
Accelerating Lava Flows Simulations
with GPGPU and OpenCL

A. De Rango, M. Macrì, D. D’Ambrosio, W. Spataro
Department of Mathematics and Computer Science, University of Calabria, Italy

Abstract - The introduction of the GPU (graphics
processing units) has marked a revolution in the field of
Parallel Computing allowing to achieve computational
performance unimaginable until a few years ago. Widely
adopted in the Scientific Computing Field, this hardware
has proven to be extremely reliable and suitable to simulate
Cellular Automata (CA) models for modeling complex
systems whose evolution can be described in terms of local
interactions. This paper presents an effective
implementation of a well-known numerical model for
simulating lava flows on Graphical Processing Units
(GPU) based on the OpenCL (Open Computing Language)
standard. Carried out experiments show that significant
performance improvements in terms of speedup are
achieved, adopting also some original optimizations
strategies, confirming the validity of OpenCL and both low-
cost and high-end graphics hardware as an alternative to
expensive solutions for the simulation of CA models.

Keywords: Cellular Automata, GPGPU, OpenCL, Parallel
Software Tools, Modeling and Simulation.

1 Introduction
Numerical models are adopted in High Performance

Computing (HPC) ([12]) for solving complex equation
systems which rule the dynamics of complex systems as, for
instance, a lava flow or a forest fire. In recent years, the
introduction of the GPU (graphics processing units) has
marked a revolution in the field of Parallel Computing
allowing to achieve computational performance
unimaginable until a few years ago. Nevertheless, GPU
applications to the important field of Computational Fluid
Dynamics (CFD) are increasing both for quantity and quality
among the Scientific Community (e.g., [23], [11]).

With GPGPU (General Purpose computing with GPU) it
is possible to obtain computational performances of a
theoretical order of teraflops (thousands of megaflops), still
characterized by production costs that are extremely low
compared to classical parallel systems. GPGPU adopts use
of the GPU for operations different from graphics rendering,
for which these devices were originally designed. This
method has been particularly widespread in 2007 with the
release of CUDA by Nvidia, who introduced software and
hardware specialized for GPGPU computing. As Nvidia,

other GPU manufacturers adapted their devices to this new
methodology and have released software development
environments for the realization of parallel programs.
Hardware manufacturers have released APIs (Application
Programming Interface) compatible only with their devices
and this limited the development of portable software.
However, in 2008 the standard OpenCL (Open Computing
Language) was released for the implementation of parallel
programs on heterogeneous systems. Gradually, all major
manufacturers of GPU and CPU have released their
implementation of OpenCL, providing developers an
instrument capable of producing portable software on a large
number of devices. Today we have reached the conclusion
that hybrid systems based on CPU and GPU represent the
future of supercomputing.

Among the different methodologies used for modelling
processes, such as numerical analysis, high order difference
approximations and finite differences, Cellular Automata
(CA) ([26]) has proven to be particularly suitable when the
behaviour of the system to be modelled can be described in
terms of local interactions. Originally introduced by von
Neumann in the 1950s to study self-reproduction issues, CA
are discrete computational models widely utilized for
modeling and simulating complex systems. Regarding the
modeling of natural complex phenomena, Crisci and co-
workers proposed a method based on an extended notion of
homogeneous CA, firstly applied to the simulation of
basaltic lava flow, which makes the modeling of spatially
extended systems more straightforward and overcomes some
unstated limits of the classical CA, such as having few states
and look-up table transition functions. Mainly for this
reason, the method is known as Complex Cellular Automata
(CCA) (or Macroscopic Cellular Automata [9] or
Multicomponent Cellular Automata [1]).

This paper presents an implementation of a well-known,
reliable and efficient CCA model adopted for lava flow risk
assessment, namely the SCIARA model [22], in GPGPU
environments. Tests performed on two types of GPU
hardware, a AMD Sapphire 280x graphic card and a Tesla
K40c computing processor, and by adopting difference
implementation strategies, have shown the validity of this
kind of approach.

In the following sections, after a brief description of the
basic version of the SCIARA CCA model for lava flows, a
quick overview of GPGPU paradigm together OpenCL is
presented. Subsequently, the specific model implementation

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'15 | 581

and performance analysis referred to benchmark simulations
and of a real event are shown, while conclusions and
possible outlooks are reported at the end of the paper.

