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Abstract— We study work-stealing based scheduling on a
cluster of nodes with CPUs and GPUs. In particular, we
evaluate locality aware scheduling in the context of dis-
tributed shared memory style programming, where the user
is oblivious to data placement. Our runtime maintains a
distributed map of data resident on various nodes and uses
it to estimate the affinity of work to different nodes to guide
scheduling. We propose heuristics for incorporating locality
in the stealing decision and compare its performance with
a locality oblivious scheduler. In particular, we explore two
heuristics that focus on minimizing the cost of fetching data
that is non-local. These heuristics respectively minimize the
number of remote data transfer events, and the number of
remote virtual memory pages fetched. Finally, we also study
the impact of different placements of the initial input, like
block cyclic, random and centralized, on the scheduler.

We implement and evaluate these schedulers within Uni-
corn, a heterogenous framework that decomposes bulk syn-
chronous computations over a cluster of nodes. Compared to
a locality oblivious scheduler, the average observed overhead
of our techniques is less than 8%. We show that even with this
overhead, average performance gain is between 10.35% and
10.6% in LU decomposition of a one billion element matrix
and between 12.74% and 14.55% in multiplication of two
square matrices of one billion elements each on a 10-node
cluster with 120 CPUs and 20 GPUs.
Keywords: Locality aware, Work stealing, Hybrid CPU-GPU
clusters, Distributed computing

1. Introduction
Distributed shared memory based frameworks like Unicorn

[1], Global Arrays [2] and X10 [3] allow programming
styles simpler than message passing. User only accesses
“memory” and the underlying data packing and communi-
cation is managed transparently by the runtime. Further, the
computational tasks are also scheduled and load-balanced
by the runtime. In this paper, we specifically aim to reduce
the time for which computation is blocked behind network
latency induced by remote memory access. We do this by
scheduling data transfer early, overlapping it with other
computation. Further, a number of heuristics are proposed to
schedule computation close to data. In particular, an affinity
is computed in a distributed fashion from partial information

available at each node and input to a greedy scheduler. We
develop these optimizations within Unicorn [1], a parallel
programming framework for clusters populated with both
CPUs and accelerators like GPUs.

Traditionally, locality-aware scheduling has centered on
cache-affinity and focus has been on improving cache reuse.
However, we argue that node-affinity is equally important for
hybrid clusters, especially because significant time can be
lost in fetching remote data and different devices are able to
consume data at different rates. GPUs, being computationally
more aggressive, cause more performance loss than CPUs if
they need to wait for remote data transfer. For maintaining
optimal data throughput (for achieving peak performance),
avoiding GPU stalls on data is important and having à priori
knowledge of data locality is useful, which Unicorn provides.
In distributed environments, node affinity is often left to the
user to specify [3]. In this paper, we instead explore inferring
affinity based on the data accessed by the computation. We
then inform the scheduling algorithm with this affinity value.

Unicorn [1] decomposes user’s tasks into many indepen-
dent subtasks. Subtasks are concurrent, and dependencies are
only between tasks. Unicorn transparently schedules each
spawned subtask to execute on an available computing device
in the cluster. Information about data that a subtask seeks to
use is specified early. Establishing subtask to node affinity
based on this anticipated usage then can guide preferential
scheduling of subtasks on nodes where most of its required
data is resident. This, however, may not be optimal. Schedul-
ing computation close to the largest resident data does not
consider the time required to transfer the remaining data,
which may offset the transfer time that is saved. For instance,
the remote data may be highly dispersed among other nodes.
Hence, we present other approaches, which instead of merely
maximizing data locality focus on minimizing the transfer
time of non-local data.

Note that all computations of affinity require an analysis
of the set of addresses accessed by each subtask. This
information, even if statically provided, is too large to store
and process and reductions are necessary. This is the subject
of this paper.

Many parallel and distributed programming frameworks,
including Unicorn, employ randomized work-stealing for
load balancing. Data locality of random work-stealing has
been extensively studied for shared memory programming
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and it has been largely found to be cache-unfriendly [4].
In this paper, we study the data locality of random work-
stealing for computations distributed on hybrid CPU-GPU
clusters and find that random work-stealing remains node-
memory unfriendly as well. We have incorporated locality-
aware strategies in work stealing as well to improve this.

