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Abstract— The continuous growth of electronic payment
methods in business transactions is a reality that boosts
e-commerce, being present more and more in our daily
lives. Considering this situation, we proposed in a previous
work a model denoted GetLB, which contains a scheduler
that provides good results when compared to the traditional
dispatching approach – the Round-Robin. Although offering
a good distribution of transactions to processing (PMs),
GetLB’s scheduling routine is time consuming since each
input is always analyzed against each target PM. Thus,
in this paper we are proposing GetLB++ – a GetLB im-
provement that covers scheduling computation efficiency by
bursting a transaction to a specific PM in accordance with a
updated in-memory decreasing-sorted list of PM capacities.
The results using an Amazon EC2 cluster instance showed
a higher scheduling speed on GetLB++ in comparison
with the standard GetLB, presenting gains about 20% on
the makespan time. Besides scalability on EFT systems,
GetLB++’s contributions are not limited to the context of
transactional systems, but can also be extended for load
balancing in e-commerce systems, cloud computing, and
parallel programming.
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1. Introduction
Electronic payment methods, such as debit and credit

cards, are being adopted by the society as the mainstream
payment method for business transactions [1]. The benefits
offered by EFT (Electronic Funds Transfer) range from
a higher commodity for the buyers to a greater security
for commercial institutions [2]. Usually, the dispatcher that
receives transactions in the EFT company uses the Round-
Robin (RR) algorithm to distribute them to processing
machines, or PMs [3], [4]. RR algorithm consists of dis-
patching the new tasks in a circular fashion amongst the
PMs, guaranteeing that the tasks are distributed uniformly
between the processing units [5]. RR can be seen as a
very fast strategy, with complexity O(1), presenting an
optimal load balancing for homogeneous systems [6]: when
both consumers (in our case, electronic transactions) and
resources (in our case, PMs) have the same configuration,

performance is kept unchanged over time. Nevertheless, this
scenario is not common in EFT systems, because of each
kind of transaction has different computational needs [2].

Regarding the aforementioned scope, we developed a
model named GetLB, which proposes a framework for
scheduling transactions on an EFT company [7]. Period-
ically, GetLB’s scheduling algorithm takes into account
several characteristics of the transactions, such as the number
of CPU instructions and memory consumption, as well
as PMs data, to distribute the tasks. According to [7]
GetLB obtained good results when distributing the work-
load amongst a dozen of nodes on homogeneous and het-
erogeneous clusters. The processing time of the GetLB’s
scheduling algorithm was about seven times greater than
the RR routine. Additionally, this time tends to be bigger
as the number of PM nodes of a cluster increases as well,
facing a scalability problem. This happens for two reasons:
(i) PMs periodically update their data to the dispatcher; (ii) at
each transaction input, GetLB recalculates the workload that
would be added on each PM of the cluster before choosing
the one that will receive a new transaction.

Clearly, there is a gap on GetLB that can be explored
in terms of expanding the model’s scalability. In this way,
we have developed GetLB++ — an enhanced and more
flexible version of the standard GetLB, now focusing on
improving scheduling routine (i.e., the calculus involved in
the scheduling procedure) but maintaining or yet improving
the quality of the transactions-PMs assignment. GetLB++
can be used for processing different types of tasks, not
being restricted to EFT scenarios. We developed a prototype
that covers both GetLB and GetLB++ algorithms, besides
an implementation of the RR. The prototype was evaluated
with different rates for transactions arrival, distinct Amazon
EC2 cluster instances and various input workloads. The
results were encouraging, where GetLB++ obtained a better
scheduling time and quality, besides presenting a larger
scalability when compared to GetLB and RR.

The remainder of this article will first introduce the
fundamental concepts in Section 2, presenting the main ideas
of GetLB. Section 3 discusses about the related studies,
giving the open issues in the EFT area. Section 4 describes
the GetLB++ model in details, while Section 5 covers its
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prototype. Section 6 brings the evaluation methodology to
analyze GetLB, GetLB++, and RR. Section 7, in turn,
discusses the results obtained from the experiments. Finally,
the conclusion is written in Section 8, addressing scientific
contributions and future work.