2 Cellular Automata and the SCIARA
lava flow simulation model

As previously stated, CA are dynamical systems, discrete
in space and time. They can be thought as a regular n-
dimensional lattice of sites or, equivalently, as an n-
dimensional space (called cellular space) partitioned in cells
of uniform size (e.g. square or hexagonal for n=2), each one
embedding an identical finite automaton. The cell state
changes by means of the finite automaton transition function,
which defines local rules of evolution for the system, and is
applied to each cell of the CA space at discrete time steps.
The states of neighbouring cells (which usually includes the
central cell) constitute the cell input. The CA initial
configuration is defined by the finite automata states at time
t=0. The global behaviour of the system emerges, step by
step, as a consequence of the simultaneous application of the
transition function to each cell of the cellular space.

When dealing with the modelling of spatial extended
dynamical systems, CCA can represent a valid choice
especially if their dynamics can be described in terms of
local interaction at macroscopic level. Examples of
successful applications of CCA include the simulation of
lava flows [6], debris flows [16], density currents [20], water
flux in unsaturated soils [17], soil erosion by rainfall [17] as
well as pyroclastic flows [5], and forest fires [25].

 For the OpenCL parallelization of the CA, the release
fv2 of the SCIARA numerical model for simulating lava
flows was adopted. SCIARA is a family of bi-dimensional
CCA lava flow models, successfully applied to the
simulation of many real cases such as the 2001 Mt. Etna
(Italy) Nicolosi lava flow [6] and the 1991 Valle del Bove
(Italy) lava event [2], which occurred on the same volcano
and was employed for risk mitigation. In formal terms, the
SCIARA-fv2 model [22] is defined as:

SCIARA-fv2= < R, L, X, Q, P, , >

where:
R is the set of square cells covering the bi-dimensional
finite region where the phenomenon evolves;
L R specifies the lava source cells (i.e. craters);
X = {(0, 0), (0, 1), (-1, 0), (1, 0), (0, -1), (-1, 1), (-1,-1),
(1, -1), (1, 1)} identifies the pattern of cells (Moore
neighbourhood) that influence the cell state change; in the
following we will refer to cells by indexes 0 (for the
central cell) through 8;
Q = Qz × Qh × QT × Qf

8 is the finite set of states,
considered as Cartesian product of “substates”. Their
meanings are: cell altitude a.s.l., cell lava thickness, cell
lava temperature, and lava thickness outflows (from the
central cell toward the eight adjacent cells), respectively;
P={w, t, Tsol, Tvent, rTsol, rTvent, hcTsol, hcTvent, , , , , cv}

is the finite set of parameters (invariant in time and space)
which affect the transition function (please refer to [22]
for their specifications);

: Q9 → Q is the cell deterministic transition function,
divided in elementary processes and applied to each cell
at each time step, which describes the dynamics of lava
flows, such as cooling, solidification and lava outflows
from the central cell towards neighbouring ones. In
particular, In the fv2 version of SCIARA, the so called
elementary processes [9] describing the cell’s transition
function are: (i) σ1, which determines lava outflows based
on an opportune version of the Minimisation Algorithm of
Differences; (ii) σ2, which determines lava thickness
computation; (iii) σ3, which determines lava temperature
and (iv) σ4, which determines the eventual lava
solidification.

: Qh × N → Qh specifies the emitted lava thickness from
the source cells at each step k N (N is the set of natural
numbers).

3 OpenCL and GPGPU programming
In recent years, mainly due to the stimulus given by the

increasingly demanding performance of gaming and
graphics applications in general, graphic cards have
undergone a huge technological evolution, giving rise to
highly parallel devices, characterized by a multithreaded and
multicore architecture and with very fast and large
memories. A GPU can be seen as a computing device that is
capable of executing an elevated number of independent
threads in parallel. In general, a GPU consists in a number
(e.g., 16) of SIMD (Single Instruction, Multiple Data)
multiprocessors (or compute units) with a limited number of
floating-point processors that access a common shared-
memory within the multiprocessor.

OpenCL [21] is a framework that allows the user to
perform tasks both on GPU than on CPU. The OpenCL
routines can be performed on the GPU or CPU which are
produced by major parallel computing brands, such as AMD,
Nvidia, and Intel. Specifically OpenCL is nonproprietary,
because it is based on a public standard, and can be freely
downloaded.

