
Using the column oriented NoSQL model
for implementing big data warehouses

Khaled. Dehdouh1, Fadila. Bentayeb1, Omar. Boussaid1 , and Nadia Kabachi1

1ERIC Laboratory/ University of Lyon 2, Bron, France

Abstract - The column-oriented NoSQL (Not Only SQL)
model provides for big data the most suitable model to the
data warehouse and the structure of multidimensional data as
the OLAP cube and allows it to be deployed in the cloud and a
high scalability whilst delivering high performance. In the
absence of a clear approach which allows the implementation
of data warehouses using this model, we propose in this
paper, three approaches which allow big data warehouses to
be implemented under the column oriented NoSQL DBMS.
Each one differs in terms of structure and the attribute types
used when mapping the conceptual model into logical model
is performed. We use these approaches to instantiate the
conceptual model of the star schema benchmark (SSB) data
warehouse into columnar logical models, and show the
differences between them when decisional queries are
performed.

Keywords: Big data warehouses, columnar NoSQL model,
logical modeling.

1 Introduction
 A data warehouse is a database for online analytical
processing (OLAP) to aid decision-making. It is designed
according to a dimensional modelling which has for objective
to observe facts through measures, also called indicators,
according to the dimensions that represent the analysis axes
[1]. Thus, at the conceptual level, the multidimensional
modelling gave birth to the concepts of fact and dimension.
The most popular models used to design data warehouses are
the star, snowflake, and constellation schemas [2]. These
models are then converted to the logical models which depend
on the storage mode that will be adapted at the physical level
[3]. Classically, the mapping from the conceptual to the
logical model is made according to three approaches; ROLAP
(Relational-OLAP), MOLAP (Multidimensional-OLAP) and
HOLAP (Hybrid-OLAP) [4].

However, with the advent of the big data, the logical
modelling adopted by these approaches does not adapt itself
to an environment characterized by such amount of data. To
solve a part of this issue, other models have appeared such as
the column oriented NoSQL. This latter gives a data structure
more adequate to the massive data warehouses. Yet, the data
warehouse implementation process requires to take into

account the recent data structures and should adapt itself to
the new technological constraints.

Figure 1: Implementation process for data warehouses

As depicted in the figure 1, the logical model aims at
reorganizing the data according to the most appropriate
storage architecture for a better taking in charge by the
DBMS. It is situated between the conceptual and the physical
models of data. In other words , it not only gives more details
than the conceptual model on the structuring of data and their
relations, but it prepares the transition to the physical level as
well; this makes it the most decisive model in the modeling
process.

In order to fully benefit from the columnar NoSQL model
advantages, and in the absence of a clear approach allowing
for implementing the columnar NoSQL data warehouses, we
propose in this paper, three types of the conceptual model
translations at logical columnar model level namely NLA
(Normalized Logical Approach), DLA (Denormalized Logical
Approach), and DLA-CF (Denormalized Logical Approach
by using Column Family). Each approach leads to a different
logical model. We describe each one, and show how we can
use these models for implementing data warehouses.

To compare between the three translations, we have
implemented the SSB (star schema benchmark) data
warehouse [5] according to our propositions. This
implementation was achieved under HBase which is column-
oriented NoSQL DBMS. We have noticed that the execution
of decisional queries using the SSB data warehouse with the

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'15 | 469

denormalized approaches (DLA and DLA-CF) takes three
times less compared with an implementation with SSB using
the normalized approach (NLA). Besides, the use of the
family column structure for gathering the attributes belonging
to the same dimension leads to the improvement until 10% of
the queries’ execution time which involve several attributes of
the same dimension to perform aggregations.

The rest of this paper is organized as follows. Section two
gives the related works of column-oriented data warehouse
implementation. Section three introduces the column-oriented
NoSQL model. Section four presents the three approaches
that we propose for data warehouse implementation under the
columnar NoSQL DBMS. Section five describes the
conversion rules from a dimensional model towards the
logical models according to the three approaches NLA, DLA
and DLA-CF. In section six, we conducted experiments to
evaluate the star schema benchmark implementation
according to our three approaches that we propose. Finally, in
section 7, we conclude this paper and give some perspectives.