2. Background
This section presents the functioning of GetLB [7], of-

fering the basis to understand the advances in the newer
version. Electronic funds transfer transactions have different
processing needs: CPU time, database access, network, and
access to external systems. Thinking about these peculiari-
ties, GetLB was developed to deliver a better load balance
for transactions to PMs, so enabling benefits both to the
users and provider company administrators. Figure 1 depicts
the GetLB’s architecture. GetLB was structured with the fol-
lowing design decisions in mind: (i) the scheduling heuristic
algorithm runs in the dispatcher module and must work with
up to date information regarding the PMs; (ii) the heuristic
scheduling must combine relevant data in order to compose
the notion of load; (iii) PMs must be capable to notify the
switch; (iv) the framework must deal with heterogeneous
resources at both communication and computing levels.
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Fig. 1: GetLB architecture, emphasizing network decoupling
and “PMs!switch” cooperative interaction besides the tra-
ditional one for transaction dispatching in opposite direction.

Regarding the scheduling activities, the dispatcher has
an array that contains information about all PMs. Process-
ing machines periodically report updates to the dispatcher,
impacting on updating its array afterwards. The dispatcher
performs all scheduling calculus with in-memory data, where
the updating period informs how recent is PMs data regard-
ing CPU, memory, and network. Thus, we previously devel-
oped a scheduling heuristic called LL (Load Level), which
considers transactions and PMs are heterogeneous and, PMs
as a part of a dynamic environment. LL can be viewed
as a decision function LL(i, j) where i means a specific
type of transaction, while j denotes a candidate target PM
for receiving transaction i. For each new transaction i, the
switch will calculate n equations LL(i, j), where n means

the number of processing machines. Therefore, the lowest
result will inform the target that will receive a transaction.
LL(i, j) can be obtained by computing Equation 1.

LL(i, j) = Recv(i, j) + Proc(i, j) , (1)
Recv(i, j) = bytes(i)⇥ transfer(j) , (2)

Proc(i, j) = transaction(i, j) +
m�1X

z=0

transaction(z, j) , (3)

transaction(i, j) =
instructions(i)

clock(j)⇥ [1� load(j)]

+
RAM(i)⇥ serviceRAM(j)

freeRAM(j)

+
HD(i)⇥ serviceHD(j)

freeHD(j)

+ sub(i, j) , (4)

sub(i, j) =
x�1X

y=0

[2 sub
a

(y, j) + sub
c

(y)]⇥ sub
r

(i, y) . (5)

Equation 1 is given by adding the estimated reception time
(Recv(i, j)) and the estimated processing time (Proc(i, j))
of transaction i by machine j. In Equation 2, bytes(i) means
the size of the transaction i and transfer(j) refers to the
time necessary to transfer a single byte to the PM j. The
Equation 3 calculates the total time that machine j needs
to process transaction i, being divided in two sub-elements:
(i) a prediction of computation time for transaction i on PM
j; (ii) a prediction of all m transactions that have already
been mapped to PM j previously and remain on its input
queue. Static data (theoretical values for CPU, memory and
access time to sub-systems) and the machine’s dynamic
data (considering CPU load, communication time and I/O
requirements) are taken into consideration to calculate the
estimated processing time, represented here in Equation 4.

Equation 5 captures the time spent by the sub-systems
accessed by the machine j in order to process the transaction
i. Each type of transaction i must access x subsystems. Thus,
suba(y, j) considers the time spent by PM j for accessing
the particular subsystem y through network interaction. This
time is multiplied for 2 in order to consider a round-trip
evaluation. The field subc(y) refers to the service time of the
subsystem y and subr(i, y) represent the number of times
that subsystem y is called for the complete computation of i.
The main drawback of the GetLB’s algorithm is explained as
follows: considering empty PMs, a single task i is mapped
to PM0 so we have a LL(i, 0) equal to x. For the next
transactions that test j as destination, the previous mapped
transaction i can impact much larger than x since the load(j)
in Equation 4 was updated. This feature has a strong impact
on limited machines, since they will be set as overloaded
faster.

3. Related Work
The most studied topic in electronic transactions systems

considers the security of information [8], [9], [10], [11].
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However, security is not the only important topic in the
context of EFT systems, but we can contemplate the load
balancing (and also scheduling and resource management)
problem too. This addresses how fast a provider computes a
set of transactions, impacting directly in the user experience.
In this way, Sousa et al. [12], [3] present a stochastic model
for performance evaluation and resource planning. The tests
compared measures of disk and processor utilization on a
real system against the values obtained through the utiliza-
tion of the proposed evaluation model. Desnoyers et al. [13]
developed a system called Modellus, which allows modeling
the usage of data centers around the Internet, automatically.
The service rates are typically variable, limiting queuing
theory application to this problem.