The goal of OpenCL is thus to unify the programming
model software to run the code on heterogeneous devices. In
fact, today OpenCL supports different platforms that include
CPUs (e.g. Intel, AMD, ARM, etc), GPUs (e.g., AMD, Intel,
Nvidia), besides FPGA and DSP (Digital Signal Processors).
As known, in Parallel Computing developers can create and
manipulate concurrent task. When developers need to
program a solution in OpenCL, they must decompose the
problem in different tasks. Parallel programming assigns
computational task to multiple processing elements that are
executed at the same time. In the OpenCL language, these
tasks are called kernels. A kernel is a special function written
in C99 that is intended to be performed by one or more
OpenCL devices. The kernels are sent to the devices through
the host program. The host program is written in C / C ++

582 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'15 |

and runs on the user’s development system. The host
application manages the connected devices using a container
called context. To create a kernel, the host selects a function
from a container called program. Subsequently, it associates
the kernel with its data and sends it to a structure called
command queue. The command queue is the mechanism by
which the host tells devices what to do and subsequently,
when a kernel is queued, the device will perform the
corresponding function. An OpenCL application can
configure different devices to perform different tasks, and
each task can operate on different data. OpenCL provides
thus a full task-parallelism. Figure 1 shows the kernel
distribution among OpenCL-compliant devices.

Figure 1: Assignment of the kernel to the devices contained in
the context structure (figure taken from [21]).

Thus, in order to create an OpenCL application it is
necessary to:

Create a host program to manage the available devices
and assign them the kernels to be performed;

Create kernels, i.e. the routines to be performed on the
selected devices from the host program.

3.1 Creation of the host program

The host program of an OpenCL application is written
in C/C ++, but there are libraries created by third parties that
allow to develop an application using the java and python
languages [21]. The library defines six essential structures
for the creation of the program host: platform, device,
context, program, kernel, and command queue.

To access the computing devices on the system,
OpenCL defines three structures: platform, device and
context. Every manufacturer that supports OpenCL releases
an SDK (software development kit) which contains an
implementation of OpenCL compatible with its devices. The
structure platform provides access to the OpenCL
implementations installed on the system and to use all
devices of the manufacturer. For example, installing a Nvidia
SDK, all Nvidia devices on the system can be accessed via

its platform. Devices are represented by the device structure
and to be used they must be inserted into a container called
context. In the host program, several context instances
containing more devices can be defined. However, devices
belonging to different contexts cannot communicate with
each other and cannot be inserted in the same context
devices belonging to different platform (for example, one
can not create a context containing a AMD and a Nvidia
device).

3.2 Kernel assignment and execution

The structure that allows communication between the
host program and OpenCL devices is the command queue.
Through the command queue, not only a kernel is assigned
to a device, but can also perform data transfer operations,
between two devices or between a device and the host
program. Moreover, thanks to this structure one can carry
out synchronizations between different kernels and profiling
operations. To assign a kernel to a device one needs to
decide how the data should be partitioned and assigned to
compute units. Depending on the partitioning chosen by the
user, kernel instantiations called work-items are carried out.
Each work-item (i.e., thread), represents an execution of the
same kernel but on different portions of data (i.e., in a SIMD
fashion). For the assignment of kernels, OpenCL provides
two functions:

clEnqueueTask. The task assigned by the host
program to the device will run as a single work-item.

clEnqueueNDRangeKernel. The task assigned by
the host program to the device will be split into multiple
work items that will be executed in parallel.

The host program must therefore define the number of
work items to be used and optionally may decide to divide
the work items in groups called work-groups. The work
items contained in a work-group have a shared memory
block (local memory) which permits to access data much
faster than the global memory shared by all the work items.
Furthermore, the work items within a work-group can be
synchronized. As expected, the latter of the two functions is
fundamental, as it allows to perform tasks in parallel.

3.3 Data Transfer

Generally, the execution of a task includes the processing of
data. From the moment the host program assigns a kernel to
a device, it is necessary that the device has the data that is
used to run the kernel. To send data to the device the
function clSetKernelArg is used to allow the
association of a data set to an argument of the kernel
function. Basic data types that can be associated to the kernel
are:
Pointers to primitive data types Associates a given primitive
type.
Pointers to buffer object Associates a large set of data. A
buffer object (represented by the structure cl_mem) can be

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'15 | 583

created using the function clCreateBuffer, but in order
that data transfer takes place correctly, data must be stored
on the host program contiguously.
After a buffer object is associated to a kernel, it is possible to
reuse the same structures to transfer data both between two
devices, between a device and the host program, etc.

3.4 Memory hierarchy
As reported before, a kernel function can be associated

to the data required for processing. The host program is
responsible for transferring the data to the device. Each
device has different memory spaces (cf. Figure 2) in which to
store the data received from the host program:

Global memory. Stores data accessible by all the work
items for both reading and writing.

Constant memory. Similar to the global memory but
data can be accessed in read-only.

Local memory. Stores data accessed by the work items
contained in the same work-group.

Private memory. Stores data accessible by a single
work-item.

