ αci (mod n),

and sends the values Ai and Ci to the user Ui using

a secure channel.

3) The private key of Ui is the set (Ai, bi, Ci, di). Note

that T can determine ai and ci since it knows h, k, αbi ,

and αdi , but it can compute neither bi nor di because it

cannot solve the SDLP. Similarly, Ui cannot compute

the values ai and ci. As a consequence, both T and Ui

have access to only two out of the four user’s secret

key parameters.

2.3 Parameter and key verification
Each member of the signer group, Ui, 1 ≤ i ≤ t, may

check the validity of the system parameters by verifying that

α �≡ 1 (mod n) and αr ≡ 1 (mod n).
Then, each signer, Ui, 1 ≤ i ≤ t can verify that their

private key is related to the shared public key, by checking

P ≡ Ai · βbi (mod n), Q ≡ Ci · βdi · βdi (mod n). (1)

This verification works because of the following chain of

equivalences:

Ai · βbi ≡ αai · βbi ≡ αai+s·bi ≡ αh ≡ P (mod n),
Ci · βdi ≡ αci · βdi ≡ αci+s·di ≡ αk ≡ Q (mod n).

334 Int'l Conf. Security and Management | SAM'15 |

2.4 Multisignature generation
Let M be the message to be signed by a member of G.

By using, for example, a public hash function of the SHA-2

family [18], either the signing user or T compute h(M) =
m, where m represents the hash output.

In this contribution we have modified the scheme orig-

inally proposed in [15] so, given the set of signing users

G = {U1, U2, . . . , Ut}, they can complete the signature in

any order, which reflects better the reality of organizations

and the potential temporary (un)availability of the members

of G. In order to generate the multisignature, the following

steps must be completed:

1) The first signer, Uj , 1 ≤ j ≤ t, must obtain the values

Fj and gj that compose his partial signature in the

following way:

Fj ≡ Aj · Cm
j (mod n),

gj ≡ bj +m · dj (mod r).
(2)

Then, Uj sends the partial signature (Fj , gj) to the

next signer, Uk, 1 ≤ k ≤ t, k �= j.

2) The second signer, Uk, verifies Uj’s signature by

checking if the following equivalence holds:

P ·Qm ≡ Fj · βgj (mod n).

If that is the case, Uk computes his partial signature

for the message in the following way:

Fk ≡ Fj ·Ak · Cm
k (mod n)

≡ αaj+ak+m(cj+ck) (mod n),
gk ≡ gj + bk +m · dk (mod r)

≡ bj + bk +m(dj + dk) (mod r).

(3)

3) Then, Uk sends the partial signature (Fk, gk) to the

next signer, Ul, 1 ≤ l ≤ t, l �= j, k, and the procedure

is repeated until all the group members have signed

the message. The signature computed by the last user

represents the multisignature for M , denoted as (F, g).

2.5 Multisignature verification
Any verifier knowing the message, M , the hash function,

h, the public key of the group G, (P,Q), the number of

members of the group, t, and the group signature, (F, g),
can check if the signature is valid through the following

computation:

P t ·Qtm ≡ F · βg (mod n). (4)

Equation (4) can be justified from expressions (1)–(3):

F · βg (mod n) ≡
≡ αa1+···+at+m(c1+···+ct)βb1+···+bt+m(d1+···+dt)

≡
t∏

j=1

αaj · βbj
(
αcj · βdj

)m
(mod n)

≡
t∏

j=1

P ·Qm = P t ·Qt·m (mod n).

3. Java implementation of the scheme
The multisignature scheme presented in this contribution

has been implemented as a Java application using Java SE

8. The application is composed of three panels which are

described in detail in the next subsections. In each panel,

the application user has the option of converting the data

from decimal (or text, in the case of the message to be sign)

to hexadecimal and vice versa.

In all the cases where a random number is needed, the

application uses the standard Java classes BigInteger
[19] and Random [20], so the requested number is obtained

through the following code:

Random random = new Random();

BigInteger number =
new BigInteger(numBits,random);

In the previous code, the element numBits indicates

that the desired number must be uniformly distributed over

the range 0 to 2numBits − 1. Regarding the Random
class, it uses a 48-bit seed which is modified using a linear

congruential formula according to the method described in

Section 3.2.1 of [21].

