
Big-ETL: Extracting-Transforming-Loading Approach for Big Data

M. Bala1, O. Boussaid2, and Z. Alimazighi3
1Department of informatics, Saad Dahleb University, Blida 1, Blida, Algeria
2Department of informatics and Statistics, University of Lyon 2, Lyon, France

3Department of informatics, USTHB, Algiers, Algeria

Abstract— ETL process (Extracting-Transforming-Loading)
is responsible for (E)xtracting data from heterogeneous
sources, (T)ransforming and finally (L)oading them into a
data warehouse (DW). Nowadays, Internet and Web 2.0 are
generating data at an increasing rate, and therefore put the
information systems (IS) face to the challenge of big data.
Data integration systems and ETL, in particular, should be
revisited and adapted and the well-known solution is based
on the data distribution and the parallel/distributed pro-
cessing. Among all the dimensions defining the complexity
of the big data, we focus in this paper on its excessive
"volume" in order to ensure good performance for ETL
processes. In this context, we propose an original approach
called Big-ETL (ETL Approach for Big Data) in which we
define ETL functionalities that can be run easily on a cluster
of computers with MapReduce (MR) paradigm. Big-ETL
allows, thereby, parallelizing/distributing ETL at two levels:
(i) the ETL process level (coarse granularity level), and
(ii) the functionality level (fine level); this allows improving
further the ETL performance.

Keywords: Data Warehousing, Extracting-Transforming-Loading,
Parallel/distributed processing, Big Data, MapReduce.

1. Introduction
The widespread use of internet, web 2.0, social networks,

and digital sensors produce non-traditional data volumes.
Indeed, MapReduce (MR) jobs run continuously on Google
clusters and deal over twenty Petabytes of data per day [1].
This data explosion is an opportunity for the emergence
of new business applications such as Big Data Analytics
(BDA); but it is, at the same time, a problem given the
limited capabilities of machines and traditional applications.
These large data are called now "big data" and are charac-
terized by the four "V" [2]: Volume that implies the amount
of data going beyond the usual units, the Velocity means
the speed with which this data is generated and should be
processed, Variety is defined as the diversity of formats
and structures, and Veracity relates to data accuracy and
reliability. Furthermore, new paradigms emerged such as
Cloud Computing [3] and MapReduce (MR) [4]. In addition,
novel data models are proposed for very large data storage
such as NoSQL (Not Only SQL) [5]. This paper aims to
provide solutions to the problems caused by the big data in a
decision-support environment. We are particularly interested

in the very large data integration in a data warehouse. We
propose a parallel/distributed ETL approach, called Big-
ETL (ETL Approach for Big Data), consisting of a set
of MR-based ETL functionalities. The solution offered by
the research community, in this context, is to distribute the
ETL process on a cluster of computers. Each ETL process
instance handles a partition of data source in parallel way to
improve the performance of the ETL. This solution is defined
only at a process level (coarse granularity level) and does
not consider the ETL functionalities (fine granularity level)
which allows understanding deeply the ETL complexity and
improve, therefore, significantly the ETL process. To the
best of our knowledge, Big-ETL is a different and original
approach in the data integration field. We first define an ETL
process at a very fine level by parallelizing/distributing its
core functionalities according to the MR paradigm. Big-ETL
allows, thereby, parallelization/distribution of the ETL at two
levels: (i) ETL functionality level, and (ii) ETL process level;
this will improve further the ETL performance facing the
big data. To validate our Big-ETL approach, we developed
a prototype and conducted some experiments.

The rest of this paper is structured as follows. Section 2
presents a state of the art in the ETL field followed by a
classification of ETL approaches proposed in the literature
according to the parallelization criteria. Section 3 is devoted
to our Big-ETL approach. We present in Section 4 our
prototypical implementation and the conducted experiments.
We conclude and present our future work in Section 5.

