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Abstract - The introduction of the GPU (graphics 
processing units) has marked a revolution in the field of 
Parallel Computing allowing to achieve computational 
performance unimaginable until a few years ago. Widely 
adopted in the Scientific Computing Field, this hardware 
has proven to be extremely reliable and suitable to simulate 
Cellular Automata (CA) models for modeling complex 
systems whose evolution can be described in terms of local 
interactions. This paper presents an effective 
implementation of a well-known numerical model for 
simulating lava flows on Graphical Processing Units 
(GPU) based on the OpenCL (Open Computing Language)
standard. Carried out experiments show that significant 
performance improvements in terms of speedup are 
achieved, adopting also some original optimizations 
strategies, confirming the validity of OpenCL and both low-
cost and high-end graphics hardware as an alternative to 
expensive solutions for the simulation of CA models. 

Keywords: Cellular Automata, GPGPU, OpenCL, Parallel 
Software Tools, Modeling and Simulation. 

1 Introduction 
Numerical models are adopted in High Performance 

Computing (HPC) ([12]) for solving complex equation 
systems which rule the dynamics of complex systems as, for 
instance, a lava flow or a forest fire. In recent years, the 
introduction of the GPU (graphics processing units) has 
marked a revolution in the field of Parallel Computing 
allowing to achieve computational performance 
unimaginable until a few years ago. Nevertheless, GPU 
applications to the important field of Computational Fluid 
Dynamics (CFD) are increasing both for quantity and quality 
among the Scientific Community (e.g., [23], [11]).

With GPGPU (General Purpose computing with GPU) it
is possible to obtain computational performances of a 
theoretical order of teraflops (thousands of megaflops), still 
characterized by production costs that are extremely low 
compared to classical parallel systems. GPGPU adopts use 
of the GPU for operations different from graphics rendering, 
for which these devices were originally designed. This 
method has been particularly widespread in 2007 with the 
release of CUDA by Nvidia, who introduced software and 
hardware specialized for GPGPU computing. As Nvidia, 

other GPU manufacturers adapted their devices to this new 
methodology and have released software development 
environments for the realization of parallel programs. 
Hardware manufacturers have released APIs (Application 
Programming Interface) compatible only with their devices 
and this limited the development of portable software. 
However, in 2008 the standard OpenCL (Open Computing 
Language) was released for the implementation of parallel 
programs on heterogeneous systems. Gradually, all major 
manufacturers of GPU and CPU have released their 
implementation of OpenCL, providing developers an 
instrument capable of producing portable software on a large 
number of devices. Today we have reached the conclusion 
that hybrid systems based on CPU and GPU represent the 
future of supercomputing.  

Among the different methodologies used for modelling 
processes, such as numerical analysis, high order difference 
approximations and finite differences, Cellular Automata 
(CA) ([26]) has proven to be particularly suitable when the 
behaviour of the system to be modelled can be described in 
terms of local interactions. Originally introduced by von 
Neumann in the 1950s to study self-reproduction issues, CA 
are discrete computational models widely utilized for 
modeling and simulating complex systems. Regarding the 
modeling of natural complex phenomena, Crisci and co-
workers proposed a method based on an extended notion of 
homogeneous CA, firstly applied to the simulation of 
basaltic lava flow, which makes the modeling of spatially 
extended systems more straightforward and overcomes some 
unstated limits of the classical CA, such as having few states 
and look-up table transition functions. Mainly for this 
reason, the method is known as Complex Cellular Automata 
(CCA) (or Macroscopic Cellular Automata [9] or 
Multicomponent Cellular Automata [1]).  

This paper presents an implementation of a well-known, 
reliable and efficient CCA model adopted for lava flow risk 
assessment, namely the SCIARA model [22], in GPGPU 
environments. Tests performed on two types of GPU 
hardware, a AMD Sapphire 280x graphic card and a Tesla 
K40c computing processor, and by adopting difference 
implementation strategies, have shown the validity of this 
kind of approach.  

