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Abstract - The column-oriented NoSQL (Not Only SQL) 
model provides for big data the most suitable model to the 
data warehouse and the structure of multidimensional data as 
the OLAP cube and allows it to be deployed in the cloud and a 
high scalability whilst delivering high performance. In the 
absence of a clear approach which allows the implementation 
of data warehouses using this model, we propose in this 
paper, three approaches which allow big data warehouses to 
be implemented under the column oriented NoSQL DBMS. 
Each one differs in terms of structure and the attribute types 
used when mapping the conceptual model into logical model 
is performed. We use these approaches to instantiate the 
conceptual model of the star schema benchmark (SSB) data 
warehouse into columnar logical models, and show the 
differences between them when decisional queries are 
performed.

Keywords: Big data warehouses, columnar NoSQL model, 
logical modeling.

1 Introduction 
  A data warehouse is a database for online analytical 
processing (OLAP) to aid decision-making. It is designed 
according to a dimensional modelling which has for objective 
to observe facts through measures, also called indicators, 
according to the dimensions that represent the analysis axes 
[1]. Thus, at the conceptual level, the multidimensional 
modelling gave birth to the concepts of fact and dimension. 
The most popular models used to design data warehouses are 
the star, snowflake, and constellation schemas [2]. These 
models are then converted to the logical models which depend 
on the storage mode that will be adapted at the physical level 
[3]. Classically, the mapping from the conceptual to the 
logical model is made according to three approaches; ROLAP 
(Relational-OLAP), MOLAP (Multidimensional-OLAP) and 
HOLAP (Hybrid-OLAP) [4].

However, with the advent of the big data, the logical 
modelling adopted by these approaches does not adapt itself 
to an environment characterized by such amount of data. To 
solve a part of this issue, other models have appeared such as 
the column oriented NoSQL. This latter gives a data structure 
more adequate to the massive data warehouses. Yet, the data 
warehouse implementation process requires to take into 

account the recent data structures and should adapt itself to 
the new technological constraints. 

Figure 1: Implementation process for data warehouses 

As depicted in the figure 1, the logical model aims at 
reorganizing the data according to the most appropriate 
storage architecture for a better taking in charge by the 
DBMS. It is situated between the conceptual and the physical 
models of data. In other words , it not only gives more details 
than the conceptual model on the structuring of data and their 
relations, but it prepares the transition to the physical level as 
well; this makes it the most decisive model in the modeling 
process. 

In order to fully benefit from the columnar NoSQL model 
advantages, and in the absence of a clear approach allowing 
for implementing the columnar NoSQL data warehouses, we 
propose in this paper, three types of the conceptual model
translations at logical columnar model level namely NLA
(Normalized Logical Approach), DLA (Denormalized Logical 
Approach), and DLA-CF (Denormalized Logical Approach 
by using Column Family). Each approach leads to a different 
logical model. We describe each one, and show how we can 
use these models for implementing data warehouses.  

To compare between the three translations, we have 
implemented the SSB (star schema benchmark) data 
warehouse [5] according to our propositions. This 
implementation was achieved under HBase which is column-
oriented NoSQL DBMS. We have noticed that the execution 
of decisional queries using the SSB data warehouse with the 
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denormalized approaches (DLA and DLA-CF) takes three 
times less compared with an implementation with SSB using
the normalized approach (NLA). Besides, the use of the 
family column structure for gathering the attributes belonging 
to the same dimension leads to the improvement until 10% of 
the queries’ execution time which involve several attributes of 
the same dimension to perform aggregations. 

The rest of this paper is organized as follows. Section two 
gives the related works of column-oriented data warehouse 
implementation. Section three introduces the column-oriented 
NoSQL model. Section four presents the three approaches 
that we propose for data warehouse implementation under the 
columnar NoSQL DBMS. Section five describes the 
conversion rules from a dimensional model towards the 
logical models according to the three approaches NLA, DLA 
and DLA-CF.  In section six, we conducted experiments to 
evaluate the star schema benchmark implementation 
according to our three approaches that we propose. Finally, in 
section 7, we conclude this paper and give some perspectives. 

2 Related work 
Although the columnar NoSQL model is widely used for 

storing and analyzing massive data, it does not have, to our 
knowledge, any methods or defined rules which allow us to 
know whether  a column-oriented NoSQL data warehouse is 
well performing or not.  