2 Related work
Although the columnar NoSQL model is widely used for

storing and analyzing massive data, it does not have, to our
knowledge, any methods or defined rules which allow us to
know whether a column-oriented NoSQL data warehouse is
well performing or not.

However, some works are aimed at developing data
warehouses in columnar NoSQL DBMS. In [6] [7], the author
has proposed an approach for transforming a relational
database into a column oriented NoSQL database using
HBase. However, this approach is limited to the logical level,
and does not consider the conceptual model of data
warehouses; i.e.: mapping a relational logical model into a
column oriented logical model. In recent work [8], we have
developed a new benchmark for the columnar NoSQL data
warehouse, but without giving the formalization for the
modeling process. However, this work is considered as the
first work which proposes implemented star data warehouse
under column oriented NoSQL DBMS directly from
dimensional model.

Another recent work, based on our benchmark, has tried to
define a logical model for NoSQL data stores (oriented
columns and oriented documents) [9]. However, its column
oriented logical modeling has been only limited to the use the
columns family concept without considering the attributes
which are not necessarily belonging to a column family.
Indeed, the columns oriented NoSQL model proposes two
kinds of attributes: a simple attribute and a composite attribute
(nested attribute). This latter is represented by the concept of
column family (see section 3). Thus, columnar NoSQL
DBMS rather favors the denormalization of the dimensional
model, without necessarily using the column families
(composite attribute).

To complete these works by taking the simple attributes case
into a count, we propose three candidate approaches which
summarize the mapping of the multidimensional conceptual
data model into a logical modeling adapted to the column-
oriented NoSQL data warehouses.

3 Column oriented NoSQL model
 In this section, we present the columnar NoSQL model
which is characterized by non-relational logical representation
of data, and storing the data of a table column-by-column
[10]. It allows data warehouse architecture to be deployed in
the cloud and a high scalability whilst delivering high
performance [11].

Indeed, the non-relational aspect of this model allows the
massive data warehouses to be deployed in a distributed
environment when scaling up [12], and the column oriented
aspect for storing data is beneficial to the data warehouse
when aggregation is performed with value belonging to the
same column [13]. However, columnar NoSQL model does
not have a mechanism which takes in charge the links between
tables; thus, it is assigned to the customer applications level
[14].

Consequently, the columnar NoSQL DBMS as HBase favors
gathering columns in a single table when storing data. Each
column stores data in the form of a "key/value" pair which can
be stored in a distributed file system. The combination <row
key, column name, timestamp> represents the coordinates of
the value as depicted in the figure 2.

Figure 2: Data structure of the columnar NoSQL model

The row key serves for identifying the column values
belonging to the same tuple. The column name allows
identifying the attribute of a value; it can be composed by
column family name and column name. Indeed, the column
may be composite or simple. If the column name is prefixed,
this means that the column name consists of the name of the
column family (prefix) and the name of the nested column. In
this case, it is called composite attribute (belong to a column
family), otherwise it is considered as simple attribute. The
figure 3 represents the corresponding UML class diagram of a
column-oriented NoSQL data model (tables, rows, column
families and columns).

470 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'15 |

Figure 3: UML class diagram of the concepts of a column-oriented
NoSQL data model.

Finally, the timestamp allows checking data coherence. Each
value is allocated a timestamp by the system for the purpose
of data consistency. It is noteworthy that data replication
across different machines (nodes) required by the data
management in a distributed environment (Eventually
consistent) sometimes leads to different versions of the same
data during updates. The timestamp associated with each
value means that it is the most recent version which will be
taken when a query is entered into the database [15].

Moreover, HBase and Cassandra from the Apache Foundation
and BigTable from Google are three examples of column
oriented NoSQL DBMS. In the next section, we present a
logical model which allows implementing data warehouses
under a column-oriented NoSQL DBMS.

4 The logical model for the columnar
NoSQL warehouses

 In order to implement the big data warehouses within the
column-oriented NoSQL model, we propose three approaches
namely NLA (Normalized Logical Approach), DLA
(Denormalized Logical Approach), and DLA-CF
(Denormalized Logical Approach by using Column Family).
Each one differs in terms of the structure and the attribute
types used when mapping is performed.