Whenever a random prime number is needed, the follow-

ing code is used after obtaining a random number:

BigInteger prime =
number.nextProbablePrime();

By calling the method nextProbablePrime() over

the element number, the application obtains the first integer

greater than number that is probably prime, where the

probability that the number returned is composite does not

exceed 2−100 [19].

Rearding the process of checking if a given

value is a prime number, we have used the method

isProbablePrime(int certainty) implemented

by the BigInteger class, where certainty represents

the measure of uncertainty tolerated by the method: if the

call returns true the probability that the BigInteger
element is prime exceeds (1− (1/2)certainty) [19], [22].

If the bit length of the number to be analysed is less than

100, the function makes 50 passes of the Miller-Rabin test

[23]. On the other hand, if the bit length is higher, it makes

a variable number of passes of the Miller-Rabin test (the

precise number depends on the actual bit length: 27 for

numbers with less than 256 bits, 15 for numbers with less

than 512 bits, 8 for numbers with less than 768 bits, 4

for numbers with less than 1024 bits, and 2 for numbers

having at least 1024 bits), but in addition to that it runs the

Lucas-Lehmer test [23]. An example code would be the

following:

boolean isprime =
number.isProbablePrime(10);

Int'l Conf. Security and Management | SAM'15 | 335

3.1 Parameters panel
This panel includes the general parameters, T ’s private

key and the group’s public key, as it can be seen in Figure 1.

More specifically, it includes text boxes for the private

elements p, q, s, a0, b0, c0, and d0, and for the public

elements n, r, α, β, P , and Q.

Fig. 1: Parameters pannel

There are four buttons available in this panel:

• Generate: It computes all the parameters according to

the steps 1-7 of the procedure described in §2.1.

• Save: It allows the user to save either the public data

or all the data included in this panel. The information

is stored in a file using an XML structure.

• Load: It allows the user to overwrite the data existing in

the text boxes with the information stored in the XML

file selected by the user.

• Clear: It deletes the content of all the text boxes

pertaining to this panel.

3.2 Users panel
This panel includes the private keys of the four users

managed by this application. It is important to point out

that the number of users implemented in this version of the

application is not a limitation of the scheme, but a figure

selected in order to simplify the usage of the application.
For each user from i = 1 to 4, a set consisting of the

associated values Ai, bi, Ci, and di is displayed, as it can

be seen in Figure 2. We remind the reader that the values bi
and di are known only to Ui, while only T knows the value

of the elements ai and ci.
The four buttons available in this panel implement the

following functionality:

Fig. 2: Users panel.

• Generate: It generates all the private elements associ-

ated to the private keys of the users according to the

steps 1 and 2 of the procedure described in §2.2.

• Save: It allows the user to save the private elements of

the four users in a file using an XML structure.

• Load: It allows to overwrite the data existing in the

text boxes with the information stored in the XML file

selected by the user.

• Clear: It deletes the content of all the text boxes

displayed in this panel.

3.3 Operations panel
This panel includes the operational functionality that can

be accessed through the following buttons, as displayed in

Figure 3:

• Generate: It generates the multisignature of the text

message provided manually by the user according to

the steps 1-3 described in §2.4. In order to obtain the

elements F and g associated to the signature, it is

mandatory to select in the panel the hash function and

the starting signing user.

• Order: By selecting this button, the application changes

the order of the users randomly, with the condition that

the new order must be different from the previous one.

Once a specific order is displayed, the user can select

the starting signer by checking the proper element.

• Verify: It allows to verify if the multisignature provided

by the user corresponds to the text message entered in

its text box, as described in Section 2.5.

• Clear: It deletes the content of all the text boxes

displayed in this panel.

336 Int'l Conf. Security and Management | SAM'15 |

Fig. 3: Operations panel.