2. Related work
One of the first contributions on the ETL field is

[6]. It is a modeling approach based on a non-standard
graphical formalism where ARKTOS II is the implemented
framework. It is the first contribution that allows modeling
an ETL process with all its details at a very fine level,
i.e. the attribute. In [7], authors proposed a more holistic
modeling approach based on UML (Unified Modeling
Language) but with less details on ETL process compared
to [6]. Authors in [8] adopted BPMN notation (Business
Process Model and Notation), a standard notation dedicated
to the business process modeling. This work was followed
by [9], a modeling framework based on a metamodel in
MDD (Model Driven Development) architecture. [7] and
[8] are top-down approaches and allow, therefore, modeling

462 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'15 |

sub-processes in their collapsed/expanded form for more
readability. Authors in [10] proposed a modeling approach
which consists of a summary view of the ETL process and
adopt the Reo model [11]. We consider that this contribution
could be interesting but is not mature enough and deserves
Reo customization model to support the ETL specifics.

Following the big data emergence, some works tackled
interesting issues. [12] is an approach which focuses on
the performance of ETL processes dealing with large data
and adopts the MapReduce paradigm. This approach is
implemented in a prototype called ETLMR which is a
MapReduce version of the PygramETL prototype [13]. The
ETLMR platform is demonstrated in [14]. [15] shows that
ETL solutions based on MapReduce frameworks, such as
Apache Hadoop, are very efficient and less costly compared
to ETL tools market. Recently, authors in [16] proposed
CloudETL framework. CloudETL uses Apache Hadoop to
parallelize ETL processes and Apache Hive to process data.
Overall, experiments in [16] shows that CloudETL is faster
than ETLMR and Hive for large data sets processing. [17]
demonstrates the P-ETL platform. P-ETL (Parallel-ETL)
is implemented under the Apache Hadoop framework and
provides a simple GUI to set an ETL process and the
parallel/distributed environment. In the batch version, P-
ETL runs thanks to an XML file (config.xml) in which the
same parameters should be set. In the P-ETL approach, the
mappers (Map step) are in charge of standardizing the data
(cleasing, filtering, converting, ...) and the reducers (Reduce
step) are dedicated for merging and aggregating them. To
the best of our knowledge, there are no works having
tackled the ETL modeling issue intended to the big data
environment and more precisely to the parallel/distributed
ETL processing. We focus in this paper on the paralleliza-
tion/distribution issue to improve the performance of the
ETL. The classification proposed in Tab.1 is based on the
parallelization criteria.

Table 1: Classification of ETL works
Approach Purpose Classification

[6] Modeling Centralized approach
[7] Modeling Centralized approach
[8] Modeling Centralized approach
[13] Performance Centralized approach
[12] Performance Distributed approach
[10] Modeling Centralized approach
[15] Performance Distributed approach
[16] Performance Distributed approach
[17] Performance Distributed approach
Big-ETL Performance Distributed approach

a) Centralized ETL process approach: In this paper, the
ETL process approach is defined as centralized (or classical)
when (i) the ETL process runs on an ETL server (one
machine), (ii) in one instance (one execution at the same

time), and (iii) the data are with moderate size.

Fig. 1: Centralized ETL Process approach.

In this context, only the independent functionalities can be
run in parallel way (both the ETL functions and the machine,
on which it will be run, should be multithreaded). An
ETL functionality, such as Changing Data Capture (CDC),
Surrogate Key (SK), Slowly Changing Dimension (SCD),
Surrogate Key Pipeline (SKP), is a basic function that
supports a particular aspect of an ETL process. In Fig. 1,
we can see that (F1 and F3) or (F2 and F3) can be run in
parallel way.

b) Distributed ETL process approach: The well-known
solution to cope with big data is the "paralleliza-
tion/distribution" of the data and the ETL process on a
cluster of computers. The MR paradigm, for instance, allows
splitting large amounts of data sets where each partition will
be subject to an instance of the ETL process.

Fig. 2: Distributed ETL Process approach.

As depicted in Fig. 2, multiple ETL process instances
run in parallel way where each one deals with its data
partition in the Map step. The partial results produced by
the mappers are merged/aggregated in the Reduce step and
then loaded into the DW. All approaches proposed with MR
paradigm, [12] and [15] for instance, apply the distribution

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'15 | 463

only at the process level. Big-ETL applies MR at two
levels: (i) Process level (coarse granularity level), and (ii)
functionality level (fine granularity level). We believe that
the ETL, in the context of technological change having af-
fected both data and processes, still presents some scientific
problems such as big data modeling considering its different
characteristics (volume, variety, velocity, veracity,...), data
partitioning, parallel processing in its various forms (pro-
cesses parallelization, process components parallelization,
pipeline parallelization,...), etc. Functionalities as the core
ETL functions deserve a most in-depth study to ensure, at
a very fine level, robustness, reliability and optimization
of the ETL process. Our Big-ETL is a parallel/distributed
ETL approach based on two distribution levels (Process and
functionalities) and two distribution directions (Vertical and
horizontal).