However, some works are aimed at developing data 
warehouses in columnar NoSQL DBMS. In [6] [7], the author 
has proposed an approach for transforming a relational 
database into a column oriented NoSQL database using 
HBase. However, this approach is limited to the logical level, 
and does not consider the conceptual model of data 
warehouses; i.e.: mapping a relational logical model into a 
column oriented logical model. In recent work [8], we have 
developed a new benchmark for the columnar NoSQL data 
warehouse, but without giving the formalization for the 
modeling process. However, this work is considered as the 
first work which proposes implemented star data warehouse 
under column oriented NoSQL DBMS directly from 
dimensional model. 

Another recent work, based on our benchmark, has tried to 
define a logical model for NoSQL data stores (oriented 
columns and oriented documents) [9].  However, its column 
oriented logical modeling has been only limited to the use the 
columns family concept without considering the attributes 
which are not necessarily belonging to a column family. 
Indeed, the columns oriented NoSQL model proposes two 
kinds of attributes: a simple attribute and a composite attribute 
(nested attribute). This latter is represented by the concept of 
column family (see section 3). Thus, columnar NoSQL 
DBMS rather favors the denormalization of the dimensional 
model, without necessarily using the column families 
(composite attribute). 

To complete these works by taking the simple attributes case 
into a count, we propose three candidate approaches which 
summarize the mapping of the multidimensional conceptual 
data model into a logical modeling adapted to the column-
oriented NoSQL data warehouses. 

3 Column oriented NoSQL model 
 In this section, we present the columnar NoSQL model 
which is characterized by non-relational logical representation 
of data, and storing the data of a table column-by-column 
[10]. It allows data warehouse architecture to be deployed in 
the cloud and a high scalability whilst delivering high 
performance [11].  

Indeed, the non-relational aspect of this model allows the 
massive data warehouses to be deployed in a distributed
environment when scaling up [12], and the column oriented 
aspect for storing data is beneficial to the data warehouse 
when aggregation is performed with value belonging to the 
same column [13]. However, columnar NoSQL model does 
not have a mechanism which takes in charge the links between 
tables; thus, it is assigned to the customer applications level 
[14].  

Consequently, the columnar NoSQL DBMS as HBase favors 
gathering columns in a single table when storing data. Each 
column stores data in the form of a "key/value" pair which can 
be stored in a distributed file system.  The combination <row 
key, column name, timestamp> represents the coordinates of 
the value as depicted in the figure 2.  

Figure 2: Data structure of the columnar NoSQL model 

The row key serves for identifying the column values 
belonging to the same tuple. The column name allows 
identifying the attribute of a value; it can be composed by 
column family name and column name. Indeed, the column 
may be composite or simple. If the column name is prefixed, 
this means that the column name consists of the name of the 
column family (prefix) and the name of the nested column. In 
this case, it is called composite attribute (belong to a column 
family), otherwise it is considered as simple attribute. The 
figure 3 represents the corresponding UML class diagram of a 
column-oriented NoSQL data model (tables, rows, column 
families and columns).  
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Figure 3: UML class diagram of the concepts of a column-oriented 
NoSQL data model. 

Finally, the timestamp allows checking data coherence. Each 
value is allocated a timestamp by the system for the purpose 
of data consistency. It is noteworthy that data replication 
across different machines (nodes) required by the data 
management in a distributed environment (Eventually 
consistent) sometimes leads to different versions of the same 
data during updates. The timestamp associated with each 
value means that it is the most recent version which will be 
taken when a query is entered into the database [15].

Moreover, HBase and Cassandra from the Apache Foundation 
and BigTable from Google are three examples of column 
oriented NoSQL DBMS. In the next section, we present a 
logical model which allows implementing data warehouses 
under a column-oriented NoSQL DBMS. 

4 The logical model for the columnar 
NoSQL warehouses 

 In order to implement the big data warehouses within the 
column-oriented NoSQL model, we propose three approaches 
namely NLA (Normalized Logical Approach), DLA
(Denormalized Logical Approach), and DLA-CF 
(Denormalized Logical Approach by using Column Family). 
Each one differs in terms of the structure and the attribute 
types used when mapping is performed.  

The first one uses different tables for storing fact and 
dimension, and use only the simple attribute for representing 
measure and dimension attributes. The second approach 
proposes storing the fact and dimensions into one table, and 
uses only the simple attribute for representing measure and 
dimension attributes. The third approach proposes storing the 
fact and dimensions into one table, and uses only the 
composite attribute for representing measure and dimension 
attributes. These approaches are described below. 