4. Numerical example
This section provides the details of the signature process

depicted in Figures 1, 2, and 3, where the selected bit length

for the base elements r, p1, q1, v1, and v2 is 32. This bit

length is clearly inadequate from a security perspective, but

making this choice allows us to manage smaller numbers in

order to facilitate the comprehension of the example.

After selecting the option Generate, the application ran-

domly produces the prime values r = 707878597, p1 =
3641604649, and q1 = 303316411. Then, the application

enters a loop where it randomly generates the prime val-

ues v1 and v2 and computes p and q, exiting the loop

once it checks that the values p and q are both prime

numbers. In the example, the first values that satisfy that

condition are v1 = 1371067121, and v2 = 2037689777,

producing p = 7068712010835204353581685627 and q =
875029616016036929837566319, which can be represented

using 93 and 90 bits, respectively.

Then, after computing φ(n) = 61853323565690771433
55837092787998219291465096002345068 (a 183-bit num-

ber), λ(n) = 4368921721028582775017731672418397910
179692222, and the 62 non-trivial divisors of λ(n), the

application enters a loop for computing a generator α such

that it is coprime with φ(n). In the example, the generator

thus calculated is α = 247611118429251150494739954293
2050141655208543484356759.

Next, the application randomly generates the value s =
132833609, which must be coprime with r. Using α and s,

the application computes β = 548107099436171896517067
2738086133633860142334550011172.

After that, it randomly generates the elements of the

T ’s private key (a0 = 259413166, b0 = 44334594, c0 =
463536166, and d0 = 564483177) and computes the ele-

ments of the public key (P = 896660984766583039450745
581339862875767663578830466824 and Q = 5519075529
713604994221069894514764078332336401614197009).

As for the private keys of the signing users, in the

example the application generates the following values:

a1 = 85535838115036836980952812842601449243466753
3329728158, b1 = 580306758, c1 = 536083405315616803
5885227183297024277322889779720288937, d1 = 168101
611, a2 = 5191790223815826617172757099624147117707
471756281314194, b2 = 301797980, c2 = 4717546066954
142545076932845518352201627263956367193101, d2 = 1
29578623, a3 = 6171876475170961706854188816590741
717055026225567440684, b3 = 363218280, c3 = 5971059
634508658526639512341877023055326781019098713245,

d3 = 297227851, a4 = 39918217121001085196288551326
93742599660528974500745873, b4 = 376378278, c4 = 64
575037973744622649123747351681703599023525554705
0975, and d4 = 379401837.

Given the example message (the quote “The price of

freedom is eternal vigilance”) and the selected hash function

(SHA-256), before computing the multisignature the applica-

tion calculates the message’s digest, whose representation in

hexadecimal is 09917EFCA9E63C6BE3F5710D4E146
146A152B64CE2E1DCDBBAAC3F6EBD6E19F1. When

considered as an integer modulo r, the value associated to

the message is 70616700.

In the example, after using the Order button the dis-

tribution of signing users obtained is 4-2-3-1. If we se-

lect User 4 as the starting signer (see Figure 3), the

elements forming the subsequent signatures calculated by

the application are the following: F4 = 503576816705
5077718477864679949082104696821277077281113, g4 =
26792106079256178, F2 = 27467342228456975614609
78062345247914787770187195849232, g2 = 359425211
27858258, F3 = 54924708110374444922151830766592
34465569196156819515847, g3 = 56931771476788238,

F1 = 17003129136319818582187842135530955455239328
15065546746, and g1 = 68802553090598696. The multisig-

nature resulting from this process is the signature computed

by the last user, so (F, g) = (F1, g1).