In the following sections, after a brief description of the 
basic version of the SCIARA CCA model for lava flows, a 
quick overview of GPGPU paradigm together OpenCL is 
presented. Subsequently, the specific model implementation 
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and performance analysis referred to benchmark simulations 
and of a real event are shown, while conclusions and 
possible outlooks are reported at the end of the paper. 

2 Cellular Automata and the SCIARA
lava flow simulation model

As previously stated, CA are dynamical systems, discrete 
in space and time. They can be thought as a regular n-
dimensional lattice of sites or, equivalently, as an n-
dimensional space (called cellular space) partitioned in cells 
of uniform size (e.g. square or hexagonal for n=2), each one 
embedding an identical finite automaton. The cell state 
changes by means of the finite automaton transition function, 
which defines local rules of evolution for the system, and is 
applied to each cell of the CA space at discrete time steps.
The states of neighbouring cells (which usually includes the 
central cell) constitute the cell input. The CA initial 
configuration is defined by the finite automata states at time 
t=0. The global behaviour of the system emerges, step by 
step, as a consequence of the simultaneous application of the 
transition function to each cell of the cellular space.

When dealing with the modelling of spatial extended 
dynamical systems, CCA can represent a valid choice 
especially if their dynamics can be described in terms of 
local interaction at macroscopic level. Examples of 
successful applications of CCA include the simulation of 
lava flows [6], debris flows [16], density currents [20], water 
flux in unsaturated soils [17], soil erosion by rainfall [17] as 
well as pyroclastic flows [5], and forest fires [25]. 

 For the OpenCL parallelization of the CA, the release 
fv2 of the SCIARA numerical model for simulating lava 
flows was adopted. SCIARA is a family of bi-dimensional 
CCA lava flow models, successfully applied to the 
simulation of many real cases such as the 2001 Mt. Etna 
(Italy) Nicolosi lava flow [6] and the 1991 Valle del Bove 
(Italy) lava event [2], which occurred on the same volcano 
and was employed for risk mitigation. In formal terms, the 
SCIARA-fv2 model [22] is defined as:  

SCIARA-fv2= < R, L, X, Q, P, , >

where: 
R is the set of square cells covering the bi-dimensional 
finite region where the phenomenon evolves; 
L R specifies the lava source cells (i.e. craters); 
X = {(0, 0), (0, 1), (-1, 0), (1, 0), (0, -1), (-1, 1), (-1,-1), 
(1, -1), (1, 1)} identifies the pattern of cells (Moore 
neighbourhood) that influence the cell state change; in the 
following we will refer to cells by indexes 0 (for the 
central cell) through 8; 
Q = Qz × Qh × QT × Qf

8 is the finite set of states, 
considered as Cartesian product of “substates”. Their 
meanings are: cell altitude a.s.l., cell lava thickness, cell 
lava temperature, and lava thickness outflows (from the 
central cell toward the eight adjacent cells), respectively; 
P={w, t, Tsol, Tvent, rTsol, rTvent, hcTsol, hcTvent, , , , , cv}

is the finite set of parameters (invariant in time and space) 
which affect the transition function (please refer to [22]
for their specifications); 

: Q9 → Q is the cell deterministic transition function,
divided in elementary processes and applied to each cell 
at each time step, which describes the dynamics of lava 
flows, such as cooling, solidification and lava outflows 
from the central cell towards neighbouring ones. In 
particular, In the fv2 version of SCIARA, the so called 
elementary processes [9] describing the cell’s transition 
function are: (i) σ1, which determines lava outflows based 
on an opportune version of the Minimisation Algorithm of 
Differences; (ii) σ2, which determines lava thickness 
computation; (iii) σ3, which determines lava temperature 
and (iv) σ4, which determines the eventual lava 
solidification.  

: Qh × N → Qh specifies the emitted lava thickness from 
the source cells at each step k N (N is the set of natural 
numbers). 