4.1 Normalized Logical Approach (NLA)

This approach proposes to map the dimensional model 
of data warehouse by the normalized approach as the 
relational does. In order to achieve this, the classic 

dimensional models are converted towards relational logical 
models. The dimensions and the facts are stored separately on 
different tables. To ensure the links between these two entities 
(dimension-fact), the dimension table identifier is duplicated 
in the fact table. However, without the referential integrity 
constraints in the columnar NoSQL DBMS, it is the 
responsibility of the customer application level to check this 
scheduler.

4.2 Denormalized Logical Approach (DLA)

 This approach proposes transforming the data 
conceptual model into a model based on a large structure 
(table) called BigFactTable, which keeps the facts and the 
dimensions joined. On the opposite of the normalized 
approach which separates the facts from their dimensions, this 
approach favors the denormalization of the schema by 
integrating, in the same table, the fact and the dimension. This 
process is very frequent in the modeling of the data 
warehousing, particularly in the management of the 
dimensional hierarchies; as explained by [16]. To map 
measures and dimensions into logical model, this approach 
uses the simple attribute proposed by the columnar NoSQL 
model. Thus, the fact and dimension values are now identified 
by the same identifier (row key) of the table, and we have no 
longer to achieve joining between tables when aggregation is 
performed. 

4.3 Denormalized Logical Approach by using Column 
Family (DLA-CF) 

This approach proposes transforming the data conceptual 
model into columnar NoSQL logical model as Denormalized 
Logical Approach does. However, this approach uses the 
composite attributes to map the measures and dimensions 
instead the simple ones. Indeed, each dimension is mapped 
into a column family and the attributes belonging to the same 
dimension are gathered in one column family. This allows 
attributes belonging to a given dimension to be shared in the 
same disk space which improves the column access time 
especially when decisional query involves several attributes of 
the same dimension (hierarchy: year, trimester and month) to 
perform aggregations. 

5 Mapping from the dimensional model 
to the columnar NoSQL logical 
models 

 In order to define the rules that cover the mapping 
process from the dimensional model to the candidates’ 
columnar NoSQL logical models defined above (section 4), 
we first formalize the different instantiations that lead to these 
logical models. 
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5.1 Formalization

Given data warehouse dimensional model DW composed by 
the couple (F, D). F represents the set of 
measures , and D represents a set of 
dimensions . Each dimension D grouped a 
set of attributes represents the axe of analysis used for 
observing the measure attributes , it is defined by 

Definition 1 (NLA) 

According to NLA, the instantiation of DW leads to map the 
fact F and the dimensions D to separate tables called 
respectively FT (fact table) and DT (dimension table). The 
simple attribute is used for representing both the dimension 
and measure attributes; such as,   ,
and It means that for each 
dimension table, there is at least an attribute which uniquely 
identify all the attributes of dimension, and there is another 
one which identify both all measure attributes and the 
identifiers of dimensions. 

Definition 2 (DLA) 

The instantiation of DW according to DLA leads to map the 
fact F and the dimensions D to the same table called 
BigFactTable  (BFT). This approach uses the simple attribute 
for representing both the dimension and measure attributes. 
Thus, we consider that the logical modeling is performed 
according to DLA, if and only if there is a sub set of attributes 
E included in BFT, such as: :

 It means there is at least an 
attribute which uniquely identify all the attributes of 
dimension and all measure attributes in the BigFactTable. 

Definition 3 (DLA-CF)

According to DLA-CF, the instantiation of DW leads to map 
the fact F and the dimensions D to the same table called 
BigFactTable (BFT) by using the column family structure CF.
Indeed, all measure attributes are gathered into a column 
family, and each dimension is converted to a column family, 
too. Thus, the dimension attributes which belong to the same 
dimensions are gathered into a column family. We consider 
that the logical modeling is performed according to DLA, if
and only if there is a sub set of attributes E included in BFT,
such as: It 
means there is at least an attribute which uniquely identify all 
the attributes of dimension and all measure attributes in the 
BigFactTable. 

