
A CPU and GPU Heterogeneous Processing of Multimedia Data by using OpenCL
1

Heegon Kim, Sungju Lee, Yongwha Chung, Daihee Park

Dept. of Computer and Information Science, Korea University, Sejong City, Republic of Korea

1
 "This paper is being submitted as a poster".

Abstract - In recent times, it has become possible to

parallelize many multimedia applications using multicore

platforms such as CPUs and GPUs. In this paper, we propose

a parallel processing approach for a multimedia application

by using both the CPU and GPU. Instead of distributing the

parallelizable workload to either the CPU or GPU, we

distribute the workload simultaneously to both by using

OpenCL. Based on our experimental results, using both the

CPU and GPU, we confirm that the proposed parallel

processing approach provides better performance than typical

parallel processing approaches on account of maximal

utilization of the given resources.

Keywords: CPU, GPU, Heterogeneous Computing, OpenCL

1 Introduction

 As multicore processors are now widely available,

parallel processing approaches have been developed for many

applications. In this paper, we focus on parallelizing

multimedia applications by using both the CPU and GPU.

Especially, OpenCL [1] has been defined as a standard for

heterogeneous parallel computing. It provides a cross-

platform framework for writing software able to run on

different kinds of devices, from multicore CPUs to GPUs.

That is, a parallel program written with OpenCL can be

executed on either a CPU or GPU [2]. Generally, it is true that

a GPU can provide better performance than a CPU for

multimedia applications. However, current multicore CPUs

are also powerful processors, and thus, when used together

with a GPU, the total execution time can be reduced.

 We propose a load balancing approach that can

overcome the performance limits of either CPU-only or GPU-

only execution. We first attempt to achieve parallelism in a

typical multimedia application (i.e., photomosaic application

[3]) using OpenCL, and measure its execution time on the

CPU and GPU, respectively. Then, we partition the

parallelized workload into two parts, based on the relative

performance of the GPU over the CPU and some parallel

overhead. Finally, we assign the GPU-portion of the workload

to the GPU by using a non-blocking command, and then

assign the remaining parallel portion to the CPU without

waiting for a result from the GPU. By reducing the idle time

on either the CPU or GPU, we maximally overlap the GPU

execution with the CPU execution.

2 Heterogeneous processing of Photomosaic

 A GPU has many cores with low clock frequency,

whereas a CPU has few cores with high clock frequency.

Because a GPU is based on a Single Instruction, Multiple

Data (SIMD) architecture with many cores, it can efficiently

compute the same operations over large images with no data

dependency, as required by the photomosaic application. That

is, the photomosaic application can perform better using a

GPU than a CPU. A large number of studies of GPU-

equipped environments using only GPU-based parallel

processing have been published [4-5]. However, a current

multicore CPU is also a powerful processor, and thus, when

used together with a GPU, the total execution time can be

reduced.

 To generate the photomosaic based on a CPU-GPU

heterogeneous computing environment, we employ OpenCL

[1]. Figure 1 shows the OpenCL code for generating the

photomosaic using both the CPU and GPU. After initializing

the CPU and GPU, they are each assigned a workload (i.e.,

some row pixels of the image), respectively. Because of the

speed discrepancy between the CPU and GPU, we assign the

workload carefully such that the possible idle time on either

the CPU or GPU should be minimized. Then, the OpenCL

clEnqueueReadBuffer function with non-blocking mode is

used for execution of the code on the GPU. Finally, the

OpenCL clFinish function is used to synchronize between the

CPU and GPU.

 The amount of workload assigned to each processor is

determined by the clCreateBuffer function and the

clSetKernelArg function. In this paper, we propose a simple,

but effective load balancing approach in order to reduce the

possible idle time on either the CPU or GPU. We first execute

the OpenCL code for CPU-only (i.e., assign 100% of the

workload to CPU) and GPU-only (i.e., assign 100% of the

workload to GPU) cases. Using the speed discrepancy

between the CPU and GPU, we set the initial workload to

each processor. Note that the non-blocking mode of the

execution also incurs some overhead on the host (i.e., CPU).

OpenCL initialization with GPU
clCreateKernel()
clCreateBuffer()
clSetKernelArg()

OpenCL initialization with CPU
clCreateKernel()
clCreateBuffer()
clSetKernelArg()

clEnqueueNDRangeKernel()

clEnqueueNDRangeKernel()

clEnqueueReadBuffer()

clEnqueueReadBuffer()

Start GPU Kernel

Start CPU Kernel

Non-blocking mode (GPU)

Blocking mode (CPU)

GPU
Kernel Code

CPU
Kernel Code

clFinish()

Figure 1. OpenCL code for the photomosaic

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'15 | 333

Thus, we start searching for the optimal load distribution by

comparing the execution time of the initial load distribution

(i.e., determined by the speed discrepancy between the CPU

and GPU) with that of the “CPU-less” load distribution (i.e.,

some of the initial CPU load is assigned to the GPU). If the

CPU-less case provides faster execution time, this comparison

is repeated until no more improvement can be found. As we

will explain in the next Section, we can determine the optimal

load distribution with very few comparisons.

 Note that, determining the actual execution time on

either the CPU or GPU analytically is a very difficult problem.

Because the OpenCL code can be run on both the CPU and

GPU, we can easily measure, with very few comparisons and

fine tune the workload distribution, in addition to handling the

speed discrepancy between the CPU and GPU (i.e., CPU-only

and GPU-only cases).

3 Experimental Result

 For evaluating the proposed approach, we used two

platforms. Platform 1 was composed of an AMD Phenom II

X4 955 CPU (4 cores) and a GeForce GTX 285 GPU (336

cores). Platform 2 was composed of an Intel Core i5-2500

CPU (4 cores) and a GeForce GTX 560 GPU (336 cores).

The target image size was 3072×2048, and the image was

partitioned into 64×64 blocks of data for the photomosaic.

That is, we need to assign each of the 32 (= 2048/64) row

blocks to each processor. In order to obtain the speed

discrepancy between the CPU and GPU, we first executed the

photomosaic for CPU-only and GPU-only cases. For platform

1, the GPU performs 2.3 times better than the CPU, whereas

on platform 2, CPU performs 1.7 times better than GPU.

Therefore, from the total of 32 row blocks, we set the initial

load distribution CPU:GPU = 10:22 on platform 1 and

CPU:GPU = 20:12 on platform 2.

 Then, we compared the execution time of this initial

distribution with that of CPU-less distribution. In our

experiment for the minor tuning of the load distribution, we

decreased the CPU workload in each comparison (i.e., the

first iteration compared the workload ratio 10:22 with 9:23 for

platform 1, and compared the workload ratio 20:12 with

19:13 for platform 2). Because the workload ratio 9:23 was

faster than 10:22 on platform 1, we compared the workload

ratio 9:23 with 8:24 in the next iteration. Similarly, since the

workload ratio 19:13 was faster than 20:12 on platform 2, we

compared the workload ratio 19:13 with 18:14 in the next

iteration. The comparison was terminated when improvements

cannot be obtained. We derived the optimal load distribution

for this example (i.e., workload ratio of CPU:GPU = 7:25 for

platform 1 and 18:14 for platform 2).

 Note again that our approach does not need to measure

all the cases. In addition to CPU-only and GPU-only (for the

initial load distribution), only the cases of workload ratio from

10:22 to 6:26 (i.e., five workload ratio cases) were measured

on platform 1, and only the cases of workload ratio from

20:12 to 17:15 (i.e., four workload ratio cases) were measured

on platform 2, in order to derive the optimal load distribution.

Finally, Table 1 compares the speedup of CPU-only, GPU-

only, and the proposed approach.

Table 1. Speedup comparison

Speedup

Platform 1 Platform 2

CPU-only

(CPU:GPU = 32:0)
16.8 19.5

GPU-only

(CPU:GPU = 0:32)
38.5 11.7

Proposed approach
45.0

(CPU:GPU = 7:25)

26.0

(CPU:GPU = 18:14)

4 Conclusions

 We have proposed an efficient heterogeneous parallel

processing approach to reduce the CPU idle time in a

multimedia application. The approach using OpenCL,

involves using both the CPU and GPU, and decreases total

execution time resulting in better performance.

 Experiments with the use of both the CPU and GPU for

parallel processing have demonstrated that our parallel

processing approach can provide a speedup of 45 (17% better

performance than the typical parallel processing approach

using GPU-only) on platform 1 and a speedup of 26 (222%

better performance than using GPU-only) on platform 2. Our

approach exploits the main advantage of OpenCL (i.e.,

portability across platforms) and derives the optimal load

distribution without using complicated scheduling techniques.

5 Acknowledgement

 This research was supported by Basic Science Research

Program(through the NRF funded by the Ministry of

Education, Science and Technology, No.

2012R1A1A2043679).

6 References

[1] J. Stone, D. Gohara, and G. Shi, “OpenCL: A Parallel

Programming Standard for Heterogeneous Computing

Systems,” Computing in Science and Engineering, Vol. 12,

No. 3, pp. 66-73, 2010.

[2] R. Gaetano and B. Pesquet-Popescu, “OpenCL

Implementation of Motion Estimation for Cloud Video

Processing,” in Proc. of International Symposium on

Multimedia Signal Processing, pp. 1-6, 2011.

[3] R. Silvers and M. Hawley, Photomosaics, Henry Holt,

New York, 1997.

[4] J. Cao, X. Xie, J. Liang, and D. Li, “GPU Accelerated

Target Tracking Method,” Advances in Intelligent and Soft

Computing, vol. 128, pp. 251-257, 2012.

[5] D. Davendra and I. Zelinka, “GPU Based Enhanced

Differential Evolution Algorithm: A Comparison between

CUDA and OpenCL,” Intelligent Systems Reference Library,

vol. 38, pp. 845-867, 2013.

334 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'15 |