If, given the initial distribution 4-2-3-1, we had se-

lected User 3 has the starting signer (see detail in

Figure 4), the signatures calculated by the application

would contain the elements F3 = 1525558802257083
259276411227735843971228217026108102837, g3 = 2
0989250348929980, F1 = 426674824760343430582301
1807817369532998324145115483942, g1 = 328600319
62740438, F4 = 52696824638912118121095969992077
68861301755362219881607, g4 = 59652138041996616,

F2 = 1700312913631981858218784213553095545523932
815065546746, and g2 = 68802553090598696, where the

resulting multisignature is (F, g) = (F2, g2). As it can

Int'l Conf. Security and Management | SAM'15 | 337

be observed, the multisignature obtained is the same, as

the order does not affect its final result, even though the

partial signatures are different in each case. The same

multisignature (F, g) would be produced if, for example,

the initial distribution of users had been 1-2-3-4 and we had

selected any of the four users as the starting signer.

Fig. 4: Signature generation example.

5. Experimental results
The tests whose results are presented in this section were

completed using a PC with Windows 7 Professional OS and

an Intel Core i7 processor at 3.40 GHz.

Table 1 includes the running time obtained when exe-

cuting the general parameters generation procedure in the

testing computer with the bit lengths indicated in each case,

where the bit length represents the maximum length in bits of

the parameters r, p1, q1, v1, and v2. The time displayed for

each bit length represents the average time of the generation

of 100 sets of parameters.

As expected, the running time has an exponential shape,

as it can be seen in Figure 5.

Fig. 5: General parameters’ generation running time

Most of the parameter generation running time is due

to the operations with prime numbers and BigInteger
elements: obtaining the first prime number bigger than

a certain value (method nextProbablePrime()) and

checking if a candidate value is a prime number (method

isProbablePrime()). Table 2 shows the average num-

ber of executions of the pieces of code calling those methods.

Figures 6 and 7 show graphically the information con-

tained in Table 2. The main reason for the increase in

the execution time in now clear: not only the appli-

cation spends more time in each call to the methods

nextProbablePrime() and isProbablePrime(),

as a result of dealing with bigger numbers, but it also needs

to call those methods more times, as the probability of

p = u1rp1 + 1 and q = u2rq1 + 1 being prime numbers

is lower as the bit length of those numbers increase.

Fig. 6: Number of calls to the method

nextProbablePrime()

Fig. 7: Number of calls to the method

isProbablePrime()

338 Int'l Conf. Security and Management | SAM'15 |

Table 1: General parameters generation running time

Length (bits) 32 64 96 128 160 192

Time (seconds) 0.37 6.06 21.03 56.70 160.11 312.36

Table 2: Number of calls to some methods implementd by the BigInteger class

Length (bits) 32 64 96 128 160 192

nextProbablePrime() 4,583.88 23,370.20 42,538.68 63,448.86 118,089.20 157,435.14

isProbablePrime() 2,337.15 11,802.72 21,416.38 31,883.81 59,279.56 78,977.87

6. Conclusions
In this contribution we have presented a modification

of the multisignature scheme described in [15]. In order

to implement the scheme as a Java application, we have

modified the scheme by adding a new requirement which

mandates v1 and v2 to be both prime numbers, as explained

in §2.1. With this modification, we force the number of non-

trivial divisors of λ(n) to be exactly 62, which facilitates

the implementation in devices with limited resources as the

application does not need to factor v1 and v2 in order to

determine the actual number of non-trivial divisors of λ(n).
In spite of this improvement, further enhancements may be

necessary before deploying this scheme in certain platforms.

Regarding its usability, we have modified the scheme so

the members of the group can sign a certain message in any

given order.

The tests performed with the application allow us to

confirm the expected difficulty in generating the system pa-

rameters for bit lengths greater than 64 bits. Nevertheless, as

the system parameters generation procedure is only executed

once by the Trusted Third Party, it is not a limitation for

implementing this multisignature scheme in other devices

that most of the times will only perform the signature

generation and verification procedures.

Acknowledgment
This work has been partially supported by Comunidad

de Madrid (Spain) under the project S2013/ICE-3095-CM

(CIBERDINE) and by Ministerio de Economía y Com-

petitividad (Spain) under the grant TIN2014-55325-C2-1-R

(ProCriCiS).

References
[1] N. K. Itakura, K., “A public-key cryptosystem suitable for digital

multisignatures,” NEC Research & Development, vol. 71, pp. 1–8,
1983.