All data from the host program is initially stored in the
global/constant or private memory (the local memory can be
allocated only by the host program but not initialized). The
global/constant memory is larger than the others, but access
to it is slower. Work items can indeed access the local
memory much faster (100×) than that in the global/constant
memory. Access to private memory is faster but its
dimension is very small. With regards to constant memory,
some devices have an apposite portion of memory, in other
cases the constant memory space coincides with that of the
global memory. To specify the memory space in which a
given data must be stored the qualifiers __global,
__constant, __local, __private are used. If
omitted, data will be stored in private memory.

Figure 2: The OpenCL Memory model (figure taken from
[21]).

3.5 Data Partitioning
The function clEnqueueNDRangeKernel described in
subparagraph 3.3 allows to perform a task in parallel. To use
this feature, one must:

define on how many dimensions data is distributed (a two-
dimensional matrix, etc.);

define the number of work items for each dimension;
define the number of work items in a work-group for each

dimension.
To perform a task in parallel each work-item must be

able to access the data portion that has been assigned to it.
To each work-item is associated an ID that distinguishes it
from all others, and generally these IDs are used to partition
the data in a typical SPMD fashion. For example, suppose
that the data consist of an array of n elements and also to
have n work-items with their relative ID. Data can be
partitioned by associating each work item to the array
element with index corresponding to the ID. Moreover, for
the work-items an ID that identifies them in a work-group is
also associated. In this case, the purpose is to give the
possibility to partition the data, even if here the partitioning
occurs within a work-group. Other information that is
accessible to the work items for the partitioning of data are:
• the total number of work items for each dimension;
• the total number of work-item contained in a work-group
for each dimension;
• the total number of work-group
• the ID of the work-group to which the work-item belongs.

4 Implementation of the Sciara model
As previously stated, CA models, such as SCIARA, can

be straightforwardly implemented on parallel computers due
to their underlying parallel nature. In fact, since CA methods
require only next neighbor interaction, they are very suitable
and can be efficiently implemented even on GPUs. In
literature, to our knowledge, few examples of Complex
Cellular Automata modeling with GPUs are found, while
some interesting CA-like implementations, such as Lattice
Boltzmann kernels, are more frequent (e.g., [24], [15]).

The approach here adopted resembles many approaches
in the field: typically, the CA parallel implementation
involves two memory regions, which will be called
CAcurrent and CAupdated, representing the current
and next states for the cells respectively. For each CA step,
the neighbouring values from CAcurrent are read by the
local transition function, which performs its computation and
writes the new state value into the appropriate element of
CAupdated.

In accordance to the recent literature in the field (e.g.,
[3], [10]), in the GPGPU parallel implementation of the
model, most of the automaton data (i.e. both the
CAcurrent and CAupdated memory areas) was stored in
the GPU global memory. In addition, the initialization of the
CA (CAupdated) implies a copy from CPU to GPU. At the
end of the computation, results from the device are copied
back to the host through a GPU to CPU data transfer. In

584 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'15 |

addition, at each step, in order to update the status of the
previous step with the current one, a copy between the two
CA data buffer memory areas on the device takes place.

A crucial step is to identify the set of instructions (i.e.
the elementary processes of the transition function) that can
be performed independently on the cells of the CA space.
The instructions will be invoked in parallel using a OpenCL
kernel for each of elementary process. Note that at each step
of the simulation, only a few cells of the entire cellular space
are involved in the computation. Thus, a typical problem
related to GPGPU parallelization (as reported later) which
can affect the speedup of the model, can lead to an overuse
of computationally inactive work-items.

In particular, we will describe two different strategies
that were adopted for an efficient parallelization of the
SCIARA-fv2 simulation model. The first of these, defined as
Whole Space Strategy (WS), is based on a naive approach to
the problem consisting in the use of only global memory
which is shared by the totality of work-items that make up
the mapping grid. The second version, called Active Cells
Strategy (AC), has a significant performance improvement of
the algorithm, achieved thanks to the adoption of a data
structure that manages the CA computationally active cells.
In this strategy the computation takes place within a grid of
work-items that adapts dynamically to the active cells.

4.1 Naïve implementation

The first strategy for the parallelization of the SCIARA-
fv2 model is based on a one work-item - one cell approach,
where each cell in the cellular space is computed by OpenCL
work-item. The Whole Space (WS) strategy version involves
the use of global only memory, where each kernel runs on a
grid of work-items divided into work-groups and mapped on
the entire cellular space. Work items are thus executed in
parallel and synchronized each time an elementary process
ends. Importantly, the elementary processes must be defined
in such a way that the work items are executed independently
from each other and that each work-item accesses
exclusively to the portion of data that it has been assigned,
since OpenCL does not provide mechanisms for
synchronization of work-item belonging to different work-
group [21]. The host program assigns the kernel to devices
by sending them the CA model data (sub-states, type of
neighborhood, size of the space cell, etc.). The execution
cycle is then managed by the host program, while the
transition function is performed on the devices.