3. ETL Approach for Big Data
We present in this section our Big-ETL approach. We

deployed it on many ETL functionalities such as Chang-
ing Data Capture (CDC), Data Quality Validation (DVQ),
Surrogate Key (SK), Slowly Changing Dimension (SCD),
Surrogate Key Pipeline (SKP). Among all these ETL func-
tionalities, we chose to present, in this paper, CDC to
illustrate our Big-ETL approach.

3.1 Big-ETL principle
Our Big-ETL process is functionalities-based approach

which exploits the MR paradigm. For each of these func-
tionalities, we apply the same principle adopted at a process
level in the "distributed ETL process approach" as depicted
in Fig. 2.

3.1.1 Key Concepts
a) ETL functionality: In order to control the complexity
of the ETL process, we define it thanks to a set of core
functionalities. The ETL functionality is a basic function
that supports a particular ETL aspect such as Changing Data
Capture (CDC), Data Quality Validation (DQV), Surrogate
Key (SK), Slowly Changing Dimension (SCD), Surrogate
Key Pipeline (SKP), etc. The ETL task, however, is an
instance of an ETL functionality. Let SK1 and SK2 be two
ETL tasks that generate a surrogate key for inserting tuples in
PRODUCT and CUSTOMER dimensions respectively. SK1
and SK2 are two different tasks but both are based on SK.
Thus, the SK is the ETL functionality where SK1 and SK2
are its instances. In the follows, we describe an ETL process
in terms of its functionalities.

b) Elementary process/function: When an ETL function-
ality is not atomic (aggregate functionality) in terms of
processing, we consider that it is in charge of several
separated elementary processes where each one is affected

for an elementary function. An elementary process is an
atomic unit of processing which is synchronized with other
elementary processes to ensure the ETL functionality. Each
one of the elementary processes is implemented as an
elementary function. Thus, we consider that the aggregate
functionality is a set of synchronized elementary functions.
For example, the functionality CDC which is responsible to
identify the changes (INSERT, UPDATE, DELETE) having
affected the data in a particular source, can be decomposed
in three elementary functions where each one is in charge
of identifying INSERT, UPDATE, DELETE respectively.

3.1.2 Vertical Distribution of Functionaltilies (VDF)

As shown in Fig. 3, the ETL process runs in one instance,
while each of its functionalities runs in multiple instances.
For example, the functionality F4 (oval) that runs in three
instances (fragments separated by dashes), received its input
data from F2 and F3. These inputs are partitioned and
each of the three partitions is subject to an instance of F4
(mapper). Partial results produced by the three mappers are
merged by reducers to provide the final F4 outputs. This is
a novelty in the parallel/distributed ETL approaches based
on MR paradigm as all other approaches does not consider
the parallelization/distribution at an ETL functionality.

Fig. 3: VDF Approach.

3.1.3 Vertical Distribution of Functionaltilies and Pro-
cess (VDFP)

In case where VDF presents low performance (particularly
if the ETL process contains much sequential functionalities),
the designer should set the ETL process to be run in several
instances. This is an hybrid approach that takes the principles
of the "distributed ETL process" and VDF approaches at the
same time as shown in Fig. 4.

It should be noted that the VDFP approach requires more
resources (cluster nodes, HDD space, RAM, Cache, LAN
bandwith ...). When the ETL process runs in the VDF
approach and reaches F4, it will require three tasks as F4
runs in three instances. The same process executed in the
VDFP approach will require thirty parallel tasks if it runs in
ten instances in addition to the three instances of F4.

464 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'15 |

Fig. 4: VDFP Approach.

3.1.4 Horizontal Distribution of Functionaltilies (HDF)
Some ETL functionalities operate several elementary pro-

cesses on source data. In this case, these functionalities are
not atomic and can thereby be decomposed into elementary
functions where each one is in charge of a particular process
unit. Let F be a functionality in an ETL process which
operates some elementary processes units T1, T2, ..., Tn on
the source data.

Fig. 5: Elementary processes (a) and functionalities (b).