The first one uses different tables for storing fact and
dimension, and use only the simple attribute for representing
measure and dimension attributes. The second approach
proposes storing the fact and dimensions into one table, and
uses only the simple attribute for representing measure and
dimension attributes. The third approach proposes storing the
fact and dimensions into one table, and uses only the
composite attribute for representing measure and dimension
attributes. These approaches are described below.

4.1 Normalized Logical Approach (NLA)

This approach proposes to map the dimensional model
of data warehouse by the normalized approach as the
relational does. In order to achieve this, the classic

dimensional models are converted towards relational logical
models. The dimensions and the facts are stored separately on
different tables. To ensure the links between these two entities
(dimension-fact), the dimension table identifier is duplicated
in the fact table. However, without the referential integrity
constraints in the columnar NoSQL DBMS, it is the
responsibility of the customer application level to check this
scheduler.

4.2 Denormalized Logical Approach (DLA)

 This approach proposes transforming the data
conceptual model into a model based on a large structure
(table) called BigFactTable, which keeps the facts and the
dimensions joined. On the opposite of the normalized
approach which separates the facts from their dimensions, this
approach favors the denormalization of the schema by
integrating, in the same table, the fact and the dimension. This
process is very frequent in the modeling of the data
warehousing, particularly in the management of the
dimensional hierarchies; as explained by [16]. To map
measures and dimensions into logical model, this approach
uses the simple attribute proposed by the columnar NoSQL
model. Thus, the fact and dimension values are now identified
by the same identifier (row key) of the table, and we have no
longer to achieve joining between tables when aggregation is
performed.

4.3 Denormalized Logical Approach by using Column
Family (DLA-CF)

This approach proposes transforming the data conceptual
model into columnar NoSQL logical model as Denormalized
Logical Approach does. However, this approach uses the
composite attributes to map the measures and dimensions
instead the simple ones. Indeed, each dimension is mapped
into a column family and the attributes belonging to the same
dimension are gathered in one column family. This allows
attributes belonging to a given dimension to be shared in the
same disk space which improves the column access time
especially when decisional query involves several attributes of
the same dimension (hierarchy: year, trimester and month) to
perform aggregations.

5 Mapping from the dimensional model
to the columnar NoSQL logical
models

 In order to define the rules that cover the mapping
process from the dimensional model to the candidates’
columnar NoSQL logical models defined above (section 4),
we first formalize the different instantiations that lead to these
logical models.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'15 | 471

5.1 Formalization

Given data warehouse dimensional model DW composed by
the couple (F, D). F represents the set of
measures , and D represents a set of
dimensions . Each dimension D grouped a
set of attributes represents the axe of analysis used for
observing the measure attributes , it is defined by

Definition 1 (NLA)

According to NLA, the instantiation of DW leads to map the
fact F and the dimensions D to separate tables called
respectively FT (fact table) and DT (dimension table). The
simple attribute is used for representing both the dimension
and measure attributes; such as, ,
and It means that for each
dimension table, there is at least an attribute which uniquely
identify all the attributes of dimension, and there is another
one which identify both all measure attributes and the
identifiers of dimensions.

Definition 2 (DLA)

The instantiation of DW according to DLA leads to map the
fact F and the dimensions D to the same table called
BigFactTable (BFT). This approach uses the simple attribute
for representing both the dimension and measure attributes.
Thus, we consider that the logical modeling is performed
according to DLA, if and only if there is a sub set of attributes
E included in BFT, such as: :

 It means there is at least an
attribute which uniquely identify all the attributes of
dimension and all measure attributes in the BigFactTable.

Definition 3 (DLA-CF)

According to DLA-CF, the instantiation of DW leads to map
the fact F and the dimensions D to the same table called
BigFactTable (BFT) by using the column family structure CF.
Indeed, all measure attributes are gathered into a column
family, and each dimension is converted to a column family,
too. Thus, the dimension attributes which belong to the same
dimensions are gathered into a column family. We consider
that the logical modeling is performed according to DLA, if
and only if there is a sub set of attributes E included in BFT,
such as: It
means there is at least an attribute which uniquely identify all
the attributes of dimension and all measure attributes in the
BigFactTable.