The following excerpt shows execution cycle:

steps = 0;
wiNum = ROWS * COLS;
while (steps < maxStep) { // CA steps
 // kernel execution for each elementary process

clEnqueueNDRangeKernel(queue,updateVentsEmissi
on, dimNum, NULL, wiNum, NULL, 0, NULL, NULL);

// update substates
clEnqueueCopyBuffer(queue, CAupdated,

CAcurrent, 0, 0, bufDim, 0, NULL, NULL);

clEnqueueNDRangeKernel(queue, empiricalFlows,

dimNum, NULL, wiNum, NULL, 0, NULL, NULL);

clEnqueueCopyBuffer(queue, CAupdated,
CAcurrent, 0, 0, bufDim, 0, NULL, NULL);

clEnqueueNDRangeKernel(queue, width_update,

dimNum, NULL, wiNum, NULL, 0, NULL, NULL);
clEnqueueCopyBuffer(queue, CAupdated,

CAcurrent, 0, 0, bufDim, 0, NULL, NULL);

clEnqueueNDRangeKernel(queue,

updateTemperature, dimNum, NULL, wiNum, NULL, 0,
NULL, NULL);

clEnqueueCopyBuffer(queue, CAupdated,
CAcurrent, 0, 0, bufDim, 0, NULL, NULL);

steps++;

}

As an example, the following excerpt reports the kernel
definition for the empiricalFlows lava outflow
computation elementary process (i.e., σ1).
__kernel void empiricalFlows(__global double *
SUBSTATES, Parameters parameters) {

int i = get_global_id(0);
int j = get_global_id(1);
int SLT = 2; //lava thickness substate index
int F = 3; //outflows substates index

// check if cell contains lava
if (SUBSTATES[ROWS*COLS*SLT +(i*ROWS + j)] > 0) {
 double outflows[MOORE_NEIGHBORS];
 outflowsMin(SUBSTATES, i, j, outflows,
parameters); //minimization algorithm application

// update outflows substate
for (int k = 1; k < MOORE_NEIGHBORS; k++)
 if (outflows[k] > 0)

SUBSTATES[ROWS*COLS*(F+k-1) +(i*ROWS + j)]
= outflows[k];

 }
}

While a similar straightforward strategy has proven to
be effective in other parallelizations and applications (e.g.
[14], [8], [7]), the speedups here achieved were not quite
positive, probably due to the excessive use of
computationally inactive threads and overuse of global
memory. At the contrary, the following approach has given
more positive results and can be considered as a starting
point for more sophisticated applications.

4.2 Active cells optimization

The active cells optimization strategy (AS) allows to
apply the transition function only on the active cells,
omitting those that are in a quiescent state. The active cells
are contained within a list and elementary processes can add
to the list new cells, or remove them. An array designed to
contain all active cells is initially allocated. Specifically, for
each active cell, a work-item is instantiated and can add new
cells to the list, or remove them. However, to maintain the
list in a consistent state, accesses must be performed by the
work-item in an exclusive manner. Unfortunately, OpenCL
doesn’t support exclusive accesses to global data, so an
alternative approach was here adopted. In particular, each
cell is associated with a Boolean value that indicates whether
the cell is active or inactive. The work-item, in order to add
or remove a cell, must change this value. This information is

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'15 | 585

used by a stream compaction algorithm to build the list of
active cells.

Stream compaction algorithms ([4], [18]) are used to
remove unwanted items in a set of scattered data. In this
case, data is located in an array of Boolean values whose
elements correspond to the cells of the cellular space. Items
with a true value correspond to the active cells, while false
ones correspond to the inactive cells. The implemented
stream compaction algorithm, adapted from [13] takes as
input this array and computes an array containing only the
active cells. Suppose we have p work-items and a Boolean
array with n elements, with n> p. The array is divided into p
equal parts. The algorithm consists of three phases:
1. Each work-item counts the number of active cells in its

part of the array.
2. Each work-item computes the array index of the output

array from which it can start entering the active cells
contained in the portion of its array.

3. Each work-item enters the active cells of its portion in
the output array starting from the offset calculated in
previous step.
Figure 3 shows the functioning of the algorithm for a

matrix representing a CA space size of 4×4 with 6 active
cells highlighted in red. The array used to track active cells is
given as input to the stream compaction algorithm that
outputs the list with only the active cells.