3 OpenCL and GPGPU programming 
In recent years, mainly due to the stimulus given by the 

increasingly demanding performance of gaming and 
graphics applications in general, graphic cards have 
undergone a huge technological evolution, giving rise to 
highly parallel devices, characterized by a multithreaded and 
multicore architecture and with very fast and large 
memories. A GPU can be seen as a computing device that is 
capable of executing an elevated number of independent 
threads in parallel. In general, a GPU consists in a number 
(e.g., 16) of SIMD (Single Instruction, Multiple Data) 
multiprocessors (or compute units) with a limited number of 
floating-point processors that access a common shared-
memory within the multiprocessor.  

OpenCL [21] is a framework that allows the user to 
perform tasks both on GPU than on CPU. The OpenCL 
routines can be performed on the GPU or CPU which are 
produced by major parallel computing brands, such as AMD, 
Nvidia, and Intel. Specifically OpenCL is nonproprietary, 
because it is based on a public standard, and can be freely 
downloaded. 

The goal of OpenCL is thus to unify the programming 
model software to run the code on heterogeneous devices. In 
fact, today OpenCL supports different platforms that include 
CPUs (e.g. Intel, AMD, ARM, etc), GPUs (e.g., AMD, Intel, 
Nvidia), besides FPGA and DSP (Digital Signal Processors).
As known, in Parallel Computing developers can create and 
manipulate concurrent task. When developers need to 
program a solution in OpenCL, they must decompose the 
problem in different tasks. Parallel programming assigns 
computational task to multiple processing elements that are 
executed at the same time. In the OpenCL language, these 
tasks are called kernels. A kernel is a special function written 
in C99 that is intended to be performed by one or more 
OpenCL devices. The kernels are sent to the devices through 
the host program. The host program is written in C / C ++ 
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and runs on the user’s development system. The host 
application manages the connected devices using a container 
called context. To create a kernel, the host selects a function 
from a container called program. Subsequently, it associates 
the kernel with its data and sends it to a structure called 
command queue. The command queue is the mechanism by 
which the host tells devices what to do and subsequently, 
when a kernel is queued, the device will perform the 
corresponding function. An OpenCL application can 
configure different devices to perform different tasks, and 
each task can operate on different data. OpenCL provides 
thus a full task-parallelism. Figure 1 shows the kernel 
distribution among OpenCL-compliant devices. 

Figure 1: Assignment of the kernel to the devices contained in 
the context structure (figure taken from [21]). 

Thus, in order to create an OpenCL application it is 
necessary to: 

Create a host program to manage the available devices 
and assign them the kernels to be performed; 

Create kernels, i.e. the routines to be performed on the 
selected devices from the host program. 

3.1 Creation of the host program 

The host program of an OpenCL application is written 
in C/C ++, but there are libraries created by third parties that 
allow to develop an application using the java and python 
languages [21]. The library defines six essential structures 
for the creation of the program host: platform, device,
context, program, kernel, and command queue. 

To access the computing devices on the system, 
OpenCL defines three structures: platform, device and 
context. Every manufacturer that supports OpenCL releases 
an SDK (software development kit) which contains an 
implementation of OpenCL compatible with its devices. The 
structure platform provides access to the OpenCL 
implementations installed on the system and to use all 
devices of the manufacturer. For example, installing a Nvidia 
SDK, all Nvidia devices on the system can be accessed via 

its platform. Devices are represented by the device structure 
and to be used they must be inserted into a container called 
context. In the host program, several context instances 
containing more devices can be defined. However, devices 
belonging to different contexts cannot communicate with 
each other and cannot be inserted in the same context 
devices belonging to different platform (for example, one 
can not create a context containing a AMD and a Nvidia 
device). 