We can decompose F into elementary functions noted
f1, f2, ..., fn where each fi is in charge of Ti. FIG. 5 (a)
shows an ETL functionaly F which operates six elementary
processes T1, T2, ..., T6. We note that T1, T2, T3, T4 can be
run in parallel way since no dependencies exist between
them. In the same way, T5 and T6 can be, also, run in paral-
lel. Thus, we can decompose F into six elementary functions
noted f1, f2, ..., f6 which are in charge of T1, T2, ..., T6

respectively (FIG. 5 (b)). Unlike the VDF approach which
distributes the ETL functionality by instanciation, the HDF
approach distributes the ETL functionality by fragmentation.
In a distributed environment, the schema depicted in FIG. 5
(b) allows, in a first phase, distributing F in four fragments
f1, f2, f3 and f4 which run in parallel way. In the second
phase, F is distributed into f4 and f5 that can be run in
parallel way and allow providing the final output of F .

3.1.5 Pipeline Processing Distribution (PPD)
Some ETL functionalities process the source data tuple-

by-tuple in a sequential way called pipeline processing.

Since all the tuples pass by the pipeline, we propose a
synchronization schema in order to process a subset of
tuples in parallel way. The number of tuples present in the
pipeline should be equal to the number of functionalities.
Indeed, when a particular tuple is being processed by the
last functionality in the pipe, its successors should be also
processed according to the order of the functionalities as
defined in the pipe. Let P be a pipe in which is defined a
set of functionalities F1, F2, ..., Fn.

Fig. 6: Sequential (a) and parallel (b) pipeline.

When the tuples of data t1, t2, ..., tm should pass by a
sequential pipe P , the tuple ti is moved in the pipe P
when the tuple ti−1 is completely processed by all the
functionalities F1, F2, ..., Fn (FIG. 6 (a)). Thus, only one
tuple can be present in the pipe at the same time. In order
to improve further the performance of the ETL process, we
propose to parallelize the pipe. In this way, several tuples
can be processed simultaneously in the pipe where each one
is handled by a functionality according to the order defined
in the pipe. Thus, when the tuple ti is being processed by
Fn, the tuple ti+1 is processed, in the same time, by Fn−1,
the tuple ti+2 is processed by Fn−2 and so on. In this way,
the number of tuples being processed in the pipe is equal to
the number of functionalities defined in the pipe (equal to n).
Indeed, when a tuple is moved out the pipe after a complete
process, another tuple (first in the queue) is moved in and
so on until a complete process of the data partition. FIG. 6
(b) depicts the pipe P in the parallel approach.

3.2 Changing Data Capture (CDC) in Big-ETL
approach

Our Big-ETL approach is applied on many ETL function-
alities such as CDC, SCD, SKP, etc. Seeing the paper space
constraint, we illustrate Big-ETL with the CDC functionality.
The ETL functionality CDC is considered as the main
functionality in the E step of ETL. It identifies the data
affected by changes (INSERT, UPDATE, DELETE) in the
source systems. These latter is then extracted and processed
for the DW refresh [18]. The rest of data (unaffected by
changes) is rejected since it is already loaded in the DW.
The most common technique used in this field is based
on snapshots [18]. In the classical algorithms of CDC, the
changes between two corresponding tuples are detected by
comparing them attribute-by-attribute. Furthermore, tuples

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'15 | 465

contain hundreds of attributes in data warehousing systems.
In order to improve the CDC performance and make its
cost lower, we adapted the well-known hash function CRC
(Cyclic Redundancy Check) which is widely used in digital
data transmission field [19] and internet applications [20].
We adapted CRC function in the CDC context as follows.
Let tuple1 and tuple2 be two tuples stored in ST and STpv
respectively. If tuple1 and tuple2 satisfy the two equations
1 and 2, it means that they are similar. In this case, the
tuple1 will be rejected by the CDC process as no changes
have occurred. However, if only the equation 1 is satisfied,
it means that tuple1 has been affected by changes and will
be extracted by the CDC process as UPDATE.

tuple1.KEY = tuple2.KEY (1)

CRC(tuple1) = CRC(tuple2) (2)

To propose a CDC schema in the Big-ETL environment,
we consider that both ST and STpv tables contain large data,
the CDC functionality will run on a cluster of computers,
and we adopt the MR paradigm. The classical scheme of
CDC will be supplemented by new aspects namely (i) data
partitioning, (ii) lookup tables, (iii) insert and update data
capture process and (iv) delete data capture process.