5.2 Mapping rules from the dimensional model

 At the conceptual modeling level, the dimensional model 
is independent from the details related to data structuring and 
the environment implementation; hence, we adopt the 
dimensional model as presented by [14] without any 
expansion or modification. However, we expose, in this 
section, the rules which allow to map a dimensional model 
already established towards a logical model according to the 
three approaches that we propose in this work. 

Conceptual model to NLA: in order to instantiate from the 
conceptual model by using this approach, the following rules 
must be applied: 

(R1) Each fact becomes a table called fact table FT, and each 
dimension becomes a table called DT. 
(R2) Each measure  is translated withinn as a 
simple attribute ( . 
(R3) Each dimension D and each attribute  is 
mapped into DT as a simple attribute (i.e. ), and the 
FT is completed by simple attribute  (the value 
reference of the linked dimension). 

Conceptual model to DLA: in order to instantiate from the 
conceptual model by using this approach, the following rules 
must be verified: 

(R1) Each fact and dimension is converted in one large table 
called BigFactTable BFT. 
(R2) Each measure M € F is translated within  BFT as a simple 
attribute ( . 
(R3) For all dimensions D, each attribute  is 
translated into a simple attribute (i.e. B ).

Conceptual model to DLA-CF:  in order to instantiate from 
the conceptual model by using this approach, the following 
rules must be checked: 

(R1) Each fact and dimension is converted in one table called 
BigFactTable  BFT  as composite attributes (column families). 
(R2) Each measure  is mapped as a simple attribute
and included in a column family into a BigFactTable

. 
(R3) Each dimension D is translated into a composite attribute 
(i.e. B ), and each attribute  is translated as a 
simple attribute included in the (i.e. BFT. ).

The matching between entities from the conceptual model 
with those from the logical models that we propose is shown 
in the following table: 
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Conceptual model NLA DLA DLA-CF 

Fact  F FT BFT BFT 
Measure  M FT.M BFT.M BFT.CF.M 

Dimension D DT BFT BFT.CF 
Dimension attribute At DT.At BFT.At BFT.CF.At 

Table 1: Matching between the conceptual model and the 
logical models. 

6 Experiments 
 In this section, we have evaluated the performances of 
the star data warehouse under the columnar NoSQL DBMS. 
For this reason, we have implemented a decisional benchmark 
SSB within HBase columnar NoSQL DBMS according to 
three (3) approaches. The first one implements the SSB 
following the normalized logical approach NLA; we called 
this data warehouse NLA-SSB. The second approach 
denormalizes the schema of data warehouse and implements 
the SSB according to the denormalized logical model without 
using the family columns DLA. We called it DLA-SSB. The 
third and last approach implements the SSB according to the 
denormalized logical model by using column family DLA-CF.
We called it DLA-CF-SSB. To achieve this evaluation, we 
conducted two experiments to study the impact that the choice 
of approach used to implement a data warehouse under the 
column oriented NoSQL DBMS may have on the execution 
time of the decisional queries. 

6.1 Test environment 
 In order to perform our experiments within a column 
oriented NoSQL and distribute environment, we have put in 
place a non-relational and distributed storage and processing 
environment [17]. This environment is based on a private 
Cloud Computing architecture produced using the Hadoop-
2.6.0 and a HBase-0.98.8 DBMS, for managing data in a 
distributed environment. In order to simplify data handling 
and boost the performance of the HBase DBMS, we 
strengthened this configuration with an SQL interface for 
HBase, called Phoenix-4.1.0. This latter is an open source and 
allows the data handling at the HBase level (scan, put and get) 
to be combined to express a selection of data and to apply 
filters [18].  

The test environment is a cluster made up of 25 machines 
(nodes). Each machine has an intel-Core TMi5-3220M 
CPU@3.30 GHZ processor with 8GB RAM. These machines 
operate with the operating system Ubuntu-14.04 and are 
interconnected by a switched Ethernet 100 Mbps in a local 
area network. One of these machines is configured to perform 
the role of Namenode in the HDFS system, the master and the 
Zookeper of HBase [19]. However, the other machines are 
configured to be HDFS DataNodes and the HBase 
RegionServers. Although the private Cloud architecture we 
used is limited in terms of capacity (number of nodes 

composing the cluster), it is sufficient to allow us to deploy a 
non-relational data warehouse with scaling-up and to apply a 
queries set in a distributed environment. 

