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Abstract - This paper introduces a simple  O(N) 
algorithm that decomposes BPC (bit-permute-
complement) permutations into   semi-permutations for 
avoiding crosstalk when realizing them in N × N optical 
multistage interconnection networks (OMINs). Crosstalk 
means that two optical signals, sharing an optical switch, 
undergo a kind of undesired coupling. A semi-
permutation is a partial permutation which meets   the 
requirement for  each switch in an input and output 
stages of the network to be used   with only one optical 
signal at a time. It provides avoiding crosstalk in the first 
and the last stages of a network and creates the potential 
for crosstalk-free realization of a semi-permutation, and 
finally the whole permutation in question. The algorithm 
is based on employment   the periodicity of appearing 1’s 
and 0’s  in columns of transition  matrices for BPC 
permutations.  
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BPC permutations, semi-permutations, crosstalk 
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1 Introduction 
 The vast number of processing elements in massively 
computers dictates heavy demands for performance of an 
interconnection network in use. Optical interconnection 
networks constitute a promising choice in the field 
because they offer gigabit transmission capacity, very big 
bandwidth, and low error probability. In what follows we 
consider hybrid optical multistage interconnection 
networks (OMINs) using guided wave technology and 
composed of electronically controlled directional 
couplers because other types of optical networks are still 
difficult to implement. In spite of the topological 
similarity of electronic and optical multistage 

interconnection networks, the latter cause some  specific 
problems, and the major of them is optical crosstalk. It 
means that two optical  signals, sharing an optical switch, 
undergo a kind of undesired coupling. The crosstalk 
reduces essentially signal to noise ratio and so limits the 
size of a network, whereas the number of processing 
nodes in modern supercomputers is increasing rapidly. To 
avoid crosstalk two optical signals should be sent at 
different time, if they use the same switch. It is called 
time domain approach in distinction from space domain 
approach when crosstalk avoidance is achieved with 
significant increase of hardware. Crosstalk avoiding 
problem is discussed in a large number of works, e.g. in 
[1], [2], [3], [4], [5], [6], to mention only a few. In what 
follows we have to refer often to the term switch conflict. 
It means using an optical switch (directional coupler) by 
two input signals at the same time resulting in above 
mentioned crosstalk. It is noteworthy also that for optical 
hybrid OMINs under consideration circuit switching 
rather than packet switching is usually preferred, since 
with packet switching the address information in each 
packet must be decoded in each stage that means 
conversion from optical signal to electronic and so can be 
very costly.   
  
A permutation is one of the most common communication 
patterns in parallel computing systems. In the context of a 
parallel computing system, a permutation means 
simultaneous transferring of data items between the nodes, 
with all the destination nodes being different. The term 
permutation can be defined as a request for parallel 
connection of N sources to N destinations, where nN 2= , 
with a distinct destination for each of the sources: 

1111,00 ,..., −− →→→ NN DSDSDS . Its components 

will be considered as n -dimensional vectors whose 
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elements are either 0 or 1: the vector 1210 ... −− nn ssss  is 

identified with the integer 0, sSi being the most significant 

bit. The following sequence 12101210 ...... −−−− nnnn ddddssss  is 

called a transition sequence for an input-output pair. The 
set of all transition sequences for a given permutation is 
called its transition matrix [7].  If a permutation does not 
possess any regularity, it is called an arbitrary 
permutation. On the contrary, if there is some general 
rule for producing a destination address from a source 
address, a permutation is called a regular one. There are 
known different classes of regular permutations. A 
permutation is called a bit-permute-complement (BPC) 
permutation if the destination address can be produced 
by permuting bits in the source address and/or 
complementing some or all of its bits positions. BPC 
permutations are widely used in parallel programming 
when solving various scientific problems (digital signal 
processing, large matrices processing etc). A transition 
matrix for a BPC permutation in a symbolic form can be 
represented as follows: 

)1()2()1()0(1210 ...... −−−− nnnn SSSSSSSS ππππ
[7]. 