As a base case, we start with trying to schedule a subtask
on a node where where most of its input resides, maximizing
local data. As shown in section 4, this technique reports an
average performance gain of 12.7% over a non locality-aware
work-stealer, while multiplying two square matrices of size
32768 ∗ 32768.

Next, we experiment with two strategies that instead of
maximizing local data, target the time to fetch remote data.
Our first strategy minimizes the number of remote data
transfer events or requests. It is based on the observation
that the incurred data fetch latency grows with data fragmen-
tation and the number of data transfer requests. Accessing
closely placed remote data is less expensive than accessing
discontiguous remote data, which may cost additional latency.
We observe an average performance gain of 14.55% with
this heuristic over locality oblivious scheduling for matrix
multiplication.

Our second strategy directly optimizes for the amount
of remote data. It minimizes the total number of virtual
memory pages to be fetched from remote nodes. Compared to
Unicorn’s locality oblivious scheduling, this strategy reports
a performance gain of 12.74% for matrix multiplication.

These strategies behave differently for different experi-
ments. For instance, our block LU factorization experiment
respectively reports an average performance improvement
(over Unicorn’s locality oblivious scheduler) of 10.35% for
local data heuristic, 10.35% for transfer events heuristic and
10.61% for remote data heuristic. We present more details
on these techniques, including their overheads, in section 4.

Finally, we experiment with a few common placements of
the initial input. A good scheduling strategy should adapt
to the change in input data availability at various nodes
in the cluster. We experiment with four different initial
data placements - centralized, row cyclic, column cyclic and
random. In the centralized scheme, all input data is placed
on one node and all others contain no data initially. In the
row cyclic scheme, blocks of rows of a pre-defined size are
cycled through the cluster nodes in order. The same is done
with the columns in the column cyclic scheme. In the random
scheme, 2D blocks of a pre-defined size are kept on randomly
selected nodes in the cluster. Results indicate that affinity
based heuristics outperform the locality-oblivious scheduler.

The primary contributions of this paper are:
1) We dynamically estimate affinity of computation to

nodes based on partial residency information. We show
that efficient affinity based scheduling is possible even
without full residency information.

2) We evaluate multiple heuristics to compute subtask-

node affinity scores, considering data locality and frag-
mentation.

3) We study the benefit of incorporating affinity in work-
stealing in heterogeneous environments. We also eval-
uate its robustness to different initial data placements.

2. Related Work
Data transfer overheads dominate many parallel applica-

tions. Locality aware scheduling is an effective way of reduc-
ing data transfers and the vital time spent in communication.
Locality awareness has been extensively studied for both
CPUs and GPUs. On CPUs, locality aware thread schedulers
focus on improving data cache reuse. On GPUs, the focus is
on enhancing accelerator kernels by scheduling GPU threads
on streaming multiprocessors with better locality.

The locality issue in multi-threaded computations has
received a lot of attention in the past. Acar et al. [4] minimize
cache invalidations in random work stealing to develop a
cache aware work-stealer for a single-core SMP. Similarly,
Philbin et al. [5] describe an algorithm that determines a
thread execution order that minimizes L2 cache misses. Tam
et al. [6] and McGregor et al. [7] group threads based on
cache locality for multi-threaded computations on multi-core
processors. Vaswani et al. [8] present an analytical model to
evaluate the effect of cache affinity on shared memory multi-
processing. Intel TBB [9] enhances cache hits by creating an
affinity between an iteration and a worker thread, which tends
to execute the same iteration over and over. SLAW [10] is an
adaptive locality aware scheduler for multi-core SMPs that
uses programmer provided locality hints. Huang et al. [11]
extends OpenMP [12] for specifying programmer controlled
locality that minimizes the cost of data accesses.