5.2 Mapping rules from the dimensional model

 At the conceptual modeling level, the dimensional model
is independent from the details related to data structuring and
the environment implementation; hence, we adopt the
dimensional model as presented by [14] without any
expansion or modification. However, we expose, in this
section, the rules which allow to map a dimensional model
already established towards a logical model according to the
three approaches that we propose in this work.

Conceptual model to NLA: in order to instantiate from the
conceptual model by using this approach, the following rules
must be applied:

(R1) Each fact becomes a table called fact table FT, and each
dimension becomes a table called DT.
(R2) Each measure is translated withinn as a
simple attribute (.
(R3) Each dimension D and each attribute is
mapped into DT as a simple attribute (i.e.), and the
FT is completed by simple attribute (the value
reference of the linked dimension).

Conceptual model to DLA: in order to instantiate from the
conceptual model by using this approach, the following rules
must be verified:

(R1) Each fact and dimension is converted in one large table
called BigFactTable BFT.
(R2) Each measure M € F is translated within BFT as a simple
attribute (.
(R3) For all dimensions D, each attribute is
translated into a simple attribute (i.e. B).

Conceptual model to DLA-CF: in order to instantiate from
the conceptual model by using this approach, the following
rules must be checked:

(R1) Each fact and dimension is converted in one table called
BigFactTable BFT as composite attributes (column families).
(R2) Each measure is mapped as a simple attribute
and included in a column family into a BigFactTable

.
(R3) Each dimension D is translated into a composite attribute
(i.e. B), and each attribute is translated as a
simple attribute included in the (i.e. BFT.).

The matching between entities from the conceptual model
with those from the logical models that we propose is shown
in the following table:

472 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'15 |

Conceptual model NLA DLA DLA-CF

Fact F FT BFT BFT
Measure M FT.M BFT.M BFT.CF.M

Dimension D DT BFT BFT.CF
Dimension attribute At DT.At BFT.At BFT.CF.At

Table 1: Matching between the conceptual model and the
logical models.

6 Experiments
 In this section, we have evaluated the performances of
the star data warehouse under the columnar NoSQL DBMS.
For this reason, we have implemented a decisional benchmark
SSB within HBase columnar NoSQL DBMS according to
three (3) approaches. The first one implements the SSB
following the normalized logical approach NLA; we called
this data warehouse NLA-SSB. The second approach
denormalizes the schema of data warehouse and implements
the SSB according to the denormalized logical model without
using the family columns DLA. We called it DLA-SSB. The
third and last approach implements the SSB according to the
denormalized logical model by using column family DLA-CF.
We called it DLA-CF-SSB. To achieve this evaluation, we
conducted two experiments to study the impact that the choice
of approach used to implement a data warehouse under the
column oriented NoSQL DBMS may have on the execution
time of the decisional queries.

6.1 Test environment
 In order to perform our experiments within a column
oriented NoSQL and distribute environment, we have put in
place a non-relational and distributed storage and processing
environment [17]. This environment is based on a private
Cloud Computing architecture produced using the Hadoop-
2.6.0 and a HBase-0.98.8 DBMS, for managing data in a
distributed environment. In order to simplify data handling
and boost the performance of the HBase DBMS, we
strengthened this configuration with an SQL interface for
HBase, called Phoenix-4.1.0. This latter is an open source and
allows the data handling at the HBase level (scan, put and get)
to be combined to express a selection of data and to apply
filters [18].

The test environment is a cluster made up of 25 machines
(nodes). Each machine has an intel-Core TMi5-3220M
CPU@3.30 GHZ processor with 8GB RAM. These machines
operate with the operating system Ubuntu-14.04 and are
interconnected by a switched Ethernet 100 Mbps in a local
area network. One of these machines is configured to perform
the role of Namenode in the HDFS system, the master and the
Zookeper of HBase [19]. However, the other machines are
configured to be HDFS DataNodes and the HBase
RegionServers. Although the private Cloud architecture we
used is limited in terms of capacity (number of nodes

composing the cluster), it is sufficient to allow us to deploy a
non-relational data warehouse with scaling-up and to apply a
queries set in a distributed environment.

