
Performance Evaluation of Golub-Kahan-Lanczos Algorithm with
Reorthogonalization by Classical Gram-Schmidt Algorithm and

OpenMP

Masami Takata1, Hiroyuki Ishigami2, Kinji Kimura2,
Yuki Fujii2, Hiroki Tanaka2, and Yoshimasa Nakamura2

1Research Group of Information and Communication Technology for Life,
Nara Women’s University, Nara, Nara, JAPAN

2Graduate School of Informatics, Kyoto University, Kyoto, Kyoto, JAPAN

Abstract— The Golub-Kahan-Lanczos algorithm with re-
orthogonalization (GKLR algorithm) is an algorithm for
computing a subset of singular triplets for large-scale sparse
matrices. The reorthogonalization tends to become a bot-
tleneck of elapsed time, as the iteration number of the
GKLR algorithm increases. In this paper, OpenMP-based
parallel implementation of the classical Gram-Schmidt al-
gorithm with reorthogonalization (OMP-CGS2 algorithm)
is introduced. The OMP-CGS2 algorithm has the advan-
tage of data reusability and is expected to achieve higher
performance of the reorthogonalization computations on
shared-memory multi-core processors with large caches than
the conventional reorthogonalization algorithms. Numerical
experiments on shared-memory multi-core processors show
that the OMP-CGS2 algorithm accelerates the GKLR algo-
rithm more effectively for computing a subset of singular
triplets for a sparse matrix than the conventional reorthog-
onalization algorithms.

Keywords: Subset computation of singular triplets, Golub-Kahan-
Lanczos algorithm with reorthogonalization, Classical Gram-
Schmidt algorithm with reorthogonalization, OpenMP, Shared-
memory multi-core processing

1. Introduction
Let A be a real m × n matrix and rank(A) = r

(r ≤ min(m, n)). Then A has the r singular values
σ1, . . . , σr ∈ R, which satisfies σ1 ≥ · · · ≥ σr > 0, and
their corresponding left and right singular vectors ui ∈ Rm,
vi ∈ Rn (1 ≤ i ≤ r). A subset of singular triplets,
i.e. the l largest singular values σ1, . . . , σl and their
corresponding singular vectors, is often required in low-rank
matrix approximation [17] and statistical processings such as
principal component analysis and the least-squares method.
In such applications, the target matrix is often large and
sparse, and l is often much smaller than both m and n. It
is difficult to perform the computation of singular triplets
directly from a large-scale sparse matrix because of the
computational cost and need for large amounts of memory.

The Krylov subspace methods are better for such compu-
tations. They transform the target matrix into a significantly
smaller matrix than the target matrix and the singular values
of the generated matrix sufficiently approximate a subset
of singular values of the target matrix. The Golub-Kahan-
Lanczos (GKL) algorithm [5], [6] is one of the Krylov sub-
space methods and generates approximate bidiagonal matri-
ces from the target matrix. However, the GKL algorithm usu-
ally loses the orthogonality of the Krylov subspace because
of the computational error. To improve the orthogonality, let
us incorporate a reorthogonalization process into the GKL
algorithm. Such an algorithm is referred to as the GKL
algorithm with reorthogonalization (GKLR algorithm) [1].
Note that these algorithms are generally parallelized in terms
of the Basic Linear Algebra Subprograms (BLAS) [12],
such as the matrix multiplications and the matrix-vector
multiplications, because they are iterative algorithms. In
addition, we implement the bisection algorithm and the
inverse iteration algorithm [10], [8] for computing a subset
singular triplets of the approximate matrices generated by
the GKLR algorithm.

Although the GKLR algorithm is stable because of the
reorthogonalization, the reorthogonalization tends to become
a bottleneck in terms of the computational cost and the
elapsed time as the iteration number increases. However,
since the reorthogonalization of the GKLR algorithm is
mainly implemented using the matrix-vector multiplications,
even in parallel computing, the reorthogonalization is not
effectively accelerated and then the overall elapsed time of
the GKLR algorithm is not effectively reduced.