[2] T. Okamoto, “A digital multisignature scheme using bijective public-
key cryptosystems,” ACM Transactions on Computer Systems, vol. 6,
no. 4, pp. 432–441, 1988.

[3] A.-F. M. Aboud, S.J., “A new multisignature scheme using re-
encryption technique,” Journal of Applied Sciences, vol. 7, pp. 1813–
1817, 2007.

[4] K.-T. Harn, L., “New scheme for digital multisignature,” Electronics
Letters, vol. 25, pp. 1002–1003, 1989.

[5] H.-L. Kiesler, T., “RSA blocking and multisignature schemes with no
bit expansion,” Electronics Letters, vol. 26, pp. 1490–1491, 1990.

[6] P.-S. K. K. W. D. Park, S., “Two efficient RSA multisignature
schemes,” Lecture Notes in Computer Science, vol. 1334, pp. 217–
222, 1997.

[7] L.-E. L. J. Pon, S.F., “Dynamic reblocking RSA-based multisignatures
scheme for computer and communication networks,” IEEE Commu-
nications Letters, vol. 6, no. 1, pp. 43–44, 2002.

[8] Y.-S. Laih, C.S., “Multisignature for specified group of verifiers,”
Journal of Information Science and Engineering, vol. 12, no. 1, pp.
143–152, 1996.

[9] W. He, “Weakness in some multisignature schemes for specified group
of verifiers,” Information Processing Letters, vol. 83, no. 2, pp. 95–99,
2002.

[10] S. Yen, “Cryptanalysis and repair of the multi-verifier signature with
verifier specification,” Computers & Security, vol. 15, no. 6, pp. 537–
544, 1996.

[11] X.-G. Zhang, Z., “New multisignature scheme for specified group of
verifiers,” Applied Mathematics and Computation, vol. 157, pp. 425–
431, 2004.

[12] W.-X. K. K. Lv, J., “Security of a multisignature scheme for specified
group of verifiers,” Applied Mathematics and Computation, vol. 166,
pp. 58–63, 2005.

[13] Y.-K. Yoon, E.J., “Cryptanalysis of Zhang-Xiao’s multisignature
scheme for specified group of verifiers,” Applied Mathematics and
Computation, vol. 170, pp. 226–229, 2005.

[14] N.-G. Bellare, M., “Multi-signatures in the plain public-key model
and a general forking lemma,” in 13th ACM conference on Computer
and Communications Security (CCS’06), 2006, pp. 390–399.

[15] R. Durán Díaz, L. Hernández Encinas, and J. Muñoz Masqué, “A
multisignature scheme based on the SDLP and on the IFP,” Lecture
Notes in Computer Science, vol. 6694, pp. 135–142, 2011.

[16] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook
of Applied Cryptography. Boca Raton, FL, USA: CRC Press, Inc.,
1996.

[17] W. Susilo, “Short fail-stop signature scheme based on factorization
and discrete logarithm assumptions,” Theoretical Computer Science,
vol. 410.

[18] NIST, Secure Hash Standard, National Institute of Standard and
Technology, Federal Information Processing Standard Publication,
FIPS 180-4, 2012.

[19] Oracle Corporation, BigInteger (Java Platform SE 8), http://docs.
oracle.com/javase/8/docs/api/java/math/BigInteger.html, 2014.

[20] ——, Random (Java Platform SE 8), http://docs.oracle.com/javase/8/
docs/api/java/util/Random.html, 2014.

[21] D. E. Knuth, The Art of Computer Programming, Volume 2 (3rd Ed.):
Seminumerical Algorithms. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 1997.

[22] Oracle Corporation, OpenJDK - jdk8 - BigInteger.java),
http://hg.openjdk.java.net/jdk8/jdk8/jdk/file/00cd9dc3c2b5/src/share/
classes/java/math/BigInteger.java, 2015.

[23] R. E. Crandall and C. Pomerance, Prime Numbers: A computational
perspective. Springer, New York, USA: Springer, 2005.

Int'l Conf. Security and Management | SAM'15 | 339