A semi-permutation is a partial permutation which meets   
the requirement for  each switch in an input and output 
stages of the network to be used   with only one optical 
signal at a time. It provides avoiding crosstalk in the first 
and the last stages and creates the potential for crosstalk-
free realization of  semi-permutations, and finally the 
whole permutation in question [1]. It is evident that for 
crosstalk-free realization of a semi-permutation crosstalk 
in intermediate switches also should be eliminated, and it 
is the next step in crosstalk avoiding. However, 
decomposing a permutation into semi-permutations can 
be considered as a specific  problem. The  problem is 
being solved  for arbitrary permutations in [1], however, 
to our best knowledge  decomposing BPC permutations 
to semi-permutations  was considered before only in the 
work with participation of the first author of this paper 
but for some specific representatives  of  that class [8].   
In this paper a fast algorithm for decomposing BPC 
permutations in general into semi-permutations is 
presented. Its time complexity is O(N), where NN ×  is 
the size of a network. The algorithm presented in the 
paper is based on the regularity of BPC permutations, 
namely, on periodicity of appearing 1s and 0s in columns 
of their transition matrices. The algorithm is implemented 
in C language for two basic types of optical multistage 
interconnection networks (OMINs), namely with perfect 
shuffle interconnection pattern before the first stage and 
without it. In our work some computational experiments 

were carried out, including those in concern with BPC 
permutations known as  worst cases from the viewpoint 
of routing.  The total number of BPC permutations is 

!2 nn . There are some frequently used BPC permutations 
as given in [9] and in   [10]. Such permutations are usually 
referred to by names, with each equation showing 
mapping a source 1210 ... −− nn ssss  to the destination.  

The permutations which are referred to in our paper were 
taken from the list below: 

1.  Perfect shuffle   

     0121 ... ssss nPSH −=π  

2.  Unshuffle 

2301 ... −−−= nnnUSH ssssπ  
 

3. Vector reversal 

1210 ... −−= nnVR ssssπ  
 

4. Butterfly 

0211 ... ssss nnBF −−=π  
 

5. Exchange 

211110 ...... −−+−= nniiiEXCH sssssssπ  
 

6. Bit reversal 

0121 ... ssss nnBR −−=π  
 

7. Matrix transpose 

       110121 ...... −−+= llllMT ssssssπ   if n=2l 

        11021 ...... −+= llllMT ssssssπ  if n=2l+1 

8. Bit shuffle 

       131220 ...... −−= nnBSH ssssssπ  if  n=2l 

      231120 ...... −−= nnBSH ssssssπ  if  n=2l+1 

9. Shuffle row major 

              12110 ... −+= llllSHRM ssssssπ  if  n=2l 

           lllllSHRM sssssss 1212110 ... −−++=π  if  n=2l+1 
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2 An  algorithm for decomposing 
BPC permutations into semi-
permutations 

The essential part of the algorithm consists in 
determining so called antagonists, i.e. the pairs of inputs 
to an interconnection network which cause switch 
conflicts either in the first (input) stage or in the  last 
(output) stage of the network. The regularity of BPC 
permutations provides possibility for finding crosstalk-
free set of outputs for any crosstalk-free set of inputs. In 
its turn finding crosstalk-free set of inputs to a network is 
trivial. Here we consider two network topologies: (2n-1)-
stage shuffle exchange network (SEN) and Benes 
network [11].  It is proved in [1] that any semi-
permutation can be realized in a single pass in Benes 
network under the constraint of avoiding crosstalk. Benes 
network is known as a classic rearrangeable network, 
since (2n-1)-stage SEN is also always  rearrangeable 
[12], we can here conjecture the same about it. SEN 
topology is considered here because it offers an identical 
interconnection pattern across all stages thus simplifying 
implementation especially in a photonic integration 
environment [13].  
 
As it follows from the definition of a semi-permutation 
given in the Introduction, the basic requirements when 
decomposing a given BPC permutation into semi-
permutations are the next: 
 
- None of the source-destination pairs should share the 
same switch in the first stage of a network with another 
pair. 
- None of the source-destination pairs should share the 
same switch in the output stage of a network with another 
pair. 
 
For producing semi-permutations, two lists of antagonists 
are needed. The first one is of the inputs to a network 
sharing the inputs of the same switches in the first stage.  
In a SEN all connections between inputs to a network and 
inputs to the switches of the first stage are permanent and 
are implemented in accordance with perfect shuffle 
connection pattern : 

 
  

10120121 ...)...( −−−− = nnnn aaaaaaaaShuffle  [14]. 

 
In other words the connection is based on cyclic shift to 
the left by one bit position. So the antagonists at inputs  
can be found using the following formula for any 
possible case:  

 
As an example, for 16x16 SEN antagonistic pairs of 
inputs shown below:  
 

0/8, 1/9, 2/10, 3/11, 4/12, 5/13, 6/14, 7/15. 
 

The inputs shown together cannot be presented in the 
same semi-permutation. On the contrary for a Benes 
network there is no rearranging at inputs of the network, 
and antagonists at the inputs of 16x16 Benes network 
look as follows: 
 

0/1, 2/3, 4/5, 6/7, 8/9, 10/11, 12/13, 14/15. 
 

However, producing the list of input pairs – antagonists - 
causing switch conflicts in the output stage of the 
network is not so trivial, and  it is based on periodicity of 
0’s and 1’s in the rightmost column of the transition 
matrix of a given BPC permutation. That periodicity 
defines the periodicity of appearing identical 1−n  
combinations in the remainder part (without the rightmost 
bit) of the destinations half of the matrix. In other words 
it defines antagonistic rows in the binary version of a 
transition matrix.  If resort to the transition matrix in its 
symbolic form, then with the  rightmost component in the 
destination address being 0S , the period of changing 0’s 

and 1’s in the sequence of output numbers on the right 
side of a network diagram or in the rightmost column of a 
transition matrix  is 2N , with 1S  that period is 4N , 
etc. with increasing degrees of 2 in denominators up to 

N ; so for 1−nS  that period is 1. It is noteworthy that for 

all BPC permutations with the same rightmost component 
in their symbolic transition matrices the list of antagonists 
for outputs will be the same because permuting bits in the 
rest part of a destination address will not affect identity of 
the appropriate rows. Finally the formula for determining 

the afore said period iR  looks as follows: Ri = 2
(n−1)−I ,  

0 ≤ i ≤ n−1 , with i being the index of the rightmost 
component of the destination part in a symbolic transition 
matrix.  
 
To summarize, decomposing a BPC permutation to semi-
permutations includes the following steps: 
1. Initialize N  and n . 
2. Initialize a transition matrix for a given BPC 

permutation in the symbolic form. 

158 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



3. Produce the list of input pairs which are  antagonistic 
at the network’s first stage inputs basing on afore 
said reasoning. 

4. Produce the list of input pairs causing switch 
conflicts in the output stage of a network 
(antagonists for the network’s outputs) basing on the 
specific for a given permutation periodicity of 0’s 
and 1’s in the rightmost column of a binary version 
of a transition matrix in accordance with the formula 
for iR  above in the text. 

5. Combine both lists of antagonists to one list as 
shown in the following examples, scan the lists of 
the inputs  to a network with deleting antagonists to a 
current input. Each antagonist is encountered twice: 
either as an input or an output. Total number of pairs 
is 2N  in both cases, so exactly 2N  antagonists 
will be deleted (in other words, assigned to the 
second semi-permutation). Each antagonist is deleted 
once despite of encountering twice, so 2N  

numbers of inputs are always left. 
The above algorithm has time complexity O (N).  
 

3 Examples of Decomposing 
An example of applying our approach for decomposing 
Unshuffle permutation for realizing it in 8×8 shuffle-
exchange and Benes networks is given below. Crosstalk-
free routing in intermediate stages has been done by trial 
and error. In our case its transition matrix is 

1022210 SSSSSSS and so the period R=2. 

 
For N=8 the original Unshuffle permutation looks as 

follows: 
0→0, 1→4, 2→1, 3→5, 4→2, 5→6, 6→3, 7→7. 

 
In accordance with afore said it can be easily 
decomposed into a pair of semi-permutations for 8×8 
SEN: 

0 →0, 1→4, 6→3, 7→7 : 1st S-P;  
 4→2, 5→6, 2→1, 3→5 : 2nd S-P. 

 
Decomposing the same permutation for Benes network: 
 

0 →0, 1→4, 6→3, 7→7: 1st S-P; 
 4→2, 5→6, 2→1, 3→5 : 2nd S-P. 

 

 
 

 
 
 

 

 

 

 

 

 

Figure 1. Routing the first semi-permutation of  
Unshuffle permutation on 8 8 5-stage 

shuffle-exchange network. 
 
 

 

Figure 2. Routing the second semi-permutation of  
Unshuffle permutation on 8 8 5-stage 

shuffle-exchange network. 
 

 

 Figure 3. Routing the first semi-permutation of  
Unshuffle permutation on 8 8 5-stage 

 Benes network. 
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The second example is of larger size and concerns 
decomposing Butterfly permutation for 16×16 shuffle-
exchange and Benes networks. In this case the transition 
matrix is S0S1S2S3S3S1S2S0, and the period R=8.   The 
original permutation is: 
 

0→0, 1→8, 2→2, 3→10, 4→4, 5→12, 6→6, 7→14, 
8→1, 9→9, 10→3, 11→11, 12→5, 13→13, 14→7, 
15→15. 

 
More descriptive is its representing in the Table below. 