In this paper, to accelerate the reorthogonalization of the
GKLR algorithm more effectively in parallel computing,
we introduce a parallel implementation of the classical
Gram-Schmidt algorithm with reorthogonalization (CGS2
algorithm) [3], which is parallelized using the OpenMP [13].
Hereafter, this implementation of the CGS2 algorithm is
referred to as the OMP-CGS2 algorithm. This parallelization
technique enables to use the cache of CPUs effectively
and then the computation is expected to be accelerated
more effectively than the conventional reorthogonalization

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'15 | 243

algorithms, which are parallelized in terms of the BLAS
operations.

The rest of this paper is organized as follows. In Sec-
tion 2, the GKLR algorithm and its implementation in this
paper are described. In Section 3, a BLAS-based parallel
implementation of reorthogonalization algorithms and the
OMP-CGS2 algorithm are presented. Section 4 provides
performance evaluations of the OMP-CGS2 algorithm on
multi-core processors. We end with conclusions and future
works in Section 5.

2. GKLR algorithm
This section considers the GKLR algorithm and describes

the implementation of the GKLR algorithm in this paper.

2.1 GKLR algorithm
The GKL [5], [6] algorithm generates new bases pk ∈ Rn

and qk ∈ Rm at the k-th iteration. The pk is an orthonormal
basis of the Krylov subspace K(A>A, p1, k), and the qk
is an orthonormal basis of the alternative Krylov subspace
K(AA>, Ap1, k). In the GKLR algorithm [1], each time
a new basis is added with the expansion of the Krylov
subspace, the existing orthonormal basis, and the new basis
are reorthogonalized.

Algorithm 1 shows the pseudocode of the GKLR algo-
rithm. Lines 6 and 10 show the reorthogonalization process,
respectively. At the beginning of the k-th iteration for k =
1, 2, . . . in Algorithm 1, the k × k approximate matrices

Bk =


α1 β1

α2 β2
.

αk−1 βk−1
αk

 (1)

are obtained and the following equations hold

APk = QkBk, (2)

A>Qk = PkB
>
k + βkpk+1e

>
k , (3)

where ek is the k-th column of the k × k identity matrix.
Note that if the l largest singular values of Bk sufficiently
approximate those of A, we can stop the iterations of the
GKLR algorithm. On line 8 in Algorithm 1 , we check
whether the l largest singular values of Bk sufficiently
approximate those of A or not. Criteria for this check are
discussed in Sec. 2.2.1.

Let σ(k)
j , s(k)j ∈ Rk, and t

(k)
j ∈ Rk (j = 1, . . . , k) be a

singular value of Bk, the left singular vector, and the right
singular vector corresponding to σ

(k)
j , respectively. If σ(k)

j

approximates σj well, then uj and vj corresponds to u
(k)
j

and v
(k)
j defined as the following equations, respectively:

u
(k)
j = Qks

(k)
j , v

(k)
j = Pkt

(k)
j . (4)

Algorithm 1 GKLR algorithm
1: Set an n-dimensional unit vector p1

2: q = Ap1, α1 = ‖q‖2, q1 = q/α1

3: P1 = [p1], Q1 = [q1]
4: do k = 1, 2, . . .
5: p = A>qk
6: p̃ = Reorthogonalization(Pk, p)
7: βk = ±‖p̃‖2, pk+1 = p̃/βk
8: Check the singular values of Bk

9: q = Apk+1

10: q̃ = Reorthogonalization(Qk, q)
11: αk+1 = ±‖q̃‖2, qk+1 = q̃/αk+1

12: Pk+1 =
[
Pk pk+1

]
, Qk+1 =

[
Qk qk+1

]
13: end do

In order to improve the accuracy of singular vectors, this
computation is implemented to the combination with the QR
factorization [11].

As seen in Algorithm 1, the GKLR algorithm must be
parallelized in terms of the computations on each line. Since
the computation on each line can be implemented using the
BLAS operations, we parallelize the GKLR algorithm in
terms of each the BLAS operations.

2.2 Implementation of GKLR algorithm
In this section, we discuss the methods to check whether

the singular values of Bk approximate sufficiently those of A
or not. We then introduce a stopping strategy of the GKLR
algorithm and the implementation for the subset computation
of singular triplets for approximate matrices in this paper.