Mcheick et al. [14] explain that distributed systems can
suffer from degradation problems in terms of performance
and scalability. The authors point out that static algorithms
work fine when there are no variations in the workload;
therefore, they are not indicated for EFT scenarios where
workload is not know in advance. Righi et al. [7] proposed
the GetLB model aiming at filling the aforementioned gap,
presenting both a framework and a scheduler capable to
handle heterogeneous workload in dynamic environments.
Although the heuristic used by GetLB (named Load Level -
LL) took around six times more processing time than Round-
Robin. In this perspective, we envision an opportunity to
address EFT scalability by improving our previous work
with the GetLB++ proposal, which is described in the next
section.

4. GetLB++: An Improved Model for
EFT Transactions Processing

This section presents GetLB++, which provides an evo-
lution of GetLB to improve quantity and speed of the EFT
transactions scheduler. GetLB++ consists of two parts: (i)
a task processing framework for distributed systems; (ii)
a transaction scheduling algorithm. Our idea is to offer
a scalable system when combining both aforementioned
parts. In terms of architectural elements, as GetLB does,
GetLB++ works with input transactions from EFT terminals,
a dispatcher or switch that schedules them to end processing
units, named as processing machines or PMs. GetLB++ was
developed with the following design decisions in mind: (a)
the communication from the dispatcher to PMs must be
asynchronous to void network latency; (b) PMs must be
able to notify the dispatcher of any event that has impact
on scheduling decisions; (c) the framework must allow the
usage of different load balancing algorithms for scheduling
purposes; (d) the framework must be able to process other
types of tasks, so not restricting it to electronic funds transfer
scenarios.

The dispatcher uses only in-memory data to schedule a
transaction to a PM. Therefore, the processing machines are

in charge of both monitoring their hardware and updating
this information to the dispatcher in accordance to two
modes: periodical and critical. In the periodical mode, PMs
have a parameter named verification period that is used
to both check their own hardware status and to send this
information to the dispatcher afterwards. In this way, the
dispatcher operates locally with data that are update in
accordance with the aforesaid parameter. In the critical
mode, a verification period is also used, but here only
to check the hardware status in the PM. The switch is
only updated with the hardware information of a certain
processing machine when there is a critical change in the PM
context. Thus, considering two consecutive measurements,
there is another parameter named critical change indicating
the percentage to consider as critical a sudden modification
in the hardware status, which may represent impact on
scheduling procedures.

4.1 Framework Modeling
GetLB++ follows the same idea of architectural elements

from the GetLB model, with transactions, EFT terminals, a
dispatcher and PMs (see details in Figure 1). In this work
we are generalizing the use of transactions by employing
the term Task, since GetLB++ was modeled for being not
restrictive to the EFT scenarios. The task interface spec-
ifies methods that return information about the workload,
estimated size, and a list of external systems that are
accessed during the task processing. In addition, an object
of this type must also implements a method process() which
actually performs the processing of the task. Through this
encapsulation, the terminals can send different types of tasks
to be processed by the GetLB++, since the components of
the framework do not need to know the implementation of
the task. Therefore, this allows the framework to be extended
beyond the EFT scenarios.

The GetLB++ model defines that the switch should have
the capacity to operate using different scheduling algo-
rithms, where an implementation of the Scheduler interface
accomplishes this objective. This interface specifies the
getNextPU() method, which returns the machine that will
receive a task. The scheduling algorithms that implement this
interface have access to information related to the processing
machines through the list of ProcessingUnits inside the
dispatcher, including their task queues. Therefore, when
dispatching a task, the switch calls the getNextPU method,
passing as parameter the list of Processing Units and the task
that will be processed, and the scheduler returns the most
suitable Processing Unit to accommodate the task.

4.2 Scheduling Algorithm
Although GetLB++ accepts various scheduling algo-

rithms, the framework presents a default scheduler that was
completely redesigned in order to meet the following goals
when compared to the original GetLB: (i) have a higher
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scheduling velocity; (ii) be more scalable; (iii) maintain or
improve the load balancing quality by using the same system
metrics as GetLB. As depicted in Figure 2, GetLB always
computes n times the LL(i, j) function, where n refers to the
number of PMs, so verifying the impact and the conclusion
time of task i on PM j. Considering that the mean number
of already mapped transactions on each PM is equal to m,
GetLB schedules a transaction with O(n.m) complexity.
See Equations 1 up to 6 for details. On the other hand,
as mentioned in Section 1, Round-Robin is not suitable for
heterogeneous systems but offers a O(1) complexity.