3.2.1 Data partitioning
To deal with large data, we adopt the rule of "divide and

conquer". In the context of CDC, the system should, firstly,
sort ST and STpv on the column KEY, and then split them to
obtain usual volumes of data. The partitioning of ST allows
processing the generated partitions in parallel way. STpv is
partitioned to avoid searching ST tuples in a large volume
of data.

3.2.2 Lookup tables
To avoid searching a tuple in all ST and STpv partitions,

we use Lookup tables denoted LookupST and LookupSTpv
respectively. They identify the partition that will contain a
given tuple. Here, are some details on the use of lookup
tables:

• LookupST and LookupSTpv contain the min and max
values of keys (#KEY) for each ST and STpv partitions
respectively;

• For a Ti tuple in ST, it consists of searching the Pstpvk
partition of STpv that satisfies the expression 3 in
LookupSTpv;

• For a Tj tuple in STpv, it consists of searching the
Pstk partition of ST that satisfies the expression 4 in
LookupST.

LookupSTpv.KEYmin ≤ Ti.KEY ≤ LookupSTpv.KEYmax (3)

LookupST.KEYmin ≤ Tj .KEY ≤ LookupST.KEYmax (4)

3.2.3 INSERT-UPDATE data capture (IUDCP) and
DELETE data capture (DDCP) Processes

We propose two parallel processes in the new CDC
scheme that support (i) INSERT and UPDATE data capture
(IUDCP), and (ii) DELETE data capture (DDCP).

Fig. 7: IUDC process architecture.

Fig. 8: DDC process architecture.

Each process runs into multiple parallel instances. Each
instance of IUDCP and DDCP handles ST and STpv partition
respectively. Fig. 7 depicts IUDCP. Each partition Psti is
assigned to a Mapi task which is responsible for checking
the existence of each its partition tuples in STpv. To this end,
the mapper looks up in LookupSTpv the partition Pstpvk that
may contain the tuple. Once the Pstpvk partition is identi-
fied, three cases can arise: (1) #KEY value is nonexistent in
Pstpvk; this means an insertion (INSERT), (2) #KEY value
exists and identifies a similar copy of the tuple in Pstpvk;
the tuple is rejected (3) #KEY value exists in Pstpvk with

466 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'15 |

change in at least one attribute between the two tuples; this
is a modification (UPDATE).

Algorithm 1 IU_MAP(Pst)
Input: Pst, LookupSTpv, tuple1: ST record, tuple2: STpv
record
Output: CHANGES

1: while not eof (Pst) do
2: read(Pst, tuple1)
3: Pstpv ← lookup(LookupSTpv, tuple1.KEY);
4: if found() then
5: tuple2← lookup(Pstpv, tuple1.KEY);
6: if found() then
7: if CRC(tuple1) 6= CRC(tuple2) then
8: extracting tuple1 as UPDATE;
9: end if

10: else
11: extracting tuple1 as INSERT;
12: end if
13: else
14: extracting tuple1 as INSERT;
15: end if
16: end while
17: return (CHANGES);

As shown in Fig. 8, DDCP operates on the same principle
as IUDCP but in the opposite direction. In DDCP, we focus
exclusively on the case where the tuple does not exist
(DELETE). In order to have an approach about how to
process the mixing of these multiple operations, we propose
a main program of CDC called CDC_BigData. At this level,
the ST and STpv tables are sorted and then partitioned, the
LookupST and LookupSTpv tables are generated respectively
from ST and STpv, and finally the parallel IUDCP and
DDCP processes are invoked. Algorithm 1 is responsible for
capturing insertions and updates in ST table. A Psti partition
will be processed by an instance of iu_map () function. Line
3 looks up in LookupSTpv for a Pstpv partition which
may contain the tuple readed in line 2. Lines 4-12 describe
the case where the Pstpvk is located. Line 5 looks-up in
Pstpv the tuple. Lines 6-9 treat the case of tuple affected by
changes (UPDATE) by invoking CRC hash function. Lines
10-12 treat the case where the tuple does not exist in the
partition Pstpvk and is thereby captured as an insert. Lines
13-15 treat the case where the tuple does not match with
any partition in the lookup table LookupSTpv and thereby
it is captured as an insert.

4. Implementation and experiment
We developed an ETL platform called P-ETL (Parallel-

ETL) which provides: (i) data distribution, and (ii) parallel
and distributed ETL processing. P-ETL is implemented in

Apache Hadoop environment and uses mainly two modules
(1) HDFS for distributed store and high-throughput access to
application data, and (2) MapReduce for parallel processing.
We defined two levels for our experiments: (i) ETL process
level (coarse granularity level) and (ii) ETL Functionality
level (fine granularity level). We present in this section
the results for the first scenario. To evaluate our P-ETL
platform, we proposed an ETL process example applied on
students’ data gathered at the Education Ministry. The data
source contains student identifier (St_id), his enrollment
date (Enr_Date), his cycle (Bachelor, Master or Ph.D.), his
specialty (medicine, biology, computer , ...) and finally we
find information about scholarship (if the student received
scholarship or not) and about sport (if he practices sport
or not). We developed a program to generate csv source
data. In this experiment, we generated 7 samples of source
data that vary between 244 ∗ 106 and 2, 44 ∗ 109 tuples
where each one has 44 bytes of size. The ETL process
configured to process the data is as follows. The first task is
projection which restricts the source tuples to an attributes
subset by excluding Scholarship and Sport. The process
presents in the second task a restriction which filters tuples
and rejects those having Null value in Enr_Date, Cycle,
and Specialty. The third task in the process is GetDate()
which retrieves year from Enr_Date. The last task is the
aggregation function COUNT() which computes the number
of students grouped by enrolment year, Cycle and Specialty.

We considered the P-ETL scalability by varying the "data
source size" and the "number of tasks". The test environment
is a cluster made up of 10 machines (nodes). Each machine
has an intel-Core i5-2500 CPU@3.30 GHZ x 4 processor
with 4GB RAM, 20 GB of free HDD space. These machines
operate with Ubuntu-12.10 and are interconnected by a
switched Ethernet 100 Mbps in a LAN. The framework
Apache Hadoop 1.2.0 is installed on all the machines. One
of these 10 machines is configured to perform the role
of Namenode in the HDFS system and JobTracker in the
MapReduce system. However, the other machines are config-
ured to be HDFS DataNodes and TaskTrackers. Overall, we
can see, in FIG. 9, that the increasing of tasks improves the
processing time. Indeed, we further analyzed the results and
discovered some interesting aspects. Seeing the paper length
constraint, we can not present all the experiment results.

FIG. 10 shows the "time saving" by increasing tasks.
The "time saving" is calculated as the difference between
"processing time" corresponding to different "number of
tasks". We can see that the time saving to handle 2, 2 ∗ 109
tuples (FIG. 10 (a)) decreases when we configure more than
"5 tasks". Also, to handle 2, 44∗109 tuples (FIG. 10 (b)), the
time saving after "8 tasks" becomes not significant. To sum
up our experiment, we note that the "number of tasks" is not
the only parameter to be set in order to speed-up the process.
Our cluster must be extended in terms of nodes, memory

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'15 | 467

Fig. 9: Proc. time (min.) by scaling up data (tuples) and
increasing tasks.

space (RAM, cache), LAN bandwidth, etc. The cluster used
for this experiment is a small-sized infrastructure. The HDD
space is very low (20 GB per node). Thus, trying to increase
tasks, for example, to more than eight while staying on the
same resources in terms of HDD, RAM ..., will not make
Handoop able to improve performance of the process if HDD
space or memory is, already, completely consumed by the
eight tasks.

Fig. 10: Time saving (min.) by increasing tasks.

5. Conclusion
The ETL is the core component of decision-support sys-

tem since all the data dedicated for analysis pass through this
process. It should be adapted following the new approaches
and paradigms to cope with big data. In this context, we pro-
posed a parallel/distributed approach for ETL process where
its functionalities run in parallel way with MR paradigm.
In the near future, we plan to finish our experiments on a
larger scale both in ETL process level and ETL functionality
level. A complete benchmark in which we compare the
four approaches (centralized ETL process approach, dis-
tributed ETL process approach, Big-ETL approach, Hybrid
approach) is an interesting perspective.