2.2.1 Stopping strategy of GKLR algorithm

Recalling (σ
(k)
j , s

(k)
j t

(k)
j), the j-th singular triplets for

Bk (j = 1, . . . , l), we then have the following equations:

Bkt
(k)
j = σ

(k)
j s

(k)
j , B>k s

(k)
j = σ

(k)
j t

(k)
j . (5)

Using Eqs. (2), (3), (4), and (5), we obtain

A>u
(k)
j − σ(k)

j v
(k)
j = A>Qks

(k)
j − σ(k)

j Pkt
(k)
j

=
(
A>Qk − PkB

>
k

)
s
(k)
j

= βkpk+1e
>
k s

(k)
j

= βks
(k)
j (k)pk+1, (6)

where s(k)j (k) is the k-th element of s(k)j . Thus, the follow-
ing inequality holds:∥∥∥A>u(k)

j − σ(k)
j v

(k)
j

∥∥∥
2
≤
∣∣∣βks(k)j (k)

∣∣∣ . (7)

As the results, if the right-hand side of inequality (7) is
sufficiently small, then the singular value σ(k)

j of Bk can be
regarded to sufficiently approximate that of A. Hence, the

244 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'15 |

Algorithm 2 Stopping strategy of GKLR algorithm

1: Compute (σ(k)
l , s(k)l , t(k)l)

2: if
∣∣∣βks(k)l (k)

∣∣∣ ≤ δ, then

3: Compute (σ(k)
j , s(k)j , t(k)j) for j = 1, . . . , l

4: if
∣∣∣βks(k)j (k)

∣∣∣ ≤ δ for j = 1, . . . , l, then
5: Stop the iteration of GKLR algorithm
6: end if
7: end if

following inequality can be considered as one of the stopping
criteria of the GKLR algorithm:∣∣∣βks(k)j (k)

∣∣∣ ≤ δ, j = 1, . . . , l, (8)

where δ is a threshold value for stopping the iteration of the
GKLR algorithm and determined arbitrarily by users. If we
use this criterion based on inequality (8), we have to compute
the l singular triplets for Bk, i.e. (σ(k)

j , s
(k)
j , t

(k)
j), j =

1, . . . , l, before checking if inequality (8) is satisfied. The
computational cost of computing singular triplets for Bk

is more expensive than that of checking if inequality (8).
In order to reduce the total elapsed time for the GKLR
algorithm, the computational cost of computing singular
triplets for Bk has to be reduced. Hereafter, let kt be the
number of iterations where inequality (8) is satisfied for the
first time.

Now let us consider the following inequality, which is one
of the necessary conditions for inequality (8):∣∣∣βks(k)l (k)

∣∣∣ ≤ δ. (9)

We have only to compute the l-th largest singular triplet for
Bk in order to check if inequality (9) is satisfied. Hence,
from the viewpoint of the computational cost, inequality (9)
is more suitable for the stopping criterion of the GKLR
algorithm than inequality (8). In addition, if let kn be the
number of iterations where satisfy inequality (9) for the first
time, it is observed that kt = kn in many cases of numerical
experiments. From these facts, inequality (9) can be also
considered as one of the stopping criteria of the GKLR
algorithm. However, since the theorems in [14] imply that
the value of kt depends on the distribution of singular values
for the target matrix, kt = kn is not always guaranteed.
Thus, even if inequality (9) is satisfied, we must check if
inequality (8) is also satisfied for all j.

Summarizing the above discussions, the stopping strategy
for the GKLR algorithm is shown by Algorithm 2. In the
experiments mentioned in Sec. 4, we set δ = 1.0 × 10−14

as the stopping criterion. Note that Algorithm 2 is used on
line 8 in Algorithm 1. After stopping the iteration of the
GKLR algorithm, we compute the l largest singular triplets
of A, i.e. (σj , uj , vj) for j = 1, . . . , l, using Eqs. (4).

2.2.2 Subset computation algorithms for singular triplets
of approximate matrices

As mentioned in Section 2.2.1, a subset of singular triplets
for the approximate matrices is required for stopping the
GKLR algorithm. In this subsection, we discuss the subset
computations of singular triplets of the approximate matrices
on lines 1 and 3 in Algorithm 2.