PM1

version of the standard GetLB, now focusing on improving
scheduling routine (i.e., the calculus involved in the scheduling
procedure) but maintaining or yet improving the quality of
the transactions-PMs assignment. GetLB++ can be used for
processing different types of tasks, not being restricted to
EFT scenarios. We developed a prototype that covers both
GetLB and GetLB++ algorithms, besides an implementation
of the RR. The prototype was evaluated with different rates
for transactions arrival, distinct Amazon EC2 cluster instances
and various input workloads. The results were encouraging,
where GetLB++ obtained a better scheduling time and quality,
besides presenting a larger scalability.

The remainder of this article will first introduce the fun-
damental concepts in Section II, presenting the main ideas
of GetLB. Section III discusses about the related studies,
giving the open issues in the EFT area. Section IV describes
the GetLB++ model in details, while Section V covers its
prototype. Section VI brings the evaluation methodology to
analyze GetLB, GetLB++, and RR. Section VII, in turn,
discusses the results obtained from the experiments. Finally,
the conclusion is written in Section VIII, addressing scientific
contributions and future work.

II. BACKGROUND

This section presents the functioning of
GetLB [Righi et al., 2014], offering the basis to understand
the advances in the newer version. Electronic funds transfer
transactions have different processing needs: CPU time,
database access, network, and access to external systems.
Thinking about these peculiarities, GetLB was developed
to deliver a better load balance for transactions to PMs,
so enabling benefits both to the users (who perceive the
fast conclusion of their demands) and provider company
administrators (who obtained a better throughput of
transactions per second, or TPS). Figure 1 depicts the GetLB’s
architecture. GetLB was structured with the following design
decisions in mind: (i) the scheduling heuristic algorithm runs
in the dispatcher module and must work with up to date
information regarding the PMs; (ii) the heuristic scheduling
must combine relevant data in order to compose the notion of
load; (iii) PMs must be capable to notify the switch; (iv) the
framework must deal with heterogeneous resources at both
communication and computing levels.

Regarding the scheduling activities, the dispatcher has
an array that contains information about all PMs. Process-
ing machines periodically report updates to the dispatcher,
impacting on updating its array afterwards. The dispatcher
performs all scheduling calculus with in-memory data, where
the updating period informs how recent is PMs data regarding
CPU, memory, and network. Thus, we previously developed a
scheduling heuristic called LL (Load Level), which considers
transactions and PMs are heterogeneous and, PMs as a part of a
dynamic environment. LL can be viewed as a decision function
LL(i, j) where i means a specific type of transaction, while j
denotes a candidate target PM for receiving transaction i. For
each new transaction i, the switch will calculate n equations
LL(i, j), where n means the number of processing machines.
Therefore, the lowest result will inform the target that will
receive a transaction. LL(i, j) can be obtained by computing
Equation 1.
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(Recv(i, j)) and the estimated processing time (Proc(i, j)) of
transaction i by machine j. In Equation 2, bytes(i) means the
size of the transaction i in bytes and transfer(j) refers to
the time necessary to transfer a single byte to the processing
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Thinking about these peculiarities, GetLB was developed
to deliver a better load balance for transactions to PMs,
so enabling benefits both to the users (who perceive the
fast conclusion of their demands) and provider company
administrators (who obtained a better throughput of
transactions per second, or TPS). Figure 1 depicts the GetLB’s
architecture. GetLB was structured with the following design
decisions in mind: (i) the scheduling heuristic algorithm runs
in the dispatcher module and must work with up to date
information regarding the PMs; (ii) the heuristic scheduling
must combine relevant data in order to compose the notion of
load; (iii) PMs must be capable to notify the switch; (iv) the
framework must deal with heterogeneous resources at both
communication and computing levels.