3.2 Kernel assignment and execution 

The structure that allows communication between the 
host program and OpenCL devices is the command queue.
Through the command queue, not only a kernel is assigned 
to a device, but can also perform data transfer operations, 
between two devices or between a device and the host 
program. Moreover, thanks to this structure one can carry 
out synchronizations between different kernels and profiling 
operations. To assign a kernel to a device one needs to 
decide how the data should be partitioned and assigned to 
compute units. Depending on the partitioning chosen by the 
user, kernel instantiations called work-items are carried out.
Each work-item (i.e., thread), represents an execution of the 
same kernel but on different portions of data (i.e., in a SIMD 
fashion). For the assignment of kernels, OpenCL provides 
two functions: 

clEnqueueTask. The task assigned by the host 
program to the device will run as a single work-item. 

clEnqueueNDRangeKernel. The task assigned by 
the host program to the device will be split into multiple 
work items that will be executed in parallel. 

The host program must therefore define the number of 
work items to be used and optionally may decide to divide 
the work items in groups called work-groups. The work 
items contained in a work-group have a shared memory 
block (local memory) which permits to access data much 
faster than the global memory shared by all the work items. 
Furthermore, the work items within a work-group can be 
synchronized. As expected, the latter of the two functions is 
fundamental, as it allows to perform tasks in parallel. 

3.3 Data Transfer 

Generally, the execution of a task includes the processing of 
data. From the moment the host program assigns a kernel to 
a device, it is necessary that the device has the data that is
used to run the kernel. To send data to the device the 
function clSetKernelArg is used to allow the 
association of a data set to an argument of the kernel 
function. Basic data types that can be associated to the kernel 
are: 
Pointers to primitive data types Associates a given primitive 
type. 
Pointers to buffer object Associates a large set of data. A 
buffer object (represented by the structure cl_mem) can be 
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created using the function clCreateBuffer, but in order 
that data transfer takes place correctly, data must be stored 
on the host program contiguously. 
After a buffer object is associated to a kernel, it is possible to 
reuse the same structures to transfer data both between two 
devices, between a device and the host program, etc. 

3.4 Memory hierarchy 
As reported before, a kernel function can be associated 

to the data required for processing. The host program is 
responsible for transferring the data to the device. Each 
device has different memory spaces (cf. Figure 2) in which to 
store the data received from the host program:

Global memory. Stores data accessible by all the work 
items for both reading and writing. 

Constant memory. Similar to the global memory but 
data can be accessed in read-only. 

Local memory. Stores data accessed by the work items 
contained in the same work-group. 

Private memory. Stores data accessible by a single 
work-item. 

All data from the host program is initially stored in the 
global/constant or private memory (the local memory can be 
allocated only by the host program but not initialized). The 
global/constant memory is larger than the others, but access 
to it is slower. Work items can indeed access the local 
memory much faster (100×) than that in the global/constant 
memory. Access to private memory is faster but its 
dimension is very small. With regards to constant memory, 
some devices have an apposite portion of memory, in other 
cases the constant memory space coincides with that of the 
global memory. To specify the memory space in which a 
given data must be stored the qualifiers __global, 
__constant, __local, __private are used. If 
omitted, data will be stored in private memory.  

Figure 2: The OpenCL Memory model (figure taken from 
[21]).

3.5 Data Partitioning 
The function clEnqueueNDRangeKernel described in 
subparagraph 3.3 allows to perform a task in parallel. To use 
this feature, one must: 

define on how many dimensions data is distributed (a two-
dimensional matrix, etc.); 

define the number of work items for each dimension; 
define the number of work items in a work-group for each 

dimension. 
To perform a task in parallel each work-item must be 

able to access the data portion that has been assigned to it.
To each work-item is associated an ID that distinguishes it 
from all others, and generally these IDs are used to partition 
the data in a typical SPMD fashion. For example, suppose 
that the data consist of an array of n elements and also to 
have n work-items with their relative ID. Data can be 
partitioned by associating each work item to the array 
element with index corresponding to the ID. Moreover, for 
the work-items an ID that identifies them in a work-group is 
also associated. In this case, the purpose is to give the 
possibility to partition the data, even if here the partitioning 
occurs within a work-group. Other information that is 
accessible to the work items for the partitioning of data are: 
• the total number of work items for each dimension; 
• the total number of work-item contained in a work-group 
for each dimension; 
• the total number of work-group 
• the ID of the work-group to which the work-item belongs. 