6.2 Data set
 In order to perform our experiments, we used data
generators of SSB which are available according to
normalized1 and denomalized2 approaches [8], and we
populated NLA-SSB, DLA-SSB, and DLA-CF-SSB data
warehouses according to SF = 1000, this allows to generate
fact table with 6 × 109 tuples of data sample.

6.3 Queries set
 For our experiments, we used a queries set composed of
eight (8) queries which are divided into two categories as
depicted in table 2. The first category is composed of four (4)
queries; they gradually increase in the number of dimensions
involved when aggregation is performed. Each query in this
category uses one attribute per dimension. The second
category is composed of four (4) queries in which they
involve only one dimension and gradual increase in the
number of dimensions attributes when aggregation is
performed.

Table 2: Descriptive table of queries set

6.4 Experiment 1
 In this experiment, the aim is to study the execution time
impact of the normalized and denormalized approaches by

1 https ://github.com/electrum/ssb-dbgen
2 https://github.com/Dehdouh/DBGEN-CNSSB

Queries set Query Dimension Attributes Measure

Category-1

Query 1.1 Date year,

Sum
(revenue)

Query 1.2 Date,
Part

year,
category

Query 1.3
Date,
Part,

Supplier

year,
category,

region

Query 1.4

Date,
Part,

Supplier,
Customer

year,
category,

region (Supplier),
region (Customer)

Category-2

Query 2.1

Part

color

Query 2.2 color,
type

Query 2.3
color,
type,
size

Query 2.4

color,
type,
size,

container

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'15 | 473

using queries which involve attributes from different
dimensions when aggregations are performed. To do this, we
applied the first queries set category to NLA-SSB, DLA-SSB,
and DLA-CF-SSB data warehouses. The results we obtained
are shown in the following figure:

Figure 7: Execution time of the category 1 of queries set

We observed that the denormalized data warehouses
represented by DLA-SSB and DLA-CF-SSB show better
performance than normalized data warehouse represented by
NLA-SSB. Indeed, the query execution times obtained from
the data warehouses DLA-SSB and DLA-CF-SSB are better
until three times than those executed by the data warehouse
NLA-SSB. This is because implementing data warehouse
according to normalized approach entails higher costs for
materializing the link between dimension and fact especially
when the queries involve more joins between the tables for
performing aggregations.

However, for denormalized warehouses (DLA-SSB and DLA-
CF-SSB), we found that gathering the dimension attributes in
a column family does not impact the warehouse performance
when the query handles attributes belonging to different
dimensions.

6.5 Experiment 2
 In this experiment, the aim this time is to study the
execution time impact of the normalized and denormalized
approaches by using queries which involve only one
dimension and gradual increase in the number of dimensions
attributes when aggregation is performed. To do this, we
applied the second queries set category to DLA-SSB, DLA-
CF-SSB, and DLA-CF-SSB data warehouses. The results we
obtained are shown in the following figure:

Figure 8: Execution time of the category 2 of queries set

 We observed that the query execution times is different
for each data warehouse and gives advantage to DLA-CF-
SSB. Indeed, the queries used in this experiment (category 2)
involve only one dimension when performing aggregations. In
the case of NLA-SSB data warehouse, the join between facts
table and dimension (Part) is performed. Thus, involving
another attribute belonging to the same dimension (Part)
entails only additional time related to its scan. This time is
lower than the time of joining additional dimension.

On the other hand, we found that DLA-CF-SSB data
warehouse performs execution times until 10 % better than
DLA-SSB data warehouse. In the context of big data
warehouse, this is very important especially in the case of data
warehouses characterized by a large number of attributes
which compose the dimensions. Indeed, HBase DBMS stores
columns by lexicographical order which may sometimes store
the columns of the same dimension separately in different disk
spaces. Thus, using the column family allows having the
attributes belonging to the same dimension stored in the same
disk space.

Based on these results, we found that the use of the column
family for implementing columnar NoSQL data warehouses
gives benefits only with decisional queries handling attributes
belonging to the same dimension (i.e.: the dimension
hierarchy is involved).

