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Abstract - In recent times, it has become possible to 

parallelize many multimedia applications using multicore 

platforms such as CPUs and GPUs. In this paper, we propose 

a parallel processing approach for a multimedia application 

by using both the CPU and GPU. Instead of distributing the 

parallelizable workload to either the CPU or GPU, we 

distribute the workload simultaneously to both by using 

OpenCL. Based on our experimental results, using both the 

CPU and GPU, we confirm that the proposed parallel 

processing approach provides better performance than typical 

parallel processing approaches on account of maximal 

utilization of the given resources. 
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1 Introduction 

 As multicore processors are now widely available, 

parallel processing approaches have been developed for many 

applications. In this paper, we focus on parallelizing 

multimedia applications by using both the CPU and GPU. 

Especially, OpenCL [1] has been defined as a standard for 

heterogeneous parallel computing. It provides a cross-

platform framework for writing software able to run on 

different kinds of devices, from multicore CPUs to GPUs. 

That is, a parallel program written with OpenCL can be 

executed on either a CPU or GPU [2]. Generally, it is true that 

a GPU can provide better performance than a CPU for 

multimedia applications. However, current multicore CPUs 

are also powerful processors, and thus, when used together 

with a GPU, the total execution time can be reduced.  

 We propose a load balancing approach that can 

overcome the performance limits of either CPU-only or GPU-

only execution. We first attempt to achieve parallelism in a 

typical multimedia application (i.e., photomosaic application 

[3]) using OpenCL, and measure its execution time on the 

CPU and GPU, respectively. Then, we partition the 

parallelized workload into two parts, based on the relative 

performance of the GPU over the CPU and some parallel 

overhead. Finally, we assign the GPU-portion of the workload 

to the GPU by using a non-blocking command, and then 

assign the remaining parallel portion to the CPU without 

waiting for a result from the GPU. By reducing the idle time 

on either the CPU or GPU, we maximally overlap the GPU 

execution with the CPU execution.  

2 Heterogeneous processing of Photomosaic 

 A GPU has many cores with low clock frequency, 

whereas a CPU has few cores with high clock frequency. 

Because a GPU is based on a Single Instruction, Multiple 

Data (SIMD) architecture with many cores, it can efficiently 

compute the same operations over large images with no data 

dependency, as required by the photomosaic application. That 

is, the photomosaic application can perform better using a 

GPU than a CPU. A large number of studies of GPU-

equipped environments using only GPU-based parallel 

processing have been published [4-5]. However, a current 

multicore CPU is also a powerful processor, and thus, when 

used together with a GPU, the total execution time can be 

reduced. 

 To generate the photomosaic based on a CPU-GPU 

heterogeneous computing environment, we employ OpenCL 

[1]. Figure 1 shows the OpenCL code for generating the 

photomosaic using both the CPU and GPU. After initializing 

the CPU and GPU, they are each assigned a workload (i.e., 

some row pixels of the image), respectively. Because of the 

speed discrepancy between the CPU and GPU, we assign the 

workload carefully such that the possible idle time on either 

the CPU or GPU should be minimized. Then, the OpenCL 

clEnqueueReadBuffer function with non-blocking mode is 

used for execution of the code on the GPU. Finally, the 

OpenCL clFinish function is used to synchronize between the 

CPU and GPU. 

 

 The amount of workload assigned to each processor is 

determined by the clCreateBuffer function and the 

clSetKernelArg function. In this paper, we propose a simple, 

but effective load balancing approach in order to reduce the 

possible idle time on either the CPU or GPU. We first execute 

the OpenCL code for CPU-only (i.e., assign 100% of the 

workload to CPU) and GPU-only (i.e., assign 100% of the 

workload to GPU) cases. Using the speed discrepancy 

between the CPU and GPU, we set the initial workload to 

each processor. Note that the non-blocking mode of the 

execution also incurs some overhead on the host (i.e., CPU). 