Regarding the scheduling activities, the dispatcher has
an array that contains information about all PMs. Process-
ing machines periodically report updates to the dispatcher,
impacting on updating its array afterwards. The dispatcher
performs all scheduling calculus with in-memory data, where
the updating period informs how recent is PMs data regarding
CPU, memory, and network. Thus, we previously developed a
scheduling heuristic called LL (Load Level), which considers
transactions and PMs are heterogeneous and, PMs as a part of a
dynamic environment. LL can be viewed as a decision function
LL(i, j) where i means a specific type of transaction, while j
denotes a candidate target PM for receiving transaction i. For
each new transaction i, the switch will calculate n equations
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The GetLB++’s scheduling algorithm goal is to explore
scalability on scheduling calculus. Instead of on-the-fly
computing the LL indexes and taking again the values
for each PM at each incoming task, GetLB++ maintains
a descending-ordered resource list which informs the PM
with the higher processing capacity at a given moment (See
Figure 2 (b)). This allows the system to determine the
machine that should process the new task with almost no
additional calculations, since the PM on the top of the list
will always receive it. The aforesaid list is created when
initializing the environment by using the InitializingPUList
method of the scheduler.

The workload of a task is calculated by Equation 6, where
i means the input task and j refers to the top machine in the
aforementioned list. The terms Recv(i,j) and transaction(i,j)
were further explained in Section II. The main difference
from Equations 1 and 6 is that the last does not take into
consideration the already mapped transactions to PM j but
only the impact of task i on it. This modeling happens
because GetLB++ does not try to test several PMs, but only
the impact of a single transaction in a particular PM j. After
calculating the workload of this task using LL’(i,j), this value
is added to the total load of machine j, that is repositioned
in the Processing Unit list afterwards.

LL0(i, j) = Recv(i, j) + transaction(i, j) (6)

To ensure that the total workload value on a machine reflects
its most current state, the workload added by a new task
using Equation 6 is stored in the task structure. When this

task is completed, the processing machine sends an ending
confirmation to the dispatcher. This last subtracts the load
value related to the task from the Preprocessing using the
RemoveTask() method and relocate again the PU in the list
of machines.

Finally, we highlight that the GetLB++ scheduler denoted
LL’ calculates the Load Level of a task against a single
PM, no matter the number of PMs and tasks residing in the
cluster, which makes the algorithm highly scalable. Unlike
this, the standard GetLB algorithm recalculates the Load
Level for all machines in the cluster, always considering the
target task and all previous mapped tasks on each machine.

5. GetLB++ Prototype
We developed a GetLB++ prototype using Java program-

ming language and RMI middleware for communication
substrate. SIGAR API1 was used for real-time hardware
monitoring on PMs. The prototype is divided into three
components: (i) Task Launcher; (ii) Scheduler Machine; (iii)
Processing Machine. Each component can be mapped to a
different machine. The Task Launcher is in charge of reading
an input file containing the tasks to be processed by the
system, sending them to the Scheduler Machine after that.
Each line of the input file corresponds to a task, which
presents a type and a time, in milliseconds, informing how
long the system should wait before process the next line.

The Scheduler Machine is an implementation of the
dispatcher, being responsible for scheduling the beforehand
received tasks. This component reads an XML file informing
the scheduler type (today we are supporting GetLB++,
GetLB and RR), the verification period, the critical change
percentage and the updating mode.

6. Evaluation Methodology
This section describes the environment used for the tests,

starting by presenting the considered tasks in Table 1. There
are three possible types of tasks, A, B and C, referring
to balance, prepaid telephony, and purchasing transactions,
respectively. Transactions data were collected from a real
EFT company provider called GetNet. We are evaluating the
tasks against three scheduling algorithms: GetLB++, GetLB,
and RR. In addition, four different input files were used
by the Task Launcher element, each one containing five
thousand tasks to be processed. These files were generated
with the intention of testing the framework and scheduling
behaviors under the combination of different situations: (i)
homogeneous and heterogeneous tasks; (ii) pure sequential
without delay between tasks (when sending a task to the
dispatcher) and waiting times between them. The hetero-
geneous tasks were generated randomly, while the waiting
time is a quadratic random function ranging from 0 to 100
milliseconds. This quadratic function is pertinent to emulate

1https://support.hyperic.com/display/SIGAR/

16 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



the real functioning of an EFT company, that receives more
transactions not in the start/end of the day, but close to noon
or 18:00 hs.

Table 1: Characteristics of the tasks used in the tests

Type Properties External Systems
Class Size

(n)
Card
Sys.

Cryptography Fraud
Prev.

Rech.
Sys.