Among the GPU locality aware schedulers, Nugteren et
al. [13] reorder GPU threads automatically for improving
memory coalescing and bank locality. Sugimoto et al. [14]
improve cache locality for memory intensive texture-based
volume rendering by dynamically varying the width and
height of thread blocks so that memory access strides for
warps are minimized. Unkule et al. [15] improve memory
performance by automatically restructuring GPU kernels to
better exploit data locality at the register and shared-memory
levels. Lee et al. [16] analyze nested parallel computational
patterns (like Map Reduce) for data locality and map them
to the target GPU’s multi-dimensional thread hierarchy.

FLAME [17] and MAGMA [18] are linear algebra systems
that support dynamic scheduling on multiple GPUs. StarPU
[19] is another framework with scheduling capabilities on
multi-CPU plus multi-GPU architectures but most of its
schedulers are locality oblivious. XKaapi [20], however, is
a comprehensive runtime system with a locality-aware work-
stealing scheduler for a single node application using both
multi-core CPUs and many-core GPUs.

Some middleware have also been proposed for improving
locality awareness of data intensive applications. SLAM [21]
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is one such system that employs a distributed file system
and a data-centric scheduler to reduce data transfers while
reading from the file system. Similarly, VisDSI [22] proposes
a locality aware I/O solution for data visualization.

In this paper, we extend ideas in these systems to build an
efficient locality-aware work-stealing scheduler for a cluster
of nodes with CPUs and GPUs. We study various scheduling
heuristics with the aim of minimizing the time spent in data
transfer. Our techniques are implemented in Unicorn parallel
programming framework [1], which is briefly described in the
next section. We start with a simple node-affinity based work-
stealing scheduler that maximizes the use of local data and
gradually build other heuristics, which focus on minimizing
the remote access latency of non-local data.

3. Scheduling
We explore affinity based scheduling within the context of

Unicorn [1], a unified parallel programming framework for
CPUs and accelerators like GPUs. We first describe Unicorn’s
scheduling algorithm.

3.1 Unicorn
Unicorn models CPUs and accelerators as bulk syn-

chronous computing devices that operate in logically distinct
phases of local computation and synchronization. An applica-
tion programmer in this framework provides coarse-grained
interdependent tasks, and decomposes each into independent
and concurrent computation modules called subtasks. These
subtasks are autonomously scheduled by Unicorn runtime on
the available computing devices. All network communica-
tions are layered over MPI [23].

For input and output, Unicorn tasks use an abstract entity
called address space. A task may read/write any number
of disjoint address spaces; each is logically shared by the
subtasks but generally physically distributed across nodes
in the cluster. Subtasks operate on an address space using
transactional memory semantics, i.e., they check-out memory
in a local view before working on it and check-in memory
back to the global shared view once their computation is over.
The local view visible to a subtask is user controlled and is
called subtask’s memory subscription.

For efficiency, an address space has a designated owner
node that manages a distributed directory that maps addresses
to locations in the cluster. As subtasks execute and write
to an address, the corresponding directory entry is updated
locally by the node executing the subtask. Local views are not
invalidated until the end of the tasks following transactional
semantics. At the end of the task, all directory changes are
combined in batch mode by the address space owner. If the
location of an address changes from one node to another,
the former node is sent an update message. Thus, the owner
node always knows the true locations of all addresses. Other
nodes know true locations of addresses they have written to
in a previous task. For other addresses they may not know

the location and route their data transfer requests through the
owner.

Unicorn uses subtask stealing to balance load. At the
start of a task, Unicorn’s scheduler equally divides the
available subtasks among all devices in the cluster. Each
device executes its assigned set and after it executes the last
subtask in the set, it becomes ready to steal. It randomly
selects a victim device which parts with a contiguous chunk
of its outstanding subtasks and assigns them to the stealer.
In case the victim has nothing to be stolen, a fail message
is returned. The stealer then chooses another random victim.
This continues till the task is completed.