4 Implementation of the Sciara model 
As previously stated, CA models, such as SCIARA, can 

be straightforwardly implemented on parallel computers due 
to their underlying parallel nature. In fact, since CA methods 
require only next neighbor interaction, they are very suitable 
and can be efficiently implemented even on GPUs. In 
literature, to our knowledge, few examples of Complex 
Cellular Automata modeling with GPUs are found, while 
some interesting CA-like implementations, such as Lattice 
Boltzmann kernels, are more frequent (e.g., [24], [15]).

The approach here adopted resembles many approaches 
in the field: typically, the CA parallel implementation 
involves two memory regions, which will be called 
CAcurrent and CAupdated, representing the current 
and next states for the cells respectively. For each CA step, 
the neighbouring values from CAcurrent are read by the 
local transition function, which performs its computation and 
writes the new state value into the appropriate element of 
CAupdated. 

In accordance to the recent literature in the field (e.g., 
[3], [10]), in the GPGPU parallel implementation of the 
model, most of the automaton data (i.e. both the 
CAcurrent and CAupdated memory areas) was stored in 
the GPU global memory. In addition, the initialization of the 
CA (CAupdated) implies a copy from CPU to GPU. At the 
end of the computation, results from the device are copied 
back to the host through a GPU to CPU data transfer. In 
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addition, at each step, in order to update the status of the 
previous step with the current one, a copy between the two 
CA data buffer memory areas on the device takes place. 

A crucial step is to identify the set of instructions (i.e. 
the elementary processes of the transition function) that can 
be performed independently on the cells of the CA space. 
The instructions will be invoked in parallel using a OpenCL 
kernel for each of elementary process. Note that at each step 
of the simulation, only a few cells of the entire cellular space 
are involved in the computation. Thus, a typical problem 
related to GPGPU parallelization (as reported later) which 
can affect the speedup of the model, can lead to an overuse 
of computationally inactive work-items.

In particular, we will describe two different strategies 
that were adopted for an efficient parallelization of the 
SCIARA-fv2 simulation model. The first of these, defined as 
Whole Space Strategy (WS), is based on a naive approach to 
the problem consisting in the use of only global memory 
which is shared by the totality of work-items that make up 
the mapping grid. The second version, called Active Cells 
Strategy (AC), has a significant performance improvement of 
the algorithm, achieved thanks to the adoption of a data 
structure that manages the CA computationally active cells. 
In this strategy the computation takes place within a grid of 
work-items that adapts dynamically to the active cells.

4.1 Naïve implementation 

The first strategy for the parallelization of the SCIARA-
fv2 model is based on a one work-item - one cell approach, 
where each cell in the cellular space is computed by OpenCL 
work-item. The Whole Space (WS) strategy version involves 
the use of global only memory, where each kernel runs on a 
grid of work-items divided into work-groups and mapped on 
the entire cellular space. Work items are thus executed in 
parallel and synchronized each time an elementary process 
ends. Importantly, the elementary processes must be defined 
in such a way that the work items are executed independently 
from each other and that each work-item accesses 
exclusively to the portion of data that it has been assigned, 
since OpenCL does not provide mechanisms for 
synchronization of work-item belonging to different work-
group [21]. The host program assigns the kernel to devices 
by sending them the CA model data (sub-states, type of 
neighborhood, size of the space cell, etc.). The execution 
cycle is then managed by the host program, while the 
transition function is performed on the devices. 