The second stage uses a two phase algorithm called
prefix sum. Specifically, the algorithm takes as input the
array calculated in the previous step containing the sum of
the active cells calculated by each work-item. The array is
seen as a balanced tree where its elements are the nodes of
the tree. In the first phase, the tree is crossed from the leaves
to the root calculating, for each level of the tree, the partial
sums of the nodes of the previous level (by a parallel
reduction pattern). In second phase, the tree is traversed from
the root (containing the total number of active cells) to the
leaves. At each iteration, each node sets the value of the right
child to the sum of its value and the value of the left child. In
addition, each node sets the value of its left child to its value.
At the end of this phase, an array is created that specifies, at
each location, the position from which each work-item can
write its active cells in the global active cells output array.

Figure 3: Stream compaction algorithm example
referred to a 4 x 4 CA.

5 TESTS AND PERFORMANCE
RESULTS

Two graphic devices were adopted for experiments: a
NVIDIA high-end Tesla K40c and a AMD Sapphire 280x
graphic card, both with a theoretical peak performance about
3,5 GFLOPS. In particular, the Tesla computing processor
has 2880 stream processors (i.e., CUDA cores) and 15
compute units, 12 GB global memory and high-bandwidth
communication between CPU and GPU, whereas the AMD
graphic card has 2048 stream processors, 32 compute units
and 3 GB global memory. The sequential SCIARA-fv2
reference version was implemented on a 2.8 GHz Intel
Quad-core Xeon based desktop computer. The sequential
CPU version is identical to the versions that were developed
for the GPUs, that is, at every step, the CA space array is
scrolled and the transition function applied to each cell of the
CA where lava is present.

A first test regarded the simulation of well-known and
documented real lava flow event, the Mt. Etna Nicolosi event
[6] occurred in July, 2001. The simulation was carried out
for 10000 steps, considering two craters for lava flow
emission. In order to further stress the efficiency of the GPU
version, further benchmarks experiments (stress test) were
performed by considering 200 lava sources equally spaced
over the area. Moreover, the two parallelizations (i.e., Whole
Space and Active Cells strategies) reported in section 4 were
considered. Table 1 reports the results of tests carried out for
experiments, where the CA space is a 517 × 378 two-
dimensional grid.

From all performed experiments, we can note that in all
cases the versions using the active cells optimization are
more efficient. As expected, this is due to the fact that the
optimization does not apply the transition function to cells
which are in a quiescent state, and thus many unnecessary
calculations are not executed. Instead, in the standard
implementation, there is an excessive use of computationally
inactive threads and overuse of global memory.

For the first series of tests, which takes into account
only two sources lava, we can see that the WS parallel
version reaches a speedup of 22× (23× for the Tesla K40c)
compared to its sequential version. In the case of the parallel
version with active cells (AS) optimization, performance
reaches a maximum speedup of only 2× (3× for the Tesla
K40c), with respect to its corresponding sequential active
cells version. This is due to the fact that with only two
sources of lava the active cells are relatively few and
therefore also the sequential implementation results
extremely efficient. Moreover, performance of the AMD
Sapphire 280x GPU is unexpectedly comparable to that of
the Nvidia GPU K40c for the standard WS version, probably
due the high boost clock of the AMD hardware with respect
to the lower GPU clock of the Nvidia card (1000 MHz vs
745 MHz). However, performances related to the optimized
AS version in terms of execution times are better for the
Nvidia hardware, probably due to the higher number of

586 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'15 |

streaming processors (i.e., 2880 vs 2048) that can be fully
exploited.

As for the stress test, we can observe a speed up of 41×
(40× for the Tesla K40c) for the parallel version that is not
optimized, and a speedup of 39× (41× for the Tesla K40c)
for the parallel version with active cells optimization
compared to the corresponding sequential versions. Here, we
can see that the speedup of the versions with active cells
optimization is comparable with the versions without
optimizations, due to the relative equal (and elevated)
number of cells involved in the stress test. Even in this case,
both considered hardware give the same performance, as for
the previous test. A likely explanation is due to the fact that
on one hand the Nvidia hardware has a higher number of
streaming processors while, on the other, the AMD card has
more compute units, which basically compensate both
hardware computing capabilities.

Table 1: Execution times of experiments (in seconds) carried out
for evaluating the performance the GPU version of the SCIARA
CCA lava-flow model on the considered hardware. Experiments
refer to the Whole Space (WS).