3.2 Affinity based scheduling
In this paper, we extend Unicorn’s scheduling to minimize

wait for remote data by preferentially scheduling subtasks
at nodes where their required data are likely to be already
in the local view. To effect this we compute affinities of
subtasks to nodes. Note that in Unicorn, a node’s address
space directory is guaranteed to contain true locations only
for addresses in its local view. Hence, a node cannot compute
the affinity of a subtask to other nodes. An alternative would
be to force update the entire address space directory on every
node (after every task) but a broadcast of this magnitude
is impractical for performance reasons. Another possibility
is to compute affinities of all subtasks centrally on the
address space owner, whose directory entries are complete.
However, a task typically uses many address spaces, each
with a potentially different owner. Thus, even this alternative
requires an expensive synchronization because a subtask’s
affinity must be based on the location of all of its data.

Hence, in this paper we explore heuristics using partial
affinity information. We let each node examine the address
ranges subscribed by all subtasks, only computing each
subtask’s affinity to itself. This is a much smaller list with
size equal to the number of subtasks in one task. This can
now be centrally gathered and processed. Unicorn’s scheduler
initially computes only the number of subtasks to assign to
devices on each node, under the premise that all subtasks are
created equal. We allow this step to proceed normally. Then
we resort to a greedy approach to tie specific subtask IDs to
devices on specific nodes. Nodes pick subtasks in a round-
robin fashion. Each node picks the remaining subtask with
the highest affinity score for it. If a node reaches its assigned
count, it is skipped. Within the nodes, blocks of subtasks
are assigned to its devices in the proportion the original
scheduler determines. For our small experimental cluster
of 10 nodes, the measured overhead of centrally collecting
and remapping scheduler assignments is less than one milli-
second. Significantly more time is spent in examining subtask
subscriptions. This overhead is discussed in section 4.

Among the contributions of this paper is the computation
of subtask-node affinity. A natural affinity score may be the
size of data resident in the local view of the node. However,
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this does not always afford the best speed-up. We also study
other heuristics that consider the size of remote data instead.
We study two variants of remote data affinity – one counts the
number of data requests sent to remote nodes and the other
that counts the number of address space pages fetched from
remote nodes. Both these scores are found by first querying
non-local regions from the address space directory and then
combining these regions into as large contiguous chunks
as possible. Unicorn’s network layer allows generalized 1D
and 2D data packing and we consider that in estimating the
number of requests (i.e., the number of chunks) and the size
of request (the total size of chunks divided by the page size).

In Unicorn, the victim assigns a number – call it s – of
subtasks to the stealer on the basis of their relative rates of
subtask execution (i.e., the number of subtasks executed per
second before the steal operation). We retain that principle,
but the actual subtasks assigned are the ones which have high
affinity scores for the stealer but low scores for the victim.
The victim chooses the s subtasks with the highest difference
between their affinity to the stealer versus to the victim.
As an aside, the stealer’s affinity scores are not computed
by the victim. We also do no include it with every steal
request. Rather, we piggyback nodes’ affinity scores on other
data transfer. Since stealing happens near the end of the
task, a stealer’s affinity array is highly likely to reach all
potential victims with negligible overhead. Nevertheless, if
the affinity scores have not reached earlier, it comes with the
request. In section 4, we report performance improvements
with this scheme as compared to Unicorn’s locality oblivious
work stealer, which may allow a subtask with entire data
on the victim’s node to be stolen by a device on some
other node with potentially no data, resulting in sub-optimal
performance.

Note that evaluating all subtasks (on all nodes) for determi-
nation of affinity scores is a limitation of Unicorn’s address
spaces. As reported in section 4, this has non-negligible
overhead. We explore evaluating fewer subtasks on all nodes.
This compromises the accuracy of affinity scheduling but
saves the time spent in computing affinity scores. In the next
section, we analyse the impact of reducing the number of
subtask subscriptions analyzed by each node.

4. Experiments and Analysis
In this section, we evaluate several node-affinity based

work-stealing schedulers employing different Unicorn bench-
marks. Our experiments were performed on a cluster of ten
nodes, each equipped with two 6-core Intel Xeon X5650 2.67
GHz processors with 48 GB of memory. All the machines
are powered with two Fermi generation Tesla M2070 GPU
cards, each having 448 cores running at 1.15 GHz and 5
GB of GDDR5 memory. The machines run CentOS 6.2 with
CUDA 5.5. For communication, we use Open MPI [24] 1.4.5
(over SSH) over a QDR InfiniBand [25] network.