A Balance 500 Yes Yes Yes No
B Prepaid

Telephony
1000 Yes Yes No Yes

C Purchasing 2000 Yes Yes Yes No

In addition we are also varying the verification period,
percentage of critical change and update mode. These param-
eters are only valid in the context of GetLB and GetLB++.
Here, a percentage of 100% indicates that the last measure
must be at least two times greater when compared to the
previous one to trigger a PM-switch communication. The
configurations used to test the hardware where: (1) Critical
with 15% of change and verification period of 500 ms; (2)
Periodical with 15% of change and period of 10 ms; (3)
Critical with 100% of change and period of 100 ms and (4)
Periodical with 1% of change and period of 1 ms

6.1 Infrastructure Testbed
All tests were executed in the infrastructure of the Amazon

Elastic Computer Cloud2, where clusters consist of machines
running Windows Server 2012 R2. We are working with
two clusters, composing homogeneous and heterogeneous
infrastructures. Both were formed by ten machines, where
the homogeneous setting includes only machines named
t2.micro (as labeled by Amazon) and a communication
latency of 40 milliseconds. t2.micro is composed of a single-
core CPU with 2.5 GHz, 1 GiB of memory and 20 GiB of
storage (SDD). The dispatcher is also a t2.micro machine,
being used to run the Task Launcher too. The heterogeneous
cluster, in turn, has different hardware settings varying from
t2.micro to c3.large machines.

7. Results
This section presents the obtained results, starting with

performance and scalability tests, observing the time on
scheduling procedures. After that, we developed two sections
to accommodate performance and quality of mapping results
over homogeneous and heterogeneous clusters.

7.1 Scheduling Performance and Preliminary
Scalability Tests

We have prepared basic scalability test involving the
creation of a homogeneous cluster. We are varying the
number of PMs from 2 to 12 to test the overhead on the
RR, GetLB, and GetLB++ scheduling algorithms. Figure 3

2http://aws.amazon.com/ec2
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Fig. 3: Scheduling time when varying the number of PMs

depicts then this context in different curves. As expected,
Round Robin does not suffer major impacts as the number of
machine increases. GetLB got the worst scheduling besides
presenting a low scalability when enlarging the resource
infrastructure. Clearly, GetLB++ outperforms GetLB in the
scheduling performance, but we must take care with the
current observations in the following way: the performance
ratio between GetLB and GetLB++ is slightly lower when
working with 12 machines. Technically, 6.02 and 5.59 are the
performance rations for these two algorithms when analyzing
2 and 12 PMs, respectively.

7.2 Evaluation in Homogeneous Topology
This section presents the results when using a homoge-

neous cluster, but varying the type of the input workload. The
graphics in this section show the load distribution among the
PMs in the cluster. The values for these graphs were obtained
by calculating the load level for each different type of tasks
multiplied by the number of tasks of a particular type that
were transferred to each machine.

7.2.1 Homogeneous Tasks
Figure 4 illustrates the load distribution of tasks among the

PMs belonging to the homogeneous cluster. For this graph,
it was used the test data of the first configuration of the
update parameters, since there are no noticeable differences
between this and the other settings. We observed a similar
behavior on the three algorithms. Particularly, RR presents
a completely uniform distribution of tasks to PMs because
of considering, in this context, the duet resource and task as
a homogeneous system.

7.2.2 Heterogeneous Tasks
Figure 5 shows a graph containing the load distribution

of tasks in the homogeneous cluster for the three analyzed
algorithms. Once again, the data used for the graph corre-
sponds to the first configuration of the update parameters. It
is noticeable that, while the Round Robin makes a homo-
geneous distribution, without considering that each type of
task has special processing needs; the other two algorithms
perform a fairer load distribution between the processing
machines. Figure 5 shows that both GetLB and GetLB++
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Fig. 4: Observing time and load distribution at each PM when running a homogeneous workload on the homogeneous cluster

Table 2: Processing times of a heterogeneous cluster with
homogeneous workload. The column configuration follows
the description in the Section 6.

Average Processing Time(ms)
Config. RR GetLB GetLB++

01 1640,73 1224.63 989.49
02 1640,73 1211.47 1005.40
03 1640,73 1229.62 971.20
04 1640,73 1356.21 1203.81

present a good load balancing since the homogeneous nodes
(named in the graph as PMs) practically advance together in
a horizontal line.