The approximate matrix Bk, generated by the GKLR
algorithm, is a lower bidiagonal matrix. As mentioned in [5],
the singular value problem of the bidiagonal matrix can be
transformed into the eigenvalue problem of the symmetric
tridiagonal matrix without any computational cost. From
the above fact, the singular triplets of the lower bidiagonal
matrix can be obtained using the bisection algorithm and
the inverse iteration algorithm (BI algorithm) for symmetric
tridiagonal matrices [10], [8]. The BI algorithm enables us
to compute only the required eigenpairs and is suitable for
the subset computation of singular triplets in Algorithm 2.
While computing l singular triplets (line 3 in Algorithm 2),
we parallelize the subset computation of singular triplets as
follows: The bisection algorithm is parallelized in terms of
each singular value, and the inverse iteration algorithm is
parallelized in terms of the BLAS operations.

3. Reorthogonalization algorithms

To improve the orthogonality of the Krylov subspace
and the accuracy of the resulting singular vectors, the
reorthogonalization is inevitable for the GKLR. However,
the computational cost of the reorthogonalization is larger
than the other processes of the GKLR, as the iteration
number increases. Thus, it is important to accelerate the
reorthogonalization in the GKLR.

In this section, at first, we consider three conventional
reorthogonalization algorithms for the GKLR algorithm. The
classical Gram-Schmidt with reorthogonalization (CGS2)
algorithm [3], the modified Gram-Schmidt (MGS) algo-
rithm [6], and the reorthogonalization algorithm using the
Householder transformations in terms of the compact WY
representation (cWY algorithm) [19], [9]. These algorithms
are parallelized in terms of the BLAS operations in re-
cent days. Secondly, we present the OpenMP-based parallel
implementation of the CGS2 algorithm for shared-memory
multi-core processors and describe the advantage of this
implementation with respect to the data usability.

In the followings, we discuss the computation of xi ∈
Rm, the reorthogonalized vector of ai ∈ Rm (2 ≤ i ≤ n),
where satisfies 〈xi, xk〉 = 0 for j 6= k. In addition, let
Xi−1 be Xi−1 =

[
x1 · · · xi−1

]
(2 ≤ i ≤ n). Note that

Xi−1, xi, and ai correspond to Pk, p̃, and p on line 6 in
Algorithm 1, and also correspond to Qk, q̃, and q on line 10
in Algorithm 1.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'15 | 245

Algorithm 3 CGS2 algorithm
1: function CGS2(Xi−1(= [x1, . . . , xi−1]), ai)
2: do j = 1, 2
3: w = X>i−1ai

4: ai = ai −Xi−1w
5: end do
6: return xi = ai

7: end function

3.1 BLAS-based parallel implementation algo-
rithms
3.1.1 CGS2 algorithm

The classical Gram-Schmidt (CGS) algorithm [6] is a
well-known reorthogonalization algorithm. The reorthogo-
nalization of ai using the CGS algorithm is formulated as
follows:

xi = ai −
i−1∑
k=1

〈xk, ai〉xk. (10)

Eq. (10) is composed of Level 1 BLAS operations, such as
inner-dot products and AXPY operations. The computational
cost of the CGS algorithm is about 2mk2 if the reorthogo-
nalization of ai for i = 1, . . . , k is performed. Using the
matrix-vector multiplications, Eq. (10) is also replaced as

xi = ai −Xi−1X
>
i−1ai. (11)

In general, to achieve better performance, we reduce the
number of data synchronizations on shared-memory multi-
core processors as much as possible. The level 2 BLAS
operations, such as the matrix-vector multiplications, have
less data synchronization than the level 1 BLAS opera-
tions. Thus, the level 2 BLAS operations achieves better
performance than the level 1 BLAS operations in parallel
computing. Given this property, the CGS is conventionally
implemented using matrix-vector multiplications.

However, the orthogonality of the vectors computed by
the CGS algorithm deteriorates if the condition number of
the original vectors is large. To improve the orthogonality,
the variants of the CGS algorithm have been proposed.

The CGS algorithm with reorthogonalization (CGS2 algo-
rithm) [3] is one of the variants. A pseudocode of the CGS2
is shown in Algorithm 3. Repeating the CGS algorithm
twice, we are able to improve the orthogonality. However,
the computational cost of the CGS2 is twice that of the CGS.

3.1.2 MGS algorithm
Another variant of the CGS algorithm is the modified

Gram-Schmidt (MGS) algorithm. The MGS algorithm is
composed of inner-dot product and AXPY operations. Then
level 1 BLAS operations are mainly used. However, com-
pared with the CGS, the MGS improves the orthogonality.

Algorithm 4 OpenMP-based parallel implementation of
CGS2 algorithm

1: function OMP-CGS2(Xi−1(= [x1, . . . , xi−1]), ai)
2: #omp parallel private(j, s)
3: do j = 1, 2
4: #omp single
5: w = ai . Perform serially
6: #omp end single
7: #omp do reduction(+:ai)
8: do k = 1 to i− 1
9: s = −〈xk, w〉

10: ai = ai + sxk . Array reduction
11: end do
12: #omp end do
13: end do
14: #omp end parallel
15: return xi = ai

16: end function

Furthermore, the computational cost of the MGS is 2mk2

since the MGS is algebraically equivalent to the CGS.

3.1.3 Compact WY algorithm
The Householder transformations [6] are also used for

the reorthogonalization. However, the reorthogonalization
using the Householder transformations is composed of the
level 1 BLAS operations. Hence, we cannot achieve higher
performance using parallel computation.

To overcome this difficulty, a reorthogonalization algo-
rithm using the Householder transformations in terms of
the compact WY representation [16] is proposed in [19].
Hereafter, this algorithm is referred to as the cWY algo-
rithm. In this algorithm, we can rewrite the product of
the Householder matrices in a simple block matrix form.
Hence, the cWY can be performed mainly using the level
2 BLAS operations. This algorithm can achieve the high
orthogonality theoretically and high scalability in parallel
computing. In addition, the computational cost of the cWY
algorithm can be reduced from 4mk2+k3 to 4mk2−k3 [9].

3.2 OpenMP-based parallel implementation of
CGS2 algorithm

Recalling Eq. (10), the CGS and CGS2 algorithms can be
parallelized in terms of the summation. Such parallel imple-
mentation is easily realized by adding OpenMP directives
for shared-memory multi-core processors. From these facts,
an OpenMP-based parallel implementation of the CGS2
algorithm can be represented as shown in Algorithm 4. Note
that where w is a vector where preserves the original vector
of ai. Hereafter, this implementation of the CGS2 algorithm
is referred to as the OMP-CGS2 algorithm.

The parallel computation in terms of the summation is
represented as the parallelism of do-loop as shown in line 7.

246 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'15 |

Table 1: Comparison of reorthogonalization algorithms [4]
CGS2 MGS cWY OMP-CGS2

Computation 4mk2 2mk2 4mk2 − k3 4mk2

Orthogonality O(ε)† O(εκ(A)) O(ε) O(ε)†

BLAS Level 2 Level 1 Level 2 Level 1
†: Realized if the condition O(εκ(A)) < 1 is satisfied.

As the result, the inner-dot product (line 9) and the AXPY
operations (line 10) in terms of the different index k are
performed on each thread. In addition, the array reduction
must be implemented for the summation of ai on line 10.
The array reduction in Fortran code is supported by using
the reduction clause of OpenMP.

The advantage of this implementation is the high reusabil-
ity of data. Since we compute ai = ai + sxk (line 10) as
soon as s = −〈xk, w〉 (line 9) is computed, the reusability
of w, xk, and ai becomes higher on each thread computa-
tion. Thus, the OMP-CGS2 algorithm is expected to accel-
erate more effectively the reorthogonalization computation
on shared-memory multi-core processors with large caches
than other reorthogonalization algorithms if the vectors w,
xk, and ai are stored in the L3 cache of each CPU.

3.3 Comparison of reorthogonalization algo-
rithms

As the summary of this section, Table 1 shows that the the-
oretical performance of the reorthogonalization algorithms.
Computation denotes the flops of the computational cost,
Orthogonality indicates the bound of the norm ‖X>X−I‖,
and BLAS denotes the level of BLAS operations of which
each algorithm is mainly composed. ε is the machine epsilon,
and κ(A) denotes the condition number of the original
matrix A =

[
a1 · · · ak

]
.

4. Numerical experiments
In this section, we report results of numerical experiments

in order to evaluate the performance of the OpenMP-based
parallel implementation of the CGS2 algorithm.

4.1 Configurations of numerical experiments
In the numerical experiments, we compare the elapsed

time for computing the l largest singular triplets of the same
target matrix using a code of the GKLR algorithm with
different l. Here, l is the number of required singular triplets;
l = 100, 200, 400, 800.