We report our experiments on three benchmarks – image
convolution, square matrix multiplication and block LU fac-
torization. We have chosen these benchmarks as they have
been well studied in the parallel domain and they make good
candidates to stand for a wider range of applications. Image
convolution is computationally moderate while being low
on data transfer (part of which is overlapped with compute
by Unicorn’s pipeline). In contrast, matrix multiplication
involves massive data transfers and is computationally expen-
sive as well. LU factorization is an iterative interdependent
series of tasks. Image convolution is also iterative: a sequence
of filters is applied. The purpose of studying different kinds
of applications is to understand their response to different
locality-aware scheduling heuristics. All experimental results
are based on three trials.

We first briefly discuss the implementation of these bench-
marks over Unicorn and then study their responses to differ-
ent scheduling heuristics. The results highlight that locality
oblivious scheduling does not give optimal results for hybrid
CPU-GPU clusters mainly because it does not account for
the time spent in fetching of remote data. Our heuristics, on
the other hand, attempt to minimize the time spent in data
transfer.

In our image convolution experiment all color channels of
a 24-bit RGB image of size 43008 ∗ 32768 are convolved
with a 31 ∗ 31 filter. The input image is stored in a read-
only address space (initially distributed randomly across the
cluster nodes), logically divided into 336 blocks of size
2048 ∗ 2048. Each block is convolved using a separate
subtask. However, because convolution at boundaries requires
data from adjoining blocks, the input memory subscription
of a subtask overlaps with other subtasks’, potentially at all
four boundaries. The output image is generated in a write-
only address space. We convolve the filter 10 times with the
image and each iteration is carried out in a different task.
The experiment has a time complexity of O(nm), n being
the size of the image and m that of the filter.

In the matrix multiplication experiment two dense square
matrices of size 215 ∗ 215 each are multiplied to produce
the result matrix. Each input matrix is stored in a read-
only address space and the result matrix is stored in a
write-only address space of the task. Both input matrices
are initially distributed randomly across the cluster nodes.
The output matrix is logically divided into 2048 ∗ 2048
sized blocks and computation of each block is assigned to
a different subtask (which subscribes to all blocks in the
corresponding row of the first input matrix and all blocks
in the corresponding column of the second input matrix).
The CPU subtask callback is implemented using a single-
precision BLAS [26] function and the GPU callback uses
the corresponding CUBLAS [27] function. The experiment
has 256 subtasks and each runs a computation with time
complexity O(n3).

In the in-place block LU decomposition [28] experiment,
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Fig. 1: Locality aware scheduling - Graphs plot Execution Time (secs) versus Nodes

the input matrix (215 ∗ 215) is kept in a read-write address
space (initially distributed randomly across the cluster nodes)
and is logically divided into 2048 ∗ 2048 sized blocks. The
matrix is solved top-down for each of the 16 diagonal blocks.
For a matrix divided into n ∗ n blocks, solving for each
diagonal block (i, j) involves three tasks – LU decomposition
of the diagonal block (i, j), propagation of its results to other
blocks in its row (i, j + 1...n) and column (i + 1...n, j)
and propagation of these results to other blocks underneath
(i+1...n, j+1...n). The first of these three tasks is executed
sequentially while the other two are executed in parallel.
Time complexities of these tasks are O(n), O(n2) and O(n3),
respectively. One task is spawned per diagonal block which,
in turn, executes 3 tasks within, making a total of 3n−2 tasks
(where n is the number of diagonal blocks). The parallelism
within tasks (i.e., the number of subtasks) reduces as we
move down the matrix because the number of blocks to
be solved in parallel decreases. The CPU subtask imple-
mentation uses single-precision BLAS functions while the
GPU implementation employs the corresponding CUBLAS
routines.

All our experiments are written with no particular spatial
ordering of subtasks. Thus, the adjacent subtasks of these
experiments do not necessarily execute on adjacent address
space regions. This makes a better case for studying the
effectiveness of affinity heuristics. The Image convolution
experiment has the smallest memory footprint with a total
input size of 3.94 GB, followed by LU decomposition with 4
GB input. Matrix Multiplication has two input address spaces
of 4 GB each making the total input size 8 GB.