OpenCL initialization with GPU 
clCreateKernel()
clCreateBuffer()
clSetKernelArg()

OpenCL initialization with CPU
clCreateKernel()
clCreateBuffer()
clSetKernelArg()

clEnqueueNDRangeKernel()

clEnqueueNDRangeKernel()

clEnqueueReadBuffer()

clEnqueueReadBuffer()

Start GPU Kernel

Start CPU Kernel

Non-blocking mode (GPU)

Blocking mode (CPU)

GPU 
Kernel Code

CPU
Kernel Code

clFinish()
 

Figure 1. OpenCL code for the photomosaic 
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Thus, we start searching for the optimal load distribution by 

comparing the execution time of the initial load distribution 

(i.e., determined by the speed discrepancy between the CPU 

and GPU) with that of the “CPU-less” load distribution (i.e., 

some of the initial CPU load is assigned to the GPU). If the 

CPU-less case provides faster execution time, this comparison 

is repeated until no more improvement can be found. As we 

will explain in the next Section, we can determine the optimal 

load distribution with very few comparisons.  

 Note that, determining the actual execution time on 

either the CPU or GPU analytically is a very difficult problem. 

Because the OpenCL code can be run on both the CPU and 

GPU, we can easily measure, with very few comparisons and 

fine tune the workload distribution, in addition to handling the 

speed discrepancy between the CPU and GPU (i.e., CPU-only 

and GPU-only cases). 

3 Experimental Result 

 For evaluating the proposed approach, we used two 

platforms. Platform 1 was composed of an AMD Phenom II 

X4 955 CPU (4 cores) and a GeForce GTX 285 GPU (336 

cores). Platform 2 was composed of an Intel Core i5-2500 

CPU (4 cores) and a GeForce GTX 560 GPU (336 cores). 

The target image size was 3072×2048, and the image was 

partitioned into 64×64 blocks of data for the photomosaic. 

That is, we need to assign each of the 32 (= 2048/64) row 

blocks to each processor. In order to obtain the speed 

discrepancy between the CPU and GPU, we first executed the 

photomosaic for CPU-only and GPU-only cases. For platform 

1, the GPU performs 2.3 times better than the CPU, whereas 

on platform 2, CPU performs 1.7 times better than GPU. 

Therefore, from the total of 32 row blocks, we set the initial 

load distribution CPU:GPU = 10:22 on platform 1 and 

CPU:GPU = 20:12 on platform 2.  

 Then, we compared the execution time of this initial 

distribution with that of CPU-less distribution. In our 

experiment for the minor tuning of the load distribution, we 

decreased the CPU workload in each comparison (i.e., the 

first iteration compared the workload ratio 10:22 with 9:23 for 

platform 1, and compared the workload ratio 20:12 with 

19:13 for platform 2). Because the workload ratio 9:23 was 

faster than 10:22 on platform 1, we compared the workload 

ratio 9:23 with 8:24 in the next iteration. Similarly, since the 

workload ratio 19:13 was faster than 20:12 on platform 2, we 

compared the workload ratio 19:13 with 18:14 in the next 

iteration. The comparison was terminated when improvements 

cannot be obtained. We derived the optimal load distribution 

for this example (i.e., workload ratio of CPU:GPU = 7:25 for 

platform 1 and 18:14 for platform 2).  

 Note again that our approach does not need to measure 

all the cases. In addition to CPU-only and GPU-only (for the 

initial load distribution), only the cases of workload ratio from 

10:22 to 6:26 (i.e., five workload ratio cases) were measured 

on platform 1, and only the cases of workload ratio from 

20:12 to 17:15 (i.e., four workload ratio cases) were measured 

on platform 2, in order to derive the optimal load distribution. 

Finally, Table 1 compares the speedup of CPU-only, GPU-

only, and the proposed approach.  

Table 1. Speedup comparison 

 
Speedup 

Platform 1 Platform 2 

CPU-only 

(CPU:GPU = 32:0) 
16.8 19.5 

GPU-only 

(CPU:GPU = 0:32) 
38.5 11.7 

Proposed approach 
45.0 

(CPU:GPU = 7:25) 

26.0 

(CPU:GPU = 18:14) 

 

4 Conclusions 

 We have proposed an efficient heterogeneous parallel 

processing approach to reduce the CPU idle time in a 

multimedia application. The approach using OpenCL, 

involves using both the CPU and GPU, and decreases total 

execution time resulting in better performance. 

 Experiments with the use of both the CPU and GPU for 

parallel processing have demonstrated that our parallel 

processing approach can provide a speedup of 45 (17% better 

performance than the typical parallel processing approach 

using GPU-only) on platform 1 and a speedup of 26 (222% 

better performance than using GPU-only) on platform 2. Our 

approach exploits the main advantage of OpenCL (i.e., 

portability across platforms) and derives the optimal load 

distribution without using complicated scheduling techniques. 
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