We compare the elapsed time for computing subsets of
singular triplets using four different codes of the GKLR
algorithms. Each GKLR code is implemented with the
following reorthogonalization algorithms mentioned in Sec-
tion 3. GKLR with MGS is implemented with the MGS
algorithm. GKLR with CGS2 is implemented with the
CGS2 algorithm. GKLR with cWY is implemented with
the cWY algorithm. The reorthogonalization algorithms of

Table 2: Specifications of the experimental environment
1 node of Appro 2548X at ACCMS, Kyoto University

CPU Intel Xeon E5-4650L@2.6 GHz, 32 cores (8 cores × 4)
L3 cache: 20MB × 4

RAM DDR3-1066 1.5 TB, 136.4GB/sec
Compiler Intel C++/Fortran Compiler 14.0.2
Options -O3 -xHOST -ipo -no-prec-div

-openmp -mcmodel=medium -shared-intel
Software Intel Math Kernel Library 11.1.2

the above three code are parallelized in terms of the BLAS
routines. GKLR with OMP-CGS2 is implemented with
the OpenMP-based parallel implementation of the CGS2
algorithm.

In the experiments, we use three m×n real sparse matrices
T1, T2, and T3. All of T1, T2, and T3 are set to be 256 non-
zero elements, which are set to be random numbers in the
range (0, 1) and are randomly allocated, in each row. T1,
T2, and T3 are only different in the size of m and n from
each other as follows: m = 16, 000 and n = 8, 000 for T1.
m = 32, 000 and n = 16, 000 for T2. m = 64, 000 and
n = 32, 000 for T3. In addition, the condition number is
4.803× 101 for T1, 4.754× 101 for T2, and 4.757× 101 for
T3, respectively.

Finally, all the experiments are run with 32 threads on a
machine shown in Table 2. We use the Intel Math Kernel
Library (MKL) [7] for parallelizing the level 2 and level
3 BLAS routines. The Intel MKL also provides the level
1 BLAS routines, but the implementation depends on the
dimension of the target vectors and the performance of them
is unstable. Thus, we use the hand-made level 1 BLAS
routines, which is parallelized by using OpenMP, in the
experiments.

4.2 Results of performance evaluation
Figs. 1, 2, and 3 graph the experimental results and shows

the number of required singular triplets and the elapsed time
for computing singular triplets of each target matrix T1, T2,
or T3 using the four code of the GKLR algorithm, respec-
tively. From the figures, GKLR with OMP-CGS2 is faster
than the other code in all the cases. Thus, the OMP-CGS2
accelerates the computation of the GKLR algorithm more
effectively than the other reorthogonalization algorithms.

In addition, Tables 3, 4, and 5 show the number of
required singular triplets and the elapsed time spending for
the reorthogonalization process in computing the singular
triplets of each target matrix T1, T2, and T3 using the four
code of the GKLR algorithm, respectively. The tables show
that the OMP-CGS2, the reorthogonalization in GKLR with
OMP-CGS2, is at least twice faster than the CGS2 and cWY
algorithms.

Note that the number of iterations at the point (kend),
where the GKLR algorithm stops, is the same regardless
to the reorthogonalization algorithms in each of the ex-

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'15 | 247

Table 3: The number of required singular triplets (l) and
the elapsed time (sec.) spending for the reorthogonalization
process in computing the singular triplets of T1 using each
code of the GKLR algorithms.

of required singular triplets 100 200 400 800
GKLR with MGS 79 176 337 1,121
GKLR with CGS2 21 57 118 315
GKLR with cWY 24 58 132 302
GKLR with OMP-CGS2 7 20 44 102

Table 4: The number of required singular triplets (l) and
the elapsed time (sec.) spending for the reorthogonalization
process in computing the singular triplets of T2 using each
code of the GKLR algorithms.

of required singular triplets 100 200 400 800
GKLR with MGS 100 293 750 1,664
GKLR with CGS2 70 154 351 774
GKLR with cWY 71 166 360 796
GKLR with OMP-CGS2 25 59 151 310

Table 5: The number of required singular triplets (l) and
the elapsed time (sec.) spending for the reorthogonalization
process in computing the singular triplets of T3 using each
code of the GKLR algorithms.

of required singular triplets 100 200 400 800
GKLR with MGS 261 533 1,432 2,815
GKLR with CGS2 169 372 861 1,921
GKLR with cWY 182 393 861 2,095
GKLR with OMP-CGS2 83 183 344 844

Table 6: The number of iterations at the point (kend), where
the GKLR algorithm stops, needed in each of the experi-
ments. l denotes the number of required singular triplets.

l 100 200 400 800
Matrix T1 1,000 1,600 2,400 4,000
Matrix T2 1,300 2,000 3,200 4,800
Matrix T3 1,600 2,400 3,600 5,600

periments. Table 6 summarizes kend needed in each of the
experiments.

4.3 Discussion about cache use in OMP-CGS2
As mentioned in Sec. 3.2, the high performance of OMP-

CGS2 arises from the higher reusability of cache in CPU.
Here, we discuss the limit size of the vectors when we
perform the reorthogonalization by using OMP-CGS2. Let
the number of threads in a CPU be T and the capacity of L3
cache in the CPU be C MB. The one data of the elements
needs 8 bytes when we use a double-precision floating-point
number.

Recalling Algorithm 4, the vectors w, ai, and xk appear
at each of do-loop in terms of k. If all these vectors are
stored in the L3 cache of CPU, we can achieve the higher
performance of the reorthogonalization by using OMP-
CGS2. However, xk is not shared by different threads while

0

300

600

900

1,200

100 200 400 800

E
la

p
se

d
 t

im
e

[s
ec

.]

The number of required singular pairs (l)

GKLR with MGS

GKLR with CGS2

GKLR with cWY

GKLR with OMP-CGS2

Fig. 1: The number of required singular triplets and the
elapsed time for computing the l largest singular triplets of
T1 using the GKLR algorithm with different reorthogonal-
ization implementation.

0

400

800

1,200

1,600

2,000

100 200 400 800

E
la

p
se

d
 t

im
e

[s
ec

.]

The number of required singular pairs (l)

GKLR with MGS

GKLR with CGS2

GKLR with cWY

GKLR with OMP-CGS2

Fig. 2: The number of required singular triplets and the
elapsed time for computing the l largest singular triplets of
T2 using the GKLR algorithm with different reorthogonal-
ization implementation.

0

600

1,200

1,800

2,400

3,000

100 200 400 800

E
la

p
se

d
 t

im
e

[s
ec

.]

The number of required singular pairs (l)

GKLR with MGS

GKLR with CGS2

GKLR with cWY

GKLR with OMP-CGS2

Fig. 3: The number of required singular triplets and the
elapsed time for computing the l largest singular triplets of
T3 using the GKLR algorithm with different reorthogonal-
ization implementation.

w is accessed by all computing threads. In addition, each
thread should access the copy of ai before reducing arrays.

248 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'15 |

As the results, the number of the vectors which should be
stored in the cache is (T × 2 + 1).

From the above discussion, the dimension of the matrix
which achieves better performance in this environment is
determined by following inequality:

m× (T × 2 + 1)× 8 ≤ C × 1024× 1024, (12)

where m is the size of the vectors w, ai, and xk. Then, since
T = 8 and C = 20 from the specification of the CPUs used
for the performance evaluation in this paper, the following
inequality holds:

m ≤ 154202. (13)

Thus, under the condition (13) of the performance evaluation
in the experimental environment in Table 2, the OMP-CGS2
algorithm is guaranteed to achieve the higher performance
than the other reorthogonalization algorithms.

5. Conclusions and future work
In this paper, we first introduce the GKLR algorithm for

computing a subset of singular triplets for target matrices. To
accelerate the reorthogonalization of the GKLR algorithm on
shared-memory multi-core processors more effectively, we
then present the OpenMP-based parallel implementation of
the CGS2 algorithm. The OpenMP-based implementation of
the CGS2 algorithm has the advantage of the data reusability.

We performed numerical experiments on shared-memory
multi-core processors to evaluate the performance of the
GKLR algorithm with the different parallel implementations
of the reorthogonalization algorithm including the OpenMP-
based implementation of the CGS2 algorithm. Experimental
results show that the OpenMP-based implementation of
the CGS2 algorithm accelerates the GKLR algorithm more
effectively for computing a subset of singular triplets for a
sparse matrix than other reorthogonalization algorithms.

One of future work, is to evaluate the performance of
the GKLR algorithms for larger target matrices than those
we used in the performance evaluation and to extend and
confirm the validity of the modeling inequality (12) de-
pending on CPUs. The other is to apply the OpenMP-based
parallel implementation of the CGS2 algorithm presented in
this paper to other algorithms, such as the inverse iteration
method, GMRES algorithm [15], and implicitly restarted
Arnoldi and Lanczos methods [18], [2] to accelerate their
reorthogonalization processes.

Acknowledgment
The authors would like to express their gratitude to

reviewers of this paper for their helpful comments. In
this work, we used the supercomputer of ACCMS, Kyoto
University. This work was supported by JSPS KAKENHI
Grant Numbers 13J02820 and 24360038.

References
[1] J. L. Barlow, “Reorthogonalization for the Golub-Kahan-Lanczos

bidiagonal reduction,” Numer. Math., pp. 1–42, 2013.
[2] D. Calvetti, L. Reichel, and D. C. Sorensen, “An implicitly restarted

lanczos method for large symmetric eigenvalue problems,” ETNA,
vol. 2, pp. 1–21, 1994.

[3] J. W. Daniel, W. B. Gragg, L. Kaufman, and G. W. Stewart,
“Reorthogonalization and stable algorithms for updating the Gram-
Schmidt QR factorization,” Math. Comput., vol. 30, no. 136, pp. 772–
795, 1976.

[4] L. Giraud, J. Langou, M. Rozloẑnìk, and J. van den Eshof, “Round-
ing error analysis of the classical Gram-Schmidt orthogonalization
process,” Numer. Math., vol. 101, no. 1, pp. 87–100, 2005.

[5] G. Golub and W. Kahan, “Calculating the singular values and pseudo-
inverse of a matrix,” SIAM J. Numer. Anal., vol. 2, no. 2, pp. 205–224,
1965.

[6] G. H. Golub and C. F. van Loan, Matrix Computations. Baltimore,
MD, USA: Johns Hopkins University Press, 1996.

[7] Intel Math Kernel Library, “Available electronically at
https://software.intel.com/en-us/intel-mkl/,” 2003.

[8] I. C. F. Ipsen, “Computing an eigenvector with inverse iteration,”
SIAM Review, vol. 39, no. 2, pp. 254–291, 1997.

[9] H. Ishigami, K. Kimura, and Y. Nakamura, “On implementation
and evaluation of inverse iteration algorithm with compact WY
orthogonalization,” IPSJ Transactions on Mathematical Modeling and
Its Applications, vol. 6, no. 2, pp. 25–35, 2013.

[10] W. Kahan, “Accurate eigenvalues of a symmetric tridiagonal matrix,”
Technical Report, Computer Science Dept. Stanford University, no.
CS41, 1966.

[11] R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK Users’s Guide.
Philadelphia, PA, USA: SIAM, 1998.

[12] Netlib, “BLAS,” accssesed 2015-01-16. [Online]. Available:
http://www.netlib.org/blas/

[13] OpenMP, “Available electronically at http://openmp.org/wp/,” 1997.
[14] Y. Saad, “On the rates of convergence of the Lanczos and the block-

Lanczos methods,” SIAM J. Numer. Anal., vol. 17, no. 5, pp. 687–706,
1980.

[15] Y. Saad and M. Schultz, “GMRES: A generalized minimal residual
algorithm for solving nonsymmetric linear systems,” SIAM J. Sci. Stat.
Comput., vol. 7, no. 3, pp. 856–869, 1986.

[16] R. Schreiber and C. van Loan, “A storage-efficient WY representation
for products of Householder transformations,” SIAM J. Sci. Stat.
Comput., vol. 10, no. 1, pp. 53–57, 1989.

[17] H. D. Simon and H. Zha, “Low-rank matrix approximation using
the Lanczos bidiagonalization process with applications,” SIAM J Sci.
Comput., vol. 21, no. 6, pp. 2257–2274, 2000.

[18] D. C. Sorensen, “Implicit application of polynomial filters in a k-
step Arnoldi method,” SIAM J. Matrix Anal. Appl., vol. 13, no. 1, pp.
357–385, Jan. 1992.

[19] Y. Yamamoto and Y. Hirota, “A parallel algorithm for incremental
orthogonalization based on the compact WY representation,” JSIAM
Letters, vol. 3, pp. 89–92, 2011.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'15 | 249