For the three benchmarks, Figure 1 plots the performance
of Unicorn’s locality-oblivious scheduler as well as the per-
formance of the local data based affinity and compares these
to remote data based affinity (transfer events and remote
data). The figure also records the cluster-wide data transfers
and subtask latency incurred in these experiments.

Results show that all our heuristics perform better than
Unicorn’s locality oblivious scheduler at nearly all data
points. For image convolution experiment, a maximum gain
of 22.3% (over Unicorn’s scheduler) is observed with remote
data heuristic for the eight node case. This is attributed to a
massive data transfer reduction from 36.2 GB (for Unicorn)
to 1.18 GB. A gain of similar magnitude is not reflected
in execution time because much of the transfer latency is
hidden behind other computation for the experiment. We find
that Unicorn’s work stealing results in most of the subtasks
actually being executed by GPUs (being more powerful
than CPUs for a SIMD computation like image convolution)
where computation of a subtask is overlapped with the data
transfer of the next. Even reducing the overall data transfer by
more than 96% does not make this compute bound pipeline
of GPU subtasks any faster.

For the matrix multiplication experiment, we observe the
maximum gain of 19.56% for the eight node case with
the transfer events heuristic. This result is attributed to a
29.25% reduction in data transfer, a 22% reduction in data
transfer events and a 0.6 sec gain in average subtask latency.
Note that this is a communication bound experiment and the
percentage reduction in data transfer has resulted in a similar
gain in performance after accounting for the 9.6% overhead
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Fig. 2: Incremental affinity subtask reduction

in affinity computation.
For the LU decomposition experiment, the maximum gain

of 12.67% is achieved by the local data heuristic for the
eight node case. This heuristic resulted in a 37.6% reduction
in total data transfer and has a reported overhead of 8%.
The experiment has moderate performance gains as compared
to data transfer savings as it is an iterative experiment,
with a mix of compute and communication bound tasks per
iteration.

All our heuristics perform fairly closely to each other.
Local data heuristic reports the lowest execution time for
experiments with small memory footprint (image convolution
and LU decomposition) when the number of nodes involved
is not more than six. When the number of nodes increases to
eight or ten, the remote data heuristic outperforms others. As
far as reduction in data transfer is concerned (in comparison
to Unicorn), we expect iterative experiments like image
convolution and LU decomposition to do better than the non-
iterative matrix multiplication like experiments as the benefits
of reducing data transfers are realized every iteration. We find
that transfer events heuristic is not able to bring down data
transfers in image convolution by the same margin as other
heuristics, resulting in its poor performance as compared
to the other two. This shows that an indirect heuristic that
optimizes data transfer events in an attempt to reduce actual
data transfers may not be as suitable as compared to other
heuristics that directly target maximizing local or minimizing
remote data.

Despite the performance improvements with our heuristics,
we observe significant overhead in affinity determination
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Fig. 3: Impact of initial data distribution pattern

(Figure 2). This is because our affinity determination algo-
rithm evaluates input memory subscriptions of all subtasks
of the application task on all nodes. In order to reduce this
overhead, we reduce the number of subtasks evaluated per
node (for affinity determination) and study the response of
local data heuristic to this change (Figure 2). The figure plots
execution time, data transferred and affinity determination
overhead when the number of subtasks evaluated (for affinity
computation) per node are gradually reduced from 100% to
50%. Results show that for all experiments, reduction in the
number of evaluated subtasks also reduces the effectiveness
of the heuristics. On an average, image convolution becomes
11.85% slower when the number of analyzed subtasks at
each node reduces from 100% to 50%. Similarly, the impact
on matrix multiplication is 8.33% and on LU decomposition
is 9.31%. In general, the magnitude of loss in performance
despite gains in the affinity task’s overhead makes this overall
less profitable.