The following excerpt shows execution cycle: 
 
steps = 0; 
wiNum = ROWS * COLS; 
while (steps < maxStep) { // CA steps 
    // kernel execution for each elementary process 

clEnqueueNDRangeKernel(queue,updateVentsEmissi
on, dimNum, NULL, wiNum, NULL, 0, NULL, NULL); 

// update substates 
clEnqueueCopyBuffer(queue, CAupdated, 

CAcurrent, 0, 0, bufDim, 0, NULL, NULL); 
 
clEnqueueNDRangeKernel(queue, empiricalFlows, 

dimNum, NULL, wiNum, NULL, 0, NULL, NULL); 

clEnqueueCopyBuffer(queue, CAupdated, 
CAcurrent, 0, 0, bufDim, 0, NULL, NULL); 

 
clEnqueueNDRangeKernel(queue, width_update, 

dimNum, NULL, wiNum, NULL, 0, NULL, NULL); 
clEnqueueCopyBuffer(queue, CAupdated, 

CAcurrent, 0, 0, bufDim, 0, NULL, NULL); 
 
clEnqueueNDRangeKernel(queue, 

updateTemperature, dimNum, NULL, wiNum, NULL, 0, 
NULL, NULL); 

clEnqueueCopyBuffer(queue, CAupdated, 
CAcurrent, 0, 0, bufDim, 0, NULL, NULL); 

  
steps++; 

} 

As an example, the following excerpt reports the kernel 
definition for the empiricalFlows lava outflow 
computation elementary process (i.e., σ1).
__kernel void empiricalFlows(__global double * 
SUBSTATES, Parameters parameters) { 

int i = get_global_id(0); 
int j = get_global_id(1); 
int SLT = 2; //lava thickness substate index 
int F = 3; //outflows substates index 

 
// check if cell contains lava 
if (SUBSTATES[ROWS*COLS*SLT +(i*ROWS + j)] > 0) { 
 double outflows[MOORE_NEIGHBORS]; 
 outflowsMin(SUBSTATES, i, j, outflows, 
parameters); //minimization algorithm application 

 
// update outflows substate 
for (int k = 1; k < MOORE_NEIGHBORS; k++) 
 if (outflows[k] > 0) 

SUBSTATES[ROWS*COLS*(F+k-1) +(i*ROWS + j)] 
= outflows[k]; 

 } 
} 

While a similar straightforward strategy has proven to 
be effective in other parallelizations and applications (e.g. 
[14], [8], [7]), the speedups here achieved were not quite 
positive, probably due to the excessive use of 
computationally inactive threads and overuse of global 
memory. At the contrary, the following approach has given 
more positive results and can be considered as a starting 
point for more sophisticated applications. 

4.2 Active cells optimization 

The active cells optimization strategy (AS) allows to 
apply the transition function only on the active cells, 
omitting those that are in a quiescent state. The active cells 
are contained within a list and elementary processes can add 
to the list new cells, or remove them. An array designed to 
contain all active cells is initially allocated. Specifically, for 
each active cell, a work-item is instantiated and can add new 
cells to the list, or remove them. However, to maintain the 
list in a consistent state, accesses must be performed by the 
work-item in an exclusive manner. Unfortunately, OpenCL 
doesn’t support exclusive accesses to global data, so an 
alternative approach was here adopted. In particular, each 
cell is associated with a Boolean value that indicates whether 
the cell is active or inactive. The work-item, in order to add 
or remove a cell, must change this value. This information is 
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used by a stream compaction algorithm to build the list of 
active cells. 

Stream compaction algorithms ([4], [18]) are used to 
remove unwanted items in a set of scattered data. In this 
case, data is located in an array of Boolean values whose 
elements correspond to the cells of the cellular space. Items 
with a true value correspond to the active cells, while false 
ones correspond to the inactive cells. The implemented 
stream compaction algorithm, adapted from [13] takes as 
input this array and computes an array containing only the 
active cells. Suppose we have p work-items and a Boolean 
array with n elements, with n> p. The array is divided into p
equal parts. The algorithm consists of three phases: 
1. Each work-item counts the number of active cells in its

part of the array. 
2. Each work-item computes the array index of the output 

array from which it can start entering the active cells 
contained in the portion of its array. 