6.2 Data set 
 In order to perform our experiments, we used data 
generators of SSB which are available according to
normalized1 and denomalized2 approaches [8], and we 
populated NLA-SSB, DLA-SSB, and DLA-CF-SSB data 
warehouses according to SF = 1000, this allows to generate 
fact table with 6 × 109 tuples of data sample. 

6.3 Queries set 
 For our experiments, we used a queries set composed of 
eight (8) queries which are divided into two categories as 
depicted in table 2. The first category is composed of four (4) 
queries; they gradually increase in the number of dimensions 
involved when aggregation is performed. Each query in this 
category uses one attribute per dimension. The second 
category is composed of four (4) queries in which they 
involve only one dimension and gradual increase in the 
number of dimensions attributes when aggregation is 
performed. 

Table 2: Descriptive table of queries set 

6.4 Experiment 1
 In this experiment, the aim is to study the execution time 
impact of the normalized and denormalized approaches by 
                                                          
1 https ://github.com/electrum/ssb-dbgen 
2 https://github.com/Dehdouh/DBGEN-CNSSB 

Queries set Query Dimension Attributes Measure

Category-1

Query 1.1 Date year,

Sum 
(revenue)

Query 1.2 Date,
Part

year,
category

Query 1.3
Date,
Part,

Supplier

year,
category,

region

Query 1.4

Date,
Part,

Supplier,
Customer

year,
category,

region (Supplier),
region (Customer)

Category-2

Query 2.1

Part

color

Query 2.2 color,
type

Query 2.3
color,
type,
size

Query 2.4

color,
type,
size,

container
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using queries which involve attributes from different 
dimensions when aggregations are performed. To do this, we 
applied the first queries set category to NLA-SSB, DLA-SSB, 
and DLA-CF-SSB data warehouses. The results we obtained 
are shown in the following figure: 

Figure 7: Execution time of the category 1 of queries set 

We observed that the denormalized data warehouses 
represented by DLA-SSB and DLA-CF-SSB show better 
performance than normalized data warehouse represented by 
NLA-SSB. Indeed, the query execution times obtained from 
the data warehouses DLA-SSB and DLA-CF-SSB are better 
until three times than those executed by the data warehouse 
NLA-SSB. This is because implementing data warehouse 
according to normalized approach entails higher costs for 
materializing the link between dimension and fact especially 
when the queries involve more joins between the tables for 
performing aggregations. 

However, for denormalized warehouses (DLA-SSB and DLA-
CF-SSB), we found that gathering the dimension attributes in 
a column family does not impact the warehouse performance 
when the query handles attributes belonging to different 
dimensions. 

6.5 Experiment 2 
 In this experiment, the aim this time is to study the 
execution time impact of the normalized and denormalized 
approaches by using queries which involve only one 
dimension and gradual increase in the number of dimensions 
attributes when aggregation is performed. To do this, we 
applied the second queries set category to DLA-SSB, DLA-
CF-SSB, and DLA-CF-SSB data warehouses. The results we 
obtained are shown in the following figure: 

Figure 8: Execution time of the category 2 of queries set 

 We observed that the query execution times is different 
for each data warehouse and gives advantage to DLA-CF-
SSB. Indeed, the queries used in this experiment (category 2) 
involve only one dimension when performing aggregations. In 
the case of NLA-SSB data warehouse, the join between facts 
table and dimension (Part) is performed. Thus, involving 
another attribute belonging to the same dimension (Part) 
entails only additional time related to its scan. This time is 
lower than the time of joining additional dimension. 

On the other hand, we found that DLA-CF-SSB data 
warehouse performs execution times until 10 % better than 
DLA-SSB data warehouse. In the context of big data 
warehouse, this is very important especially in the case of data 
warehouses characterized by a large number of attributes 
which compose the dimensions. Indeed, HBase DBMS stores 
columns by lexicographical order which may sometimes store 
the columns of the same dimension separately in different disk 
spaces. Thus, using the column family allows having the 
attributes belonging to the same dimension stored in the same 
disk space. 

Based on these results, we found that the use of the column 
family for implementing columnar NoSQL data warehouses 
gives benefits only with decisional queries handling attributes 
belonging to the same dimension (i.e.: the dimension 
hierarchy is involved).  