As stated earlier, all our tasks have a random block
distribution of the initial data in their address spaces. A
good affinity scheduler should be agnostic to the changes in
initial data availability pattern. We study local data heuris-
tic with different initial placements of data and compare
its performance to that of Unicorn’s scheduler. Figure 3
evaluates matrix multiplication and LU decomposition (for
eight node case) for various schemes like centralized (entire
address space on one cluster node), row cyclic (rows of
2048 ∗ 2048 blocks placed in sequence on all cluster nodes),
column cyclic (columns of 2048 ∗ 2048 blocks placed in
sequence on all cluster nodes) and the default block random
(2048 ∗ 2048 blocks placed randomly on any cluster node).
Results show that our runtime maintains performance despite
the changes in data availability pattern. At all data points,
our heuristic results in better performance than Unicorn’s
scheduler. Further, for the matrix multiplication experiment
more favorable distributions like row cyclic and column cyclic
achieve proportionately higher gains with our heuristic in
comparison to other less favorable distributions.

Lastly, we study the effectiveness of our steal policy post
the initial distribution of subtasks. In the absence of external
factors, a good initial subtask distribution is effective in
balancing load for a large fraction of the task. However,
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towards the end of a task a few devices finish early and
try to steal work from others. In this case, we let the victim
assign those subtasks to the stealer that are high on affinity
scores for the stealer but low on affinity scores for the
victim. As compared to Unicorn’s affinity oblivious steal,
this scheme reduces data transfers by around 2.5% on an
average for all three experiments when affinity scores are
computed with remote data heuristic. This translates into
performance improvements up to 3.0%. When affinity scores
are computed with local data heuristic, however, we observe
mostly flat response with our scheme. For image convolution
experiment, it reports around 2.5% performance gain as
compared to Unicorn’s stealing while a 4.3% degradation
is observed with matrix multiplication.

5. Conclusions and Future Work
We present a study of locality aware work stealing in

the context of distributed shared memory programming on
hybrid CPU-GPU clusters. In particular, we augment Uni-
corn’s work-stealing scheduler with data locality and study
its characteristics. We evaluate two other heuristics that
attempt to reduce the time spent in transfer of non-local data
across the cluster. These heuristics, respectively minimize the
number of data transfer events and the size of remote memory
fetched. These heuristics are based on each node computing
affinity based only on the data it has. The results demonstrate
reasonable performance improvements with these heuristics
despite non-trivial overhead in address subscription analysis.
Given that Unicorn hides some network latency behind other
computation, sometime the gain in overall application speed
does not reflect the significant data transfer reduction, but in
a loaded network this gain can be useful. We believe that
with better analysis of subscription, it is possible to improve
affinity scores further.

All the benchmarks presented in this paper are regular.
However, we have experimented with a few irregular appli-
cations like page rank and initial results are promising, even
if incomplete at this time. We believe that experimenting
with more irregular applications and using larger clusters may
promote better understanding of these heuristics.

References
[1] Beri, Bansal, and Kumar, “A scheduling and runtime framework for

a cluster of heterogeneous machines with multiple accelerators,” in
Proceedings of the 2015 IEEE 29th International Symposium on
Parallel and Distributed Processing, ser. IPDPS ’15, 2015.

[2] Nieplocha et al., “Advances, applications and perf. of the global arrays
shared memory programming toolkit,” Int. J. High Perform. Comput.
Appl., vol. 20, no. 2, May 2006.

[3] Charles et al., “X10: An object-oriented approach to non-uniform
cluster computing,” in Proceedings of the 20th Annual ACM SIGPLAN
Conference on Object-oriented Programming, Systems, Languages,
and Applications.

[4] Acar, Blelloch, and Blumofe, “The data locality of work stealing,”
in Proceedings of the Twelfth Annual ACM Symposium on Parallel
Algorithms and Architectures, ser. SPAA ’00.

[5] Philbin et al., “Thread scheduling for cache locality,” in Proceedings
of the Seventh International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS VII,
1996, pp. 60–71.

[6] Tam, Azimi, and Stumm, “Thread clustering: Sharing-aware schedul-
ing on smp-cmp-smt multiprocessors,” in Proceedings of the 2Nd ACM
SIGOPS/EuroSys European Conference on Computer Systems 2007,
ser. EuroSys ’07, 2007, pp. 47–58.