 
Table 1 

Butterfly permutation 16×16 
 

Source Input 
3210 SSSS  

Outputs 
0213 SSSS  

0000 (0) 0000 (0) 
0001 (1) 1000 (8) 
0010 (2) 0010 (2) 
0011 (3) 1010 (10) 
0100 (4) 0100 (4) 
0101 (5) 1100 (12) 
0110 (6) 0110 (6) 
0111 (7) 1110 (14) 
1000 (8) 0001 (1) 
1001 (9) 1001 (9) 

1010 (10) 0011 (3) 
1011 (11) 1011 (11) 
1100 (12) 0101 (5) 
1101 (13) 1101 (13) 
1110 (14) 0111 (7) 
1111 (15) 1111 (15) 

 

It is easy to see from the Table 1 that periodicity of outputs 
which belongs to the same switch in the output stage, i.e. 
differ only in the rightmost bit, is really equals 8. 

 
 

When decomposing afore said permutation for 16×16 
SEN the steps are following. 
Composing the list of antagonists at the input stage of the 
network (it is the same for any BPC permutation of a 
given size): 
 

0/8, 1/9, 2/10, 3/11, 4/12, 5/13, 6/14, 7/15. 
 

Composing the list of antagonists at the output stage is 
the next step. To be exact we find pair of inputs which 
evoke switch conflicts in the output stage for a given 
BPC permutation, e.g. simultaneous optical signals at 
inputs 0 and 8 would result in a switch conflict because 
corresponding outputs (0 and 1) belong to the same 
switch in the output stage of the network. All this can be 
easily seen from the Table 1. The rightmost component in 

the destination address is 0S , what means that we need to 

add 8 to the number of an input to find its antagonist from 
the viewpoint condition at the output stage: 
 

0/8, 2/10, 4/12, 6/14, 1/9, 3/11, 5/13, 7/15. 
 
The inputs shown together cannot be presented in the 
same semi-permutation; we delete the pair from the 
original permutation that uses the same switch either in 
an input or output stage.  
 

We take a look at the first pair 0→0 from the original 
permutation. 
From the lists of antagonist at inputs and outputs, 0 and 8 
belong to the same switch. 
Therefore, we delete 8→1 from the original permutation. 
 

Next, we take a look at the pair 2→2. 
From the lists of antagonist at inputs and outputs, 2 and 
10   belong to the same switch.  
Therefore, we delete 10→3 from the original 
permutation. 
 
This is continued until we find the following semi-
permutations: 
 
0→0, 1→8, 2→2, 3→10, 4→4, 5→12, 6→6, 7→14              : 1st S-P 
8→1, 9→9, 10→3, 11→11, 12→5, 13→13, 14→7, 15→15 : 2nd S-P 
 
When decomposing the same permutation for a 16×16 
Benes network, the list of antagonists for the first stage 
differs from that in the previous case and looks as 
follows: 
 

0/1, 2/3, 4/5, 6/7, 8/9, 10/11, 12/13, 14/15. 
 

However the list of antagonists concerning the output 
stage of the network is the same and produced in the 
same way by adding 8 to the number of an input: 

Figure 4. Routing the second permutation of  
Unshuffle permutation on 8 8 5-stage 

Benes network. 
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0/8, 2/10, 4/12, 6/14, 1/9, 3/11, 5/13, 7/15. 

 
The inputs shown together cannot be presented in the 
same semi-permutation; we delete the pair from the 
original permutation that belongs to the same switch in 
the same manner as in the previous case and as a result 
produce two following semi-permutations (the deleted 
pairs form another semi-permutation):  
 

0→0, 2→2, 4→4, 6→6, 9→9, 11→11, 13→13, 15→15   : 1st S-P 
1→8, 3→10, 5→12, 7→14, 8→1, 10→3, 12→5, 14→7   : 2nd S-P 

 
4 Conclusion 
In this paper an O(N) algorithm for decomposing BPC 
(bit-permute-complement) permutations into semi-
permutations is introduced. The work contributes to   
solving the problem of crosstalk-free routing in hybrid 
optical multistage interconnection networks (OMINs). 
The algorithm is based on employment the property of 
periodicity 0’s and 1’s within columns of transition 
matrices for permutations belonging to the aforesaid 
class, it provides crosstalk-free conditions in the first and 
last stages of an OMIN. The algorithm is much simpler 
than known ones but for arbitrary permutations. The 
availability of semi-permutations creates the potential for 
crosstalk-free routing   permutations for two passes 
through a network in an ideal case. Examples of 
decomposing some BPC permutations for (2n-1)-stage 
shuffle-exchange and Benes networks are given. The 
approach is applicable also to any type of banyan 
networks. The algorithm is implemented in C. A possible 
extension of the approach for providing crosstalk-free 
condition in intermediate stages of an OMIN is being 
studied. 
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