7 Conclusion 
Facing the emergence of large and unusual volumes of data 
(big data), we have proposed three approaches which allow 
mapping the multidimensional conceptual data model into a 
logical modeling adapted to the column-oriented NoSQL data 
warehouses. We have called these approaches; NLA, DLA, 
and DLA-CF. Each one differs in terms of the structure and 
the attribute types used when mapping is performed. We have 
described each one and showed the rules governing the 
instantiation of the conceptual model. Each approach has its 
weaknesses and strengths, and the choice depends of the use 
case. 

We have used these approaches for evaluating the 
performance of SSB data warehouse under distributed 
environment when applied on decisional queries set. Then, we 
have observed that the denormalized data warehouses 
represented by DLA and DLA-CF show better performance 
than NLA which represents normalized approach. Indeed, the 
NLA uses less disk memory, but it is quite inefficient when 
queries with joins are performed. 

Morover, we have found that the DLA-CF is more efficient 
than DLA, but only when query handling attributes belong to 
the same dimension. Thus, the use of the column family 
depends of the type of the queries which are applied to the 
columnar NoSQL data warehouse. 
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As a perspective, we tend to explore in the next work, the 
instantiation of data warehouse across other different NoSQL 
systems namely: key/value, documents-oriented, and graph-
oriented to analyze the big data warehouses. These systems 
give efficient managing of big data corresponding to different 
contexts. 

8 References 

[1] Inmon, W. “Building the data warehouse”. QED 
Information Sciences, Inc, 1992. 

[2] Kimball, R. “Kimball Dimensional Modeling 
Techniques”, Kimball Group University, 2013. 

[3] Coronel, C., Morris, S., Rob, P.: “Database Systems: 
Design, Implementation, and Management”, Cengage 
Learning, 2012.

[4] Chaudhuri, S., Dayal, U., Ganti, V. “Database 
technology for decision support systems”, IEEE Computer 
Society, 48--55, 2002. 

[5] O'Neil P., O'Neil B., Chen X.: The Star Schema 
Benchmark (SSB), http://www.cs.umb.edu/\~poneil/ 
StarSchemaB.PDF, (2009). 

[6] Li, C. “Transforming relational database into HBase: A 
case study”, International Conference on Software 
Engineering and Service Sciences (ICSESS), 683--687, 2010. 

[7] Han, D., Stroulia, E. “A three-dimensional data model in 
hbase for large time-series dataset analysis”, IEEE MESOCA, 
47--56, 2012. 

[8] Dehdouh, K., Boussaid, O., Bentayeb, F. “Columnar 
NoSQL Star Schema Benchmark”, Model and Data 
Engineering MEDI, 281--288, 2014.  

[9] Chevalier, R., El Malki, M., Kopliku, A., Teste, O., 
Tournier, T. “Implementing Multidimensional Data 
Warehouses into NoSQL”. International Conference on 
Enterprise Information Systems (ICEIS 2015), 172--183, 
2015.

[10] Jing, H., Haihong, E., Guan, L., Jian, D. “Survey on 
NoSQL database”, International Conference on Pervasive 
Computing and Applications (ICPCA), 363--366, 2011. 
[11] Pokorny, J. “Nosql databases: A step to database 
scalability in web environment”, Association for Computing 
Machinery ACM, 278--283, 2011. 

[12] Jerzy, D. “Business Intelligence and NoSQL 
Databases”, Information Systems in Management 1, 25--37, 
2012.

[13] Matei, G. “Column-oriented databases, an alternative 
for analytical environment”. Database Systems Journal, 3--16, 
2010.

[14] Apache Software Foundation. “The Apache HBase 
Reference Guide”, http://hbase.apache.org/book/joins.html, 
2014.

[15] Cattell, R. “Scalable SQL and NoSQL Data Stores”,
Association for Computing Machinery ACM SIGMOD 
Record, 12--27, 2011. 

[16] Kimball, R., Ross, M. “The data warehouse toolkit: 
The complete guide to dimensional modeling”, Second 
Edition, Inc, 2002. 

[17] Taylor, R. “An overview of the Hadoop-MapReduce-
Hbase framework and its current applications in 
bioinformatics”. BMC Bioinformatics Journal. 2010. 

[18] James, T. https://github.com/forcedotcom/phoenix/wiki 
/Performance, 2013. 

[19] Hunt, P., Konar, M., Junqueira, F. P., Reed, B. 
“Zookeeper: Wait-free Coordination for Internet-scale 
Systems”, Proceedings of the 2010 USENIX Conference on 
USENIX Annual Technical Conference, 11--24, 2010. 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 475