CA dim / Device Xeon
(sequential)

K40c
(WS)

Sapphire
(WS)

517 ×378
(2 craters) 1122 49 52

517 ×378
(200 craters – Stress Test) 2790 69 68

Even if timings achieved for the single case simulation
cannot be considered positive, the stress test experiments
have revealed the full suitability of the parallel system for
intensive computations like applications, such as for the
construction of hazard maps (e.g., [7], [16]). Typically, the
most general approach for computing a hazard map in a
extended area consists of a Monte Carlo approach in which a
high number (e.g. thousands) of different simulations are
carried out and on geological-geomorphological field survey
and statistical analysis.

Table 2: Execution times of experiments (in seconds) carried out
for evaluating the performance the GPU version of the SCIARA
CCA lava-flow model on the considered hardware. Experiments
refer to the Active Cells (AC) strategies (see text).

CA dim / Device Xeon
(sequential)

K40c
(AC)

Sapphire
(AC)

517 ×378
(2 craters) 62 22 30

517 ×378
(200 craters – Stress Test) 2005 49 51

Eventually, to test if single-precision data can be
considered sufficient for SCIARA simulations, tests were
carried out on the 2001 lava flow event (10000 CA steps)
and compared results produced by the GPU version with
those produced by the CPU (sequential) version with double
precision CPU implementation (i.e., double type
variables). Comparison results were satisfactory, since the
areal extensions of simulations resulted the same, except for

few errors of approximation in a limited number of cells. In
particular, comparing the GPU version with the CPU single-
precision version approximation differences at the third
significant digit were only for 4% of cells, while differences
were less for remaining cells. Differences were even minor
compared to the previous case by considering the single
precision GPU version and a CPU version which adopts
double-precision variables.

6 CONCLUSIONS
This paper reports the implementation of a Complex

Cellular Automata model using GPU architectures. As
shown, the OpenCL technology, in combination with the an
efficient memory management, can produce a very efficient
version of the SCIARA-fv2 lava flow simulator. Several tests
were carried out to evaluate the implemented
parallelizations. In particular, tests using the GPU Sapphire
280x show that the parallel version, without optimizations,
achieved a 41× speedup compared to its sequential version.
The parallel version with optimization active cells also
reached a speedup of 41× compared to its corresponding
sequential one. As expected, in all cases, versions using the
active cells optimization have resulted to be more efficient
than versions without the optimization.

Future work will also regard the exploitation of graphic
hardware for the construction of hazard maps, such as in [16]
which are fundamental for determining locations that are
subject to future events and their related risk. The positive
performances obtained for the more intensive computations
(stress test) will imply the extension of the AC strategy in a
multi-simulation context, by using OpenCL to accelerate
simultaneous concurrent SCIARA-fv2 lava flows
simulations.

The results obtained on the SCIARA model are
therefore to be considered positive, but further testing should
be performed to assess the functionality of the adopted
strategies on other models and their ability to fruitfully
exploit parallel systems resources.

Acknowledgments - This research was partially funded by
the UE POR FSE CALABRIA PIA 2010 “Laboratorio in
Campo” Project DDG n. 17198. Authors also gratefully
acknowledge the support of NVIDIA Corporation for this
research.

REFERENCES

[1] M.V. Avolio, S. Di Gregorio, W. Spataro, G.A.
Trunfio. “A theorem about the algorithm of minimization
of differences for multicomponent cellular automata”. In:
Sirakoulis GC, Bandini S, editors, ACRI. Springer,
volume 7495 of Lecture Notes in Computer Science,
289-298, 2012.

[2] D. Barca, G.M. Crisci, Di Gregorio, S., Nicoletta, F.
“Cellular Automata for simulating lava Flows: A method

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'15 | 587

and examples of the Etnean eruptions”. Transport
Theory and Statistical Physics, 23, 195-232, 1994.

[3] G. Bilotta, E. Rustico, A. Hérault, A. Vicari, G. Russo,
C. Del Negro, G. Gallo. “Porting and optimizing
MAGFLOW on CUDA”, Annals of Geophysics 5 (54),
2011.

[4] M. Billeter, O. Olsson, U. Assarsson U. “Efficient
stream compaction on wide SIMD many-core
architectures”. In: Proceedings of the Conference on
High Performance Graphics 2009. ACM, 159–166,
2009.

[5] G.M. Crisci, S. Di Gregorio, R. Rongo, W. Spataro.
“PYR: a Cellular Automata model for pyroclastic flows
and application to the 1991 Mt. Pinatubo eruption”.
Future Generation Computer Systems 21 (7), 1019-1032,
2005.

[6] G.M. Crisci, S. Di Gregorio, R. Rongo, W. Spataro.
“The simulation model SCIARA: the 1991 and 2001 at
Mount Etna”. Journal of Vulcanology and Geothermal
Research, 132, 253-267, 2004.

[7] D. D’Ambrosio, G. Filippone, D. Marocco, R. Rongo,
W. Spataro. “Efficient application of GPGPU for lava
flow hazard mapping”. The Journal of Supercomputing,
vol. 65, no. 2, 630–644, 2013.

[8] M. De La AsunciòN, J.M. Mantas, M.J. Castro, E. D.
Fernàndez-Nieto. “A MPI-CUDA implementation of an
improved Roe method for two-layer shallow water
systems”. Journal of Parallel and Distributed Computing,
72, 9, 1065–1072, 2012.

[9] S. Di Gregorio, R. Serra. “An empirical method for
modelling and simulating some complex macroscopic
phenomena by cellular automata”. Fut. Gener. Comp.
Syst., 16, 259–271, 1999.

[10] S. Di Gregorio, G. Filippone, W. Spataro, G.A.
Trunfio. “Accelerating wildfire susceptibility mapping
through GPGPU”. Journal of Parallel and Distributed
Computing 73: 1183 – 1194, 2013.

[11] M. Domínguez Jose, J.C. Crespo Alejandro, Gómez-
Gesteira Moncho. “Optimization strategies for CPU and
GPU implementations of a smoothed particle
hydrodynamics method”. Computer Physics
Communications, 184, 3, 617-627, 2013.

[12] A. Grama, G. Karypis, V. Kumar, A Gupta. “An
Introduction to Parallel Computing: Design and Analysis
of Algorithms”, Second Edition. USA: Addison Wesley,
2003.

[13] M. Harris, S. Sengupta, J.D Owens. “Parallel prefix
sum (scan) with CUDA”, GPU Gems 3 (39), 851-876,
2007.

[14] D. Jacobsen, J. C. Thibault, , I. Senocak. “An MPI-
CUDA implementation for massively parallel
incompressible flow computations on Multi-GPU
clusters”. In: American Institute of Aeronautics and
Astronautics (AIAA) 48th Aerospace Science Meeting
Proceedings, 2010.

[15] F. Kuznik, C. Obrecht, G. Rusaouen, J.J. Roux. “LBM
based flow simulation using GPU computing processor”.

Computers and Mathematics with Applications, 59,
2380–2392, 2010.

[16] F. Lucà, D. DAmbrosio, G. Robustelli, R. Rongo, and
W. Spataro. “Integrating geomorphology, statistic and
numerical simulations for landslide invasion hazard
scenarios mapping: an example in the Sorrento peninsula
(italy)”. Computers & Geosciences, vol. 67, 163–172,
2014.

[17] G. Mendicino, A. Senatore, G. Spezzano, S. Straface.
“Three-dimensional unsaturated flow modeling using
cellular automata”. Water Resources Research, 42, 2006.

[18] H. Nguyen. Gpu Gems 3. First. Addison-Wesley
Professional, 2007.

[19] NVIDIA CUDA C Programming Guide, 2011a.
Available from: http://docs.nvidia.com/cuda/cuda-c-
programming-guide/#axzz3a2J6b3gl [accessed May
2015]

[20] T. Salles, S. Lopez, M. Cacas, T. Mulder. “Cellular
automata model of density currents”. Geomorphology,
88: 1 – 20, 2007.

[21] M. Scarpino. OpenCL in action. Manning Publications
Co., 2012.

[22] W. Spataro, M.V. Avolio, V. Lupiano, G.A. Trunfio,
R. Rongo, D. D’Ambrosio. “The latest release of the lava
flows simulation model sciara: First application to Mt
Etna (Italy) and solution of the anisotropic flow direction
problem on an ideal surface”. Procedia Computer
Science 1: 17-26, 2010.

[23] J.C. Thibault, I. Senocak. “Accelerating
incompressible flow computations with a Pthreads-
CUDA implementation on small-footprint multi-GPU
platforms”. The Journal of Supercomputing, 59, 2, 693 –
719, 2012.

[24] J. Tolke. “Implementation of a lattice Boltzmann
kernel using the compute unified device architecture
developed by NVIDIA”. Comput. Vis. Sci., 13 1, 29–39,
2008.

[25] G.A. Trunfio, D. D'Ambrosio, R. Rongo, W. Spataro,
S. Di Gregorio. “A new algorithm for simulating wildfire
spread through cellular automata”. ACM Transactions on
Modeling and Computer Simulation (TOMACS), 22, 6,
2011.

[26] J. von Neumann (Edited and completed by A. Burks),.
Theory of self-reproducing automata. USA: University
of Illinois Press, 1966.

588 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'15 |