3. Each work-item enters the active cells of its portion in 
the output array starting from the offset calculated in 
previous step. 
Figure 3 shows the functioning of the algorithm for a 

matrix representing a CA space size of 4×4 with 6 active 
cells highlighted in red. The array used to track active cells is 
given as input to the stream compaction algorithm that 
outputs the list with only the active cells. 

The second stage uses a two phase algorithm called 
prefix sum. Specifically, the algorithm takes as input the 
array calculated in the previous step containing the sum of 
the active cells calculated by each work-item. The array is 
seen as a balanced tree where its elements are the nodes of 
the tree. In the first phase, the tree is crossed from the leaves 
to the root calculating, for each level of the tree, the partial 
sums of the nodes of the previous level (by a parallel 
reduction pattern). In second phase, the tree is traversed from 
the root (containing the total number of active cells) to the 
leaves. At each iteration, each node sets the value of the right 
child to the sum of its value and the value of the left child. In 
addition, each node sets the value of its left child to its value. 
At the end of this phase, an array is created that specifies, at 
each location, the position from which each work-item can 
write its active cells in the global active cells output array.  

Figure 3: Stream compaction algorithm example 
referred to a 4 x 4 CA. 

5 TESTS AND PERFORMANCE 
RESULTS 

Two graphic devices were adopted for experiments: a
NVIDIA high-end Tesla K40c and a AMD Sapphire 280x 
graphic card, both with a theoretical peak performance about 
3,5 GFLOPS. In particular, the Tesla computing processor 
has 2880 stream processors (i.e., CUDA cores) and 15
compute units, 12 GB global memory and high-bandwidth 
communication between CPU and GPU, whereas the AMD 
graphic card has 2048 stream processors, 32 compute units 
and 3 GB global memory. The sequential SCIARA-fv2 
reference version was implemented on a 2.8 GHz Intel 
Quad-core Xeon based desktop computer. The sequential 
CPU version is identical to the versions that were developed 
for the GPUs, that is, at every step, the CA space array is 
scrolled and the transition function applied to each cell of the 
CA where lava is present. 

A first test regarded the simulation of well-known and 
documented real lava flow event, the Mt. Etna Nicolosi event 
[6] occurred in July, 2001. The simulation was carried out 
for 10000 steps, considering two craters for lava flow 
emission. In order to further stress the efficiency of the GPU 
version, further benchmarks experiments (stress test) were 
performed by considering 200 lava sources equally spaced 
over the area. Moreover, the two parallelizations (i.e., Whole 
Space and Active Cells strategies) reported in section 4 were 
considered. Table 1 reports the results of tests carried out for 
experiments, where the CA space is a 517 × 378 two-
dimensional grid. 

From all performed experiments, we can note that in all 
cases the versions using the active cells optimization are 
more efficient. As expected, this is due to the fact that the 
optimization does not apply the transition function to cells 
which are in a quiescent state, and thus many unnecessary 
calculations are not executed. Instead, in the standard 
implementation, there is an excessive use of computationally 
inactive threads and overuse of global memory.  

For the first series of tests, which takes into account 
only two sources lava, we can see that the WS parallel 
version reaches a speedup of 22× (23× for the Tesla K40c) 
compared to its sequential version. In the case of the parallel 
version with active cells (AS) optimization, performance 
reaches a maximum speedup of only 2× (3× for the Tesla 
K40c), with respect to its corresponding sequential active 
cells version. This is due to the fact that with only two 
sources of lava the active cells are relatively few and 
therefore also the sequential implementation results 
extremely efficient. Moreover, performance of the AMD 
Sapphire 280x GPU is unexpectedly comparable to that of 
the Nvidia GPU K40c for the standard WS version, probably 
due the high boost clock of the AMD hardware with respect 
to the lower GPU clock of the Nvidia card (1000 MHz vs 
745 MHz). However, performances related to the optimized 
AS version in terms of execution times are better for the 
Nvidia hardware, probably due to the higher number of 
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streaming processors (i.e., 2880 vs 2048) that can be fully 
exploited. 