[7] McGregor, Antonopoulos, and Nikolopoulos, “Scheduling algorithms
for effective thread pairing on hybrid multiprocessors,” in Proceedings
of the 19th IEEE International Parallel and Distributed Processing
Symposium, ser. IPDPS ’05.

[8] Vaswani and Zahorjan, “The implications of cache affinity on processor
scheduling for multiprogrammed, shared memory multiprocessors,” in
Proceedings of the Thirteenth ACM Symposium on Operating Systems
Principles, ser. SOSP ’91.

[9] “Intel Threading Building Blocks,” http://www.
threadingbuildingblocks.org/.

[10] Guo et al., “Slaw: A scalable localityaware adaptive work-stealing
scheduler,” in In 24th IEEE International Symposium on Parallel and
Distributed Processing, ser. IPDPS ’10.

[11] Huang et al., “Enabling locality-aware computations in openmp,” Sci.
Program., vol. 18, no. 3-4, Aug. 2010.

[12] Dagum and Menon, “OpenMP: An industry-standard API for shared-
memory programming,” IEEE Comput. Sci. Eng., vol. 5, no. 1, pp.
46–55, Jan. 1998.

[13] Nugteren, Braak, and Corporaal, “A study of the potential of locality-
aware thread scheduling for gpus,” in Euro-Par 2014: Parallel Pro-
cessing Workshops, ser. Lecture Notes in Computer Science, 2014,
vol. 8806.

[14] SUGIMOTO, INOb, and HAGIHARA, “Improving cache locality for
gpu-based volume rendering.”

[15] Unkule, Shaltz, and Qasem, “Automatic restructuring of gpu kernels
for exploiting inter-thread data locality,” in Proceedings of the 21st
International Conference on Compiler Construction, ser. CC’12, 2012.

[16] Lee et al., “Locality-aware mapping of nested parallel patterns on
gpus,” in Microarchitecture (MICRO), 2014 47th Annual IEEE/ACM
International Symposium on, Dec 2014.

[17] Quintana-Ortı́ et al., “Solving dense linear systems on platforms with
multiple hardware accelerators,” SIGPLAN Not., vol. 44.

[18] “Magma 1.4.1,” http://icl.cs.utk.edu/magma/, 2013.
[19] Augonnet et al., “StarPU: A unified platform for task scheduling

on heterogeneous multicore architectures,” Concurr. Comput. : Pract.
Exper., vol. 23, no. 2, pp. 187–198, Feb. 2011.

[20] Gautier et al., “Xkaapi: A runtime system for data-flow task program-
ming on heterogeneous architectures,” in IPDPS ’13, ser. IPDPS ’13,
2013, pp. 1299–1308.

[21] Yin et al., “Slam: Scalable locality-aware middleware for i/o in
scientific analysis and visualization,” in Proceedings of the 23rd In-
ternational Symposium on High-performance Parallel and Distributed
Computing, ser. HPDC ’14, 2014.

[22] Ng et al., “Visdsi: Locality aware i/o solution for large scale data vi-
sualization,” in Utility and Cloud Computing (UCC), 2013 IEEE/ACM
6th International Conference on, Dec 2013.

[23] Gropp et al., “A high-performance, portable implementation of the
MPI message passing interface standard,” Parallel Comput., vol. 22,
no. 6, pp. 789–828, Sep. 1996.

[24] Gabriel et al., “Open MPI: Goals, concept, and design of a next
generation MPI implementation,” in Euro. PVM/MPI Users Group
Meeting, 2004, pp. 97–104.

[25] InfiniBand Trade Association, InfiniBand Architecture Specification,
Release 1.1, 2002.

[26] Dongarra et al., “An extended set of FORTRAN basic linear algebra
subprograms,” ACM Trans. Math. Softw., vol. 14, no. 1, Mar. 1988.

[27] “The NVIDIA CUDA basic linear algebra subroutines,” https://
developer.nvidia.com/cuBLAS.

[28] Demmel, Higham, and Schreiber, “Block LU factorization,” http:
//www.netlib.org/utk/papers/factor/node7.html, 1995.

54 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |




