
Hadoop Scalability and Performance Testing in Heterogeneous
Clusters

Fernando G. Tinetti1, Ignacio Real2, Rodrigo Jaramillo2, and Damián Barry2
1III-LIDI, Facultad de Informática, UNLP,

Comisión de Inv. Científicas de la Prov. de Bs. As.
La Plata 1900, Argentina

2LINVI, Departamento de Informática, Facultad de Ingeniería, UNPSJB,
Puerto Madryn 9120, Argentina

Abstract— This paper aims to evaluate cluster configura-
tions using Hadoop in order to check parallelization perfor-
mance and scalability in information retrieval. This evalu-
ation will establish the necessary capabilities that should
be taken into account specifically on a Distributed File
System (HDFS: Hadoop Distributed File System), from the
perspective of storage and indexing techniques, and queriy
distribution, parallelization, scalability, and performance
in heterogeneous environments. The software architecture
will be designed and evaluated as either centralized or
distributed, and the relevant experiments will be carried
out establishing the performance improvement for each
architecture.

Keywords: Big Data, Information Retrieval, HDFS, MapReduce,
Cluster, Parallelization, Scalability, Performance

1. Introduction
The amount of information is continuously growing: so-

cial networking, content management systems (CMS) and
portals in general and as collaboration platforms in particu-
lar, data within organizations generated either by production
systems or by digitizing existing information. Data usually
measured in gigabytes a few years ago is now measured
un terabytes and petabytes [5] [6]. Data as well as relevant
applications typically require more resources than those
available on a single computer. The challenge is therefore to
produce and handle computing infrastructure that allows to
take advantage (harnessing) of existing computing platforms,
usually heterogeneous. Thus, several computers wroking
collaboratively, would reach availability and scalability to
cope with the currently needed information processing [7]
[8]. Reusing low-cost equipment allows to address the afore-
mentioned problem, and requires techniques of distributed
systems, where each computing system has local storage and
computation facilities so that processing and access can be
distributed and balanced in a heterogeneous cluster [9]. A set
of desirable properties for an information sharing and data
reocovering system in a heterogeneous and scalable envi-
ronment a could be defined [7] [10] [11]: high performance,
fault tolerance and heterogeneous computing. Moreover, the

NoSQL solutions for managing large volumes of data are
typically based on the usage of a heterogeneous system.

There are several techniques for configuring heteroge-
neous computing environments. We have concentrated our
work in the framework programmed in Java called Hadoop
to store and process large amounts of data in clusters [1]
[2]. HDFS besides being a distributed file system, scalable
and portable, solves availability and reliability issues by
replicating data in multiple computers [9].

1.1 Hypothesis
The amount of data that humans are capable of generating

and storing hinders the analysis and information processing
in general. Processing/analysis in this field is commonly
referred to as Big Data applications [3]. Several problems are
involved, two of the most complex ones could be reduced
to the following questions:

• 1. How to store and protect the large volume of avail-
able data?

• 2. How to process and evaluate data in an acceptable
period of time?

Specifically with regard to the latter question, the hypothesis
from wich we work is the existence of a performance and
scalability characterization of each heterogeneous cluster.
This characterization is given in the context of the different
techniques for handling large volumes of data while varying
the number of nodes that comprise it.

1.2 Contribution
At least, we check a real usage of the infrastructure,

Hadoop, proposing a design that facilitates scalability. This
design could be especially used by organizations and agen-
cies that need to handle large volumes of information, as in
national or local governments or private sector companies.
Another significant contribution lies in the utility that pro-
vide this type of architecture in the field of research and
development.

1.3 Goals
We have defined a set of objectives guiding the work

reported in this paper:

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'15 | 441

1) Design different scalable architectures for a Hadoop
cluster varying the number of nodes in order to analyze
processing time.

2) Select bibliographic material and generate a knowl-
edge based on the techniques and methods used in
partitioning, replication, and distribution in the Apache
Hadoop infrastructure.

3) Set parameters and evaluate different architectures for
optimizing Hadoop configuration.

2. Hadoop
Hadoop is a framework that allows to build a cluster

architecture, providing parallel recovery of information and
replication. Also, Hadoop implement a simple way to add
and/or drop cluster nodes, improving scalability, minimizing
the likelihood of failure nodes containing distributed data.
Developed in the Java programming language, by the com-
munity of free software Apache, the Hadoop architecture is
composed of three main components:

• The Hadoop Distributed File SystemHDFS, using a
master/slave architecture, as shown in Fig. 1.

• The MapReduce framework, which allows the program-
mer to split and parallelize complex calculations in any
number of computers.

• The Hadoop Common, a set of tools for integrating
Hadoop subprojects.

Fig. 1: Hadoop Architecture

The two main components, the HDFS and MapReduce,
define a stable, robust, and flexible framework for distributed
applications, making it possible to work with multiple nodes
and process large amounts of information.

The HDFS is designed to provide high performance
and data reliability on heterogeneous hardware. MapReduce
allows the development of parallel processing applications,
focused on scalability. Queries on distributed data could be
distributed as well, thus enhancing performance via par-
allel/distributed processing. Both (HDFS-MapReduce) are

designed to analyze large amounts of structured and unstruc-
tured data.

2.1 Hadoop DFS

HDFS implements a master/slave architecture as shown
in Fig. 2, where: a) NameNode is the master process, b)
DataNodes are the slave processes, and c) the master process
is replicated in a Secondary NameNode. The HDFS keeps
separately metadata (in the NameNode) and data (in the
DataNodes). System (data) reliability is achieved by repli-
cating files in multiple DataNodes, which also allows faster
transfer rates and access. All files stored in HDFS system
are divided into blocks, whose size usually is between 64
MB and 128 MB. A Hadoop cluster can consist of thou-

Fig. 2: HDFS Architecture

sands DataNodes wich respond to different read and write
requests from clients, also maintaining block replication. The
DataNodes regularly send information to the NameNode of
its blocks to validate consistency with other DataNodes. A
cluster may consist of thousands of DataNodes, each of
which stores a portion of (possibly replicated) data. Each of
the DataNodes is likely to fail. The HDFS provides rapid and
automatic failover recovery via replication and the metadata
contained in the NameNode.

During normal operation the DataNode sends signals
(heartbeats) to NameNode every three seconds by default.
If the NameNode does not receive a defined number of the
heartbeats from a DataNode, the DataNode is considered out
of service. Then the NameNode triggers the creation of new
replicas of the DataNode out of service in other (not failing)
DataNodes. Heartbeats also contain information about the
total storage capacity, the fraction of storage that is in use,
and the number of files or data transfer in progress.

442 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'15 |

2.2 Hadoop MapReduce

MapReduce allows Hadoop the parallel processing on
large volumes of data through multiple nodes in a cluster,
the data to be processed may be stored in the HDFS. The
execution of a MapReduce process usually divides the input
data into a set of independent chunks of information that are
processed by the Map tasks in parallel. Then, the results of
the map tasks are classified and will be the input to Reduce
tasks. Typically both the input data and output data are stored
in the file system.

MapReduce is based on the Master/Slave architecture,
similar to that of the HDFS, as shown in Fig. 3. The Master
runs the so called JobTracker and slaves run the Task-
Trackers. The JobTracker is responsible for the management
and control of all sumitted jobs. Also, it is responsible for
task distribution and management of available TaskTrackers,
trying to keep the job as close to the data as possible. The
JobTracker takes into account the machines (nodes) that are
close to and/or contain the data needed.

Fig. 3: MapReduce Architecture

MapReduce is based on key/value pairs, which are pro-
cessed in (are the input to) Map tasks. Every Map task
returns a list of pairs in a different domain data. All the
pairs (generated by the Map tasks) with the same key are
grouped and processed by a Reduce task.

MapReduce handles fault tolerance in a similar way to that
described for the HDFS: each TaskTracker process reports
regularly its status to the JobTracker process. If over a
period of time the JobTracker process has not received any
report from a TaskTracker process, the TaskTracker process
is considered as not running. In case of failure, the task is
reassigned to a different TaskTraker process.

3. Design and Implementation of Exper-
iments

Different cluster configurations were evaluated from the
point of view of scalability and (raw) performance. We also
used two benchmarks, each used for measuring different per-
formance metrics. Hardware and benchmarks are described
in the following subsections.

3.1 Computers-Hardware
We specifically focused our work on heterogeneous com-

puting cluster configurations, using the computers detailed
below:

1) Name: Master
Processor: Intel(R) Core(TM) i5-2400 CPU @
3.10GHz
Memory: 10 GB
SATA Disk: 500 GB

2) Name: Slave1
Processor: Intel(R) Core(TM) i7-2600 CPU @
3.40GHz
Memory: 16 GB
SATA Disk: 500 GB

3) Name: Slave2
Processor: Intel(R) Core(TM) i7-2600 CPU @
3.40GHz
Memory: 8 GB
SDisk: 1 TB

4) Name: Slave3
Processor: Intel(R) Core(TM) i3 CPU 540 @ 3.07GHz
Memory: 8 GB
SATA Disk: 1TB

The computers were used for different testing scenarios: a
centralized one and three cluster-like installations. Initially,
the Master was used as a standalone centralized Hadoop
installation, including a Master and a DataNode. We will
use this installation as the departure point for testing the
Hadoop software as well as measuring a non-distributed
environment. The different cluster installations (from 1 to
4 computers) were made up just taking advantage of the
previous installation by adding one more computer including
one more DataNode. The same number of Map and Reduce
tasks per node is maintained in all the experiments.

The Hadoop client process (which is not part of the
main Hadoop infrastucture shown in Fig. 1 before) in every
experiment was run on

• Name: Client
Processor:AMD Turion(tm) X2 Dual-Core Mobile
Memory: 4 GB

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'15 | 443

SATA Disk: 320 GB

3.2 Benchmarks-Software
We used two well-known tests provided by the Hadoop

software: TestDFSIO and TeraSort. TestDFSIO is aimed at
assessing the performance of the cluster/Hadoop installation
and TeraSort is focused on scalability and parallelization.

The Hadoop TestDFSIO benchmark is used for reading
and writing files in the HDFS, indicating number and size of
files. TestDFSIO provides timing information, performance,
and the average I/O speed. Basically, TerstDFSIO is useful
for:

• Measurement tasks such as stress tests on HDFS.
• Discovering bottlenecks in the network.
• Evaluating the hardware performance.
• Checking the operating system configuration and

Hadoop cluster machines in general.
In short, TestDFSIO gives a first impression of how fast the
cluster works in terms of I/O. This test runs MapReduce jobs
it is a MapReduce program that reads/writes random data
from large files. Each Map task performs the same operation
in a separate file and informs speed to a Reduce task, which
is programmed to collect and summarize all measurements,
given in MB/seg.

The Hadoop Terasort benchmark is designed to assess
the performance and scalability of a Hadoop installation. It
is specifically designed to check the distrubution of processes
in the cluster using Map Reduce. TeraSort execution actually
involves the execution of three MapReduce programs:

TeraGen for data generation
TeraSort for sorting the generated data
TeraValidate for sorted data validation

The TeraGen program writes data to disk just like
testDFSIO-write creates random data. TeraSort sorting per-
formance is based on the way that divides data between
mappers/reducers and how data is collected and written by
the partitioner. A partitioner is implemented for achieving
a balanced workload. The partitioner uses an ordered list
of N-1 sample keys that define the range of keys for each
Reduce. In particular, a key is sent to the i-th Reduce if
it resides within a range such that sample[i-1] <= key <
sample[i], this ensures that the ith Reduce output is less than
the output of the (i+1)-th Reduce. The TeraValidate program
ensures that the output is globally sorted out by controlling
(in the output data) that each key is less than or equal to the
previous one.

4. Results
A TestDFSIO preliminary test was carried out for assesing

Hadoop I/O performance of different cluster configurations.
This test was run increasing from 1 to 14 the number of files
of size 1 GB each (i.e. from 1 to 14 GB). Cluster architecture

was also increased from 1 to 4 nodes, as shown in Fig. 4.
Read operation results were taken into account for this run,
with default settings, which imply

• BufferSize: 1000000 bytes
• Replication factor: 3
• Number of tasks in parallel by node: 2
• Block size: 64 MB

Fig. 4: TestDFSIO Read Performance

Fig. 4 shows how the performance decreases as the number
of files (and involved data) increases, due to several factors
among wich we can mention network traffic, local disk
accesses, etc. Results are labelled as 1...4 Nodes from
the standalone case to the complete cluster, with 4 nodes
(computers) running the experiment. It is worth mentioning
that heterogeneity does not play an important role and is
almost negligible. However, when using the 4 computers (4
Nodes), performance is slightly penalized as compared to
the case in which only 3 computers (3 Nodes) are used for
the 14 files.

TeraSort results are the ones we are really interested in,
because parallel computing is directly involved. Data to be
sorted has to be generated, and we chose to follow the
Fibonacci sequence ×107. Therefore:

• In the first run 1× 107 records or rows are generated,
where each row is 100 bytes in size.

• 2×107, 3×107, 5×107, 8×107 and 13×107 records
are then generated.

i.e. from 10 to 130 millions of records to be sorted. And
given that each record is 100 bytes long, the total amount of
data is among 1 GB to 13 GB. For each cluster configuration
(from a standalone Master to the complete 4 nodes cluster),
TeraGen was first executed to generate the data serie. Once

444 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'15 |

the data is generated, TeraSort is run in set of 10 identical
experiments and the average runtime is taken as the result,
just to avoid transient experiment “noise”. Finally TeraVal-
idate was run to confirm that the data were actually sorted.
For each test configuration TeraGen was first executed to
generate the first data series, and TeraSort was run in a
sequence of 10 repetitions, thereby strengthen the statistical
results and obtain representative values. TeraValidate was
always used to confirm that the data were actually sorted.
Table 1 shows measured runtime for each experiment, i.e.
varying the number of computers mand the amount of data

Table 1: Summary of TeraSort Results
1 Node 2 Nodes 3 Nodes 4 Nodes

1 GB 71 80 68 81
2 GB 114 148 113 102
3 GB 247 210 169 163
5 GB 577 373 258 210
8 GB 1042 885 504 316
13 GB 2386 1888 1098 574

to be sorted, where “1 Node” represents the standalone
configuration (only the Master node is running), “2 Nodes”
represents the configuration with the master and Slave1
running, and son on. There are several interesting details
which can be quantified with the values shown in Table 1:

• A larger amount of data to be sorted implies increasing
the runtime, as could be expected a priori.

• For small size data sets (e.g. 1 GB or 2 GB) using more
computers does not imply a performance improvement.
More specifically, the runtime using the Master and
Slave1 increases the runtime for 1 GB and 2 GB data
to be sorted.

• For large size data sets (e.g. 8 GB or 13 GB) using more
computers always imply a performance improvement.
The improvement depends on several factors such as
centralized to distributed (1 Node and 2 Nodes), or
where the added computer is relatively less powerfull
than those already running in the cluster (3 Nodes and
4 Nodes, the 4th node is the least powerfull one in the
cluster).

• For intermediate size data sets of those experimented
with (e.g. 3 GB and 5 GB) gains are difficult to evaluate,
and some more specific experiments should be carried
out even with other benchmark/s.

• Given that Hadoop is expected to handle TB of infor-
mation, all of the results could be considered highly
encouraging, since even handling small size data sets it
is possible to obtain performance gains using heteroge-
nous computers.

• Some results regarding performance enhancements are
linearly related, while others not. Relative computing
power of each node has not been calculated, so the
values cannot be strictically analyzed/evaluated from

a numeric point of view. We have to continue our
experiments (at least) in that line of work.

Fig. 5 shows the values of Table 1 graphically, focused
on experiments runtime (on the vertical axis) depending on
the amount of data to be sorted (on the horizontal axis).
Some scalability details can be identified in Fig. 5, since

Fig. 5: TeraSort Scalability

scaling (increasing) data clearly implies increased runtime.
At this time, it should be recalled that sorting is an O(n2)
problem in general. Also, Fig. 5 clearly shows that increasing
the number of nodes in a cluster the runtime is reduced
using Hadoop with the proper configuration of HDFS and
MapReduce.

5. Conclusions
Even when we have several problems in the Hadoop

installation and configuration stages (mainly due to lack of
documentation at the time we began this research some years
ago) we have set a successful environment for experimenta-
tion with Hadoop in heterogeneous clusters. The installation
and configuration could be replicated in every cluster (either
homogeneous or heterogenous).

We have used TestDFSIO as a departure point: Hadoop
I/O performance. Furthermore, we have found that TestDF-
SIO does not provide any information about parallel comput-
ing and/or scalability. At most, TestDFSIO could be used for
node failure experimentation, varying the replication factor
and injecting node failures in different scenarios.

We have used TeraSort for performance analysis in gen-
eral, and performance scalability in particular. At this point,
the MapReduce programming model and its conceptual basis
are the most relevant. We have analyzed the processes
involved in a Hadoop job so that we were able to determine
the correct amount of Map and Reduce tasks per node and to
properly configure MapReduce parameters. Our experiments
show that processing times decreases as the cluster nodes
are added. Clearly, MapReduce does not solve everything,
is a solution for those problems that fit the model and can be
parallelized. One of the important results of experimentation

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'15 | 445

is that having small size data sets to process (maybe up
to 5 GB specifically for sorting) would suggest to avoid
MapReduce at all (see Fig. 5). More specifically: adding
computers to a cluster would not add real/proportional
performance gains.

From using both, TestDFSIO and TeraSort it is possible
to conclude that almost inexpensive infrastructure (basically:
low-cost computers) enables the processing of large volumes
of data. And the obtained performance in general terms,
besides being linked to the implemented hardware, also
depends on the correct configuration.

We have several lines of further work, taking advantage
of the Hadoop experience we have acquired:

• Relative computing power evaluation, as aforemen-
tioned. We should design specific experiment scenarios
and analysis.

• We should try gathering more computers, scalability in
the tens, hundreds and thousands of nodes would give
a better idea. Our results are exiting, but we know we
have a limited number of available computers, and it is
caused by our limited budget.

• We should try others benchmarks, by adapting current
ones or developing new ones. An initial idea would be
to identify different application areas, and use one or
more benchmark per application area.

References
[1] S. Guo, Hadoop Operations and Cluster Management Cookbook, Packt

Publishing, 2013.
[2] A. Holmes, Hadoop in Practice, 2nd. Ed., Manning Publications 2014.
[3] P. C. Zikopoulos, C. Eaton, D. deRoos, T. Deutsch, G. Laspis Un-

derstanding Big Data: Analytics for Enterprise Class Hadoop and
Streaming Data, McGraw-Hill Osborne Media, 2012.

[4] F. G. Tinetti, D. Barry, I. Aita, F. Páez, Distributed Search on Large
NoSQL Databases, PDPTA2011, 2011.

[5] N. Scola, WhiteHouse.gov Goes Drupal [Updated], [Online]. Available:
http://techpresident.com/blog-entry/whitehousegov-goes-drupal

[6] C. Henderson, Building scalable web sites, O’Reilly Media, Inc., 2006.
[7] O. M. Tamer, P. Valduriez, Principles of distributed database systems,

Springer Science & Business Media, 2011.
[8] A. K. Elmagarmid, M. Rusinkiewicz, A. Sheth, Management of hetero-

geneous and autonomous database systems, Morgan Kaufmann, 1998.
[9] J. Venner, S. Wadkar, M. Siddalingaiah, Pro Apache Hadoop, Apress,

2nd ed., 2014.
[10] D. Taniar, C. H. C. Leung, W. Rahayu, S. Goel, High performance

parallel database processing and grid databases, John Wiley & Sons,
2008.

[11] R. Ho, Scalable System Design Patterns, Prag-
matic Programming Techniques, [Online]. Available:
http://horicky.blogspot.com/2010/10/scalable-system-design-
patterns.html 2010.

446 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'15 |