7 Conclusion
Facing the emergence of large and unusual volumes of data
(big data), we have proposed three approaches which allow
mapping the multidimensional conceptual data model into a
logical modeling adapted to the column-oriented NoSQL data
warehouses. We have called these approaches; NLA, DLA,
and DLA-CF. Each one differs in terms of the structure and
the attribute types used when mapping is performed. We have
described each one and showed the rules governing the
instantiation of the conceptual model. Each approach has its
weaknesses and strengths, and the choice depends of the use
case.

We have used these approaches for evaluating the
performance of SSB data warehouse under distributed
environment when applied on decisional queries set. Then, we
have observed that the denormalized data warehouses
represented by DLA and DLA-CF show better performance
than NLA which represents normalized approach. Indeed, the
NLA uses less disk memory, but it is quite inefficient when
queries with joins are performed.

Morover, we have found that the DLA-CF is more efficient
than DLA, but only when query handling attributes belong to
the same dimension. Thus, the use of the column family
depends of the type of the queries which are applied to the
columnar NoSQL data warehouse.

474 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'15 |

As a perspective, we tend to explore in the next work, the
instantiation of data warehouse across other different NoSQL
systems namely: key/value, documents-oriented, and graph-
oriented to analyze the big data warehouses. These systems
give efficient managing of big data corresponding to different
contexts.

8 References

[1] Inmon, W. “Building the data warehouse”. QED
Information Sciences, Inc, 1992.

[2] Kimball, R. “Kimball Dimensional Modeling
Techniques”, Kimball Group University, 2013.

[3] Coronel, C., Morris, S., Rob, P.: “Database Systems:
Design, Implementation, and Management”, Cengage
Learning, 2012.

[4] Chaudhuri, S., Dayal, U., Ganti, V. “Database
technology for decision support systems”, IEEE Computer
Society, 48--55, 2002.

[5] O'Neil P., O'Neil B., Chen X.: The Star Schema
Benchmark (SSB), http://www.cs.umb.edu/\~poneil/
StarSchemaB.PDF, (2009).

[6] Li, C. “Transforming relational database into HBase: A
case study”, International Conference on Software
Engineering and Service Sciences (ICSESS), 683--687, 2010.

[7] Han, D., Stroulia, E. “A three-dimensional data model in
hbase for large time-series dataset analysis”, IEEE MESOCA,
47--56, 2012.

[8] Dehdouh, K., Boussaid, O., Bentayeb, F. “Columnar
NoSQL Star Schema Benchmark”, Model and Data
Engineering MEDI, 281--288, 2014.

[9] Chevalier, R., El Malki, M., Kopliku, A., Teste, O.,
Tournier, T. “Implementing Multidimensional Data
Warehouses into NoSQL”. International Conference on
Enterprise Information Systems (ICEIS 2015), 172--183,
2015.

[10] Jing, H., Haihong, E., Guan, L., Jian, D. “Survey on
NoSQL database”, International Conference on Pervasive
Computing and Applications (ICPCA), 363--366, 2011.
[11] Pokorny, J. “Nosql databases: A step to database
scalability in web environment”, Association for Computing
Machinery ACM, 278--283, 2011.

[12] Jerzy, D. “Business Intelligence and NoSQL
Databases”, Information Systems in Management 1, 25--37,
2012.

[13] Matei, G. “Column-oriented databases, an alternative
for analytical environment”. Database Systems Journal, 3--16,
2010.

[14] Apache Software Foundation. “The Apache HBase
Reference Guide”, http://hbase.apache.org/book/joins.html,
2014.

[15] Cattell, R. “Scalable SQL and NoSQL Data Stores”,
Association for Computing Machinery ACM SIGMOD
Record, 12--27, 2011.

[16] Kimball, R., Ross, M. “The data warehouse toolkit:
The complete guide to dimensional modeling”, Second
Edition, Inc, 2002.

[17] Taylor, R. “An overview of the Hadoop-MapReduce-
Hbase framework and its current applications in
bioinformatics”. BMC Bioinformatics Journal. 2010.

[18] James, T. https://github.com/forcedotcom/phoenix/wiki
/Performance, 2013.

[19] Hunt, P., Konar, M., Junqueira, F. P., Reed, B.
“Zookeeper: Wait-free Coordination for Internet-scale
Systems”, Proceedings of the 2010 USENIX Conference on
USENIX Annual Technical Conference, 11--24, 2010.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'15 | 475