References
[1] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing

on large clusters,” Communications of the ACM, vol. 51, no. 1, pp.
107–113, 2008.

[2] S. Mohanty, M. Jagadeesh, and H. Srivatsa, Big Data Imperatives:
Enterprise Big Data Warehouse,BI Implementations and Analytics.
Apress, 2013.

[3] B. Sosinsky, Cloud computing bible. John Wiley & Sons, 2010, vol.
762.

[4] J. Dean and S. Ghemawat, “Mapreduce: a flexible data processing
tool,” Communications of the ACM, vol. 53, no. 1, pp. 72–77, 2010.

[5] J. Han, E. Haihong, G. Le, and J. Du, “Survey on nosql database,” in
6th international conference on pervasive computing and applications
(ICPCA), 2011. IEEE, 2011, pp. 363–366.

[6] P. Vassiliadis, A. Simitsis, and S. Skiadopoulos, “Conceptual modeling
for etl processes,” in Proceedings of the 5th ACM international
workshop on Data Warehousing and OLAP. ACM, 2002, pp. 14–21.

[7] J. Trujillo and S. Luján-Mora, “A uml based approach for modeling
etl processes in data warehouses,” in Conceptual Modeling-ER 2003.
Springer, 2003, pp. 307–320.

[8] Z. El Akkaoui and E. Zimányi, “Defining etl worfklows using bpmn
and bpel,” in Proceedings of the ACM twelfth international workshop
on Data warehousing and OLAP. ACM, 2009, pp. 41–48.

[9] Z. El Akkaoui, E. Zimànyi, J.-N. Mazón, and J. Trujillo, “A model-
driven framework for etl process development,” in Proceedings of the
ACM 14th international workshop on Data Warehousing and OLAP.
ACM, 2011, pp. 45–52.

[10] B. Oliveira and O. Belo, “Using reo on etl conceptual modelling: a
first approach,” in Proceedings of the sixteenth international workshop
on Data warehousing and OLAP. ACM, 2013, pp. 55–60.

[11] F. Arbab, “Reo: a channel-based coordination model for component
composition,” Mathematical Structures in Computer Science, vol. 14,
no. 3, pp. 329–366, 2004.

[12] X. Liu, C. Thomsen, and T. B. Pedersen, “Etlmr: a highly scalable di-
mensional etl framework based on mapreduce,” in Data Warehousing
and Knowledge Discovery. Springer, 2011, pp. 96–111.

[13] C. Thomsen and T. Bach Pedersen, “pygrametl: A powerful pro-
gramming framework for extract-transform-load programmers,” in
Proceedings of the ACM twelfth international workshop on Data
warehousing and OLAP. ACM, 2009, pp. 49–56.

[14] X. Liu, C. Thomsen, and T. B. Pedersen, “Mapreduce-based dimen-
sional etl made easy,” Proceedings of the VLDB Endowment, vol. 5,
no. 12, pp. 1882–1885, 2012.

[15] S. Misra, S. K. Saha, and C. Mazumdar, “Performance comparison of
hadoop based tools with commercial etl tools–a case study,” in Big
Data Analytics. Springer, 2013, pp. 176–184.

[16] X. Liu, C. Thomsen, and T. B. Pedersen, “Cloudetl: scalable dimen-
sional etl for hive,” in Proceedings of the 18th International Database
Engineering & Applications Symposium. ACM, 2014, pp. 195–206.

[17] M. Bala, O. Mokeddem, O. Boussaid, and Z. Alimazighi, “Une
plateforme etl parallèle et distribuée pour l´intégration de données
massives,” Revue des Nouvelles Technologies de l’Information, vol.
Extraction et Gestion des Connaissances, RNTI-E-28, pp. 455–460,
2015.

[18] R. Kimball and J. Caserta, The data warehouse ETL toolkit. John
Wiley & Sons, 2004.

[19] D. V. Sarwate, “Computation of cyclic redundancy checks via table
look-up,” Communications of the ACM, vol. 31, no. 8, pp. 1008–1013,
1988.

[20] M. P. Freivald, A. C. Noble, and M. S. Richards, “Change-detection
tool indicating degree and location of change of internet documents
by comparison of cyclic-redundancy-check (crc) signatures,” Apr. 27
1999, uS Patent 5,898,836.

468 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'15 |