7.3 Evaluation in Heterogeneous Topology
This section presents the results obtained in the tests

executed in the cluster composed by heterogeneous nodes.
Here the results are presented in tables in order to show
all four configurations values. Gains of 26% and 38% were
obtained by GetLB and GetLB++ against the RR execution
time over the configuration number two.

7.3.1 Homogeneous Tasks
Table 2 presents the results when handling homogeneous

tasks. The standard deviations of these results were 32 ms
for the average processing time. This expressive gain in
performance was originated by the quality of the mapping
provided by GetLB and GetLB++. We can observe that the
higher the nodes capacity, the higher the load assigned to
it. In addition, the use of heterogeneous resource turn more
evident the differences between GetLB and GetLB++. Since
GetLB++ does not try to evaluate a task against all PMs for
scheduling purposes, but considers a decreasing sorted-list
of previous mapped load to each PM, GetLB++ can provide
both a better scheduling time and quality.

7.3.2 Heterogeneous Tasks
The scenario that puts together heterogeneous tasks and

resources is responsible for the best results in favor of
GetLB++. The obtained values are presented in Table 3,
where the standard deviation of the average processing time
is 41 ms. Gains up to 42% were obtained when comparing

Table 3: Processing times of a heterogeneous cluster with
heterogeneous workload. The column configuration follows
the description in the Section 6.

Average Processing Time(ms)
Config. RR GetLB GetLB++

01 3125.15 1870.12 1715.90
02 3125.15 1999.90 1790.62
03 3125.15 1989.59 1752.46
04 3125.15 1968.58 1706.07

GetLB++ and RR, and 11% in favor of GetLB++ when
comparing its execution against the standard GetLB. The
effectiveness of the RR scheduling calculus is totally ignored
by the mapping provided by this algorithm. Analyzing the
mapping of the load among the PMs we observed that
the sequential method of RR leaves underloaded the more
powerful resources.

7.4 Analysis and Discussion
As expected, RR was unbeatable when the term homoge-

neous is applicable for both resources and tasks. However,
whenever a system component has a heterogeneous behav-
ior (resources or task), Round Robin presented the worst
processing time between the three analyzed algorithms. Ho-
mogeneous resources are responsible for a similar behavior
between GetLB and GetLB++, presenting slightly better
indexes for the last one. However, GetLB++ outperforms
GetLB with heterogeneous resources both when considering
uniform and non-uniform input workloads. The use of het-
erogeneous resources presented better results for GetLB++,
which offers not only a faster scheduling calculus when
compared to GetLB, but also a better mapping transactions-
PMs for the following reasons:

8. Conclusion
According to the World Payments Report 20143, 70% of

customers worldwide are expected to use mobile commerce
in 2015 and more than 90% will likely be using online
banking. So, this reality implies on performance challenges
to EFT company providers, where the speed of an EFT

3https://www.worldpaymentsreport.com/
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Fig. 5: Observing time and load distribution at each PM when running a heterogeneous workload on the homogeneous
cluster

transaction can help on the client loyalty, while brings
benefits to administrators who can handle more transactions
per second, as well. In this context, this article addressed
EFT performance through the GetLB++ proposal — an
extension of GetLB especially focused on the scheduling
procedure. GetLB++’s scientific contribution resides in the
scheduling approach: contrary to GetLB, the number of PMs
and the number of tasks mapped to each PM beforehand do
not affect the scheduling performance. GetLB++ maintains
a load-ranked decreasing-sorted list of resources and only
takes the top position when arriving a new task. At each
either hardware update at PMs perspective, conclusion of a
task or dispatch of a task, this list is updated to reveal the
most suitable quality scheduling.

According to the conducted tests, GetLB++ is in average
6.5 times faster than GetLB when performing the scheduling
of a transaction, providing also in average a reduction in
the total processing time by 11.78%. Furthermore, GetLB++
offers a more flexible framework, which allows the use of
multiple scheduling algorithms, different PM-switch inter-
action approaches, and the processing of different kinds of
tasks, not particularly EFT transactions. In this way, the
contributions of GetLB++ are not limited to the context of
transactional systems, but can also be extended for load
balancing in e-commerce systems, cloud computing, and
parallel programming. Heterogeneity at both resource and
transaction levels were explored in the current paper to
evaluate performance and scheduling quality. So, future
work includes tests with resource dynamics and the use
of notifications. In addition, we also intend to create a
multi-cluster transactional environment considering different
network latencies and bandwidths.
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