As for the stress test, we can observe a speed up of 41×
(40× for the Tesla K40c) for the parallel version that is not 
optimized, and a speedup of 39× (41× for the Tesla K40c) 
for the parallel version with active cells optimization 
compared to the corresponding sequential versions. Here, we 
can see that the speedup of the versions with active cells 
optimization is comparable with the versions without 
optimizations, due to the relative equal (and elevated) 
number of cells involved in the stress test. Even in this case, 
both considered hardware give the same performance, as for 
the previous test. A likely explanation is due to the fact that 
on one hand the Nvidia hardware has a higher number of 
streaming processors while, on the other, the AMD card has 
more compute units, which basically compensate both 
hardware computing capabilities.  

Table 1: Execution times of experiments (in seconds) carried out 
for evaluating the performance the GPU version of the SCIARA 
CCA lava-flow model on the considered hardware. Experiments 
refer to the Whole Space (WS). 

CA dim / Device Xeon 
(sequential)

K40c
(WS)

Sapphire
(WS)

517 ×378
(2 craters) 1122 49 52

517 ×378
(200 craters – Stress Test) 2790 69 68

Even if timings achieved for the single case simulation 
cannot be considered positive, the stress test experiments 
have revealed the full suitability of the parallel system for 
intensive computations like applications, such as for the 
construction of hazard maps (e.g., [7], [16]). Typically, the 
most general approach for computing a hazard map in a 
extended area consists of a Monte Carlo approach in which a 
high number (e.g. thousands) of different simulations are 
carried out and on geological-geomorphological field survey 
and statistical analysis.  

Table 2: Execution times of experiments (in seconds) carried out 
for evaluating the performance the GPU version of the SCIARA 
CCA lava-flow model on the considered hardware. Experiments 
refer to the Active Cells (AC) strategies (see text). 

CA dim / Device Xeon 
(sequential)

K40c
(AC)

Sapphire
(AC)

517 ×378
(2 craters) 62 22 30

517 ×378
(200 craters – Stress Test) 2005 49 51

Eventually, to test if single-precision data can be 
considered sufficient for SCIARA simulations, tests were 
carried out on the 2001 lava flow event (10000 CA steps) 
and compared results produced by the GPU version with 
those produced by the CPU (sequential) version with double 
precision CPU implementation (i.e., double type 
variables). Comparison results were satisfactory, since the 
areal extensions of simulations resulted the same, except for 

few errors of approximation in a limited number of cells. In 
particular, comparing the GPU version with the CPU single-
precision version approximation differences at the third 
significant digit were only for 4% of cells, while differences 
were less for remaining cells. Differences were even minor 
compared to the previous case by considering the single 
precision GPU version and a CPU version which adopts 
double-precision variables. 

6 CONCLUSIONS 
This paper reports the implementation of a Complex 

Cellular Automata model using GPU architectures. As 
shown, the OpenCL technology, in combination with the an 
efficient memory management, can produce a very efficient 
version of the SCIARA-fv2 lava flow simulator. Several tests 
were carried out to evaluate the implemented 
parallelizations. In particular, tests using the GPU Sapphire 
280x show that the parallel version, without optimizations, 
achieved a 41× speedup compared to its sequential version. 
The parallel version with optimization active cells also 
reached a speedup of 41× compared to its corresponding 
sequential one. As expected, in all cases, versions using the 
active cells optimization have resulted to be more efficient 
than versions without the optimization.  

Future work will also regard the exploitation of graphic 
hardware for the construction of hazard maps, such as in [16]
which are fundamental for determining locations that are 
subject to future events and their related risk. The positive 
performances obtained for the more intensive computations 
(stress test) will imply the extension of the AC strategy in a 
multi-simulation context, by using OpenCL to accelerate 
simultaneous concurrent SCIARA-fv2 lava flows 
simulations. 

The results obtained on the SCIARA model are 
therefore to be considered positive, but further testing should 
be performed to assess the functionality of the adopted 
strategies on other models and their ability to fruitfully 
exploit parallel systems resources.  
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