
Cloud-dew architecture: realizing the potential of

distributed database systems in unreliable networks

Yingwei Wang
1
 and Yi Pan

2

1
Department of Computer Science, University of Prince Edward Island,

Charlottetown, Prince Edward Island, Canada
2
Department of Computer Science, Georgia State University,

Atlanta, Georgia, United States

Abstract - Distributed database systems, which continue to

inspire new architectures and new applications, have great

potential in the modern computing world. In this paper, we

show that the newly-proposed cloud-dew architecture realizes

the potential of distributed database systems in the unreliable

network environment, and provides the possibility of web-

surfing without an Internet connection. Distributed database

systems are generic and versatile; the proper applications of

distributed database systems and their features will be

beneficial to users and service providers.

Keywords: distributed database system; cloud-dew

architecture; peer-to-peer; super-peer; transparency

1 Introduction

 A distributed database system is defined as a collection

of multiple, logically interrelated databases distributed over a

computer network [1]. Combined with other components,

distributed database systems [1-3] play central roles in various

applications. It is believed that the potential of distributed

database systems has not been realized fully as yet [1]. The

following paragraph describes one of the promising

possibilities of distributed database systems:

 “The failure of a single site, or the failure of a

communication link which makes one or more sites

unreachable, is not sufficient to bring down the entire system.

In the case of a distributed database, this means that some of

the data may be unreachable, but with proper care, users may

be permitted to access other parts of the distributed database”

[1].

 This description suggests that an application may still

work when a communication link fails. If the application is a

web application and the communication link is an Internet

connection, the possibility exists that the web application may

still work when an Internet connection is not available. Today,

web applications are daily essentials but an Internet

connection is not always available. This potential is very

attractive.

 As indicated in the above paragraph, the great potential

cannot be realized automatically, and “proper care” is

necessary.

 Is the great potential realizable? What is the proper care

to realize this great potential? A newly-proposed architecture

[4] shows that it is possible to do web-surfing without an

Internet connection. In this case, the proper care is the

architecture: cloud-dew architecture.

 Figure 1: Cloud-dew architecture

 Cloud-dew architecture is an extension of the client-

server architecture [4]. This architecture is illustrated in

Figure 1, and the client-server architecture is depicted in

Figure 2 for comparison. A new kind of server, dew server, is

introduced in this architecture. A dew server is a web server

that resides on a user’s local computer. The dew server and its

related databases have two functions: first, it provides the

client with the same services as the cloud server provides;

second, it synchronizes dew server databases with cloud

server databases. A dew server has the following features:

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'15 | 85

 (1) A dew server is a lightweight web server. Usually, it

serves only one user, the client.

 (2) A dew server usually stores only the user’s data. The

‘size’ (i.e., data amount in related databases) of a dew server

is much smaller than the ‘size’ of a cloud server.

Metaphorically, a cloud server is as big as a cloud, and a dew

server is as small as a drop of dew.

 (3) A dew server disappears easily. The dew server’s

data could disappear for different reasons, for instance:

hardware damage and failure or virus infections.

Metaphorically, a dew server is as weak as a drop of dew.

 (4) A vanished dew server can be recreated because all

dew server data has a copy in the cloud servers.

Metaphorically, dew will come out again after it disappears as

long as a cloud can provide all the necessities.

 (5) A dew server is accessible with or without an

Internet connection because it is running on the local

computer. Metaphorically, a cloud could be far away, but the

dew is close to you.

Figure 2: Client-server architecture

 Suppose a user stores personal data such as pictures and

messages on a website, say http://www.facebook.com. While

the data is available publicly, the user cannot access his/her

own data if an Internet connection is not available. The user

may decide to save a local copy of personal data in his/her

own computer. However, saving pictures and messages in

files may be awkward and difficult to manage.

 Suppose a website, in this case

http://www.facebook.com, adopts the cloud-dew architecture.

The website will be duplicated onto a dew server running on a

user’s local computer. The duplication is not exactly copying.

Generally speaking, the duplicated website in a dew server

(called a dewsite) and the original website could be different

in the following aspects:

 (1) The dewsite does not need to deal with a global

heavy load so that it could be much simpler than the website;

 (2) The dewsite will not include the proprietorial script

that the website does not want to release. Instead, publicly-

known technology will be used to implement similar

functionalities;

 (3) The content of a dewsite database could be limited;

 (4) A new functionality, which will synchronize with the

website, will be added to the dewsite.

 Once a dewsite duplicating http://www.facebook.com is

installed inside a dew server, the user may access the dewsite.

A local domain name system (LDNS) could be introduced so

that the above-mentioned dewsite can be accessed using the

URL http://mmm.facebook.com instead of http://localhost

[4]. This URL makes web-surfing without an Internet

connection more attractive.

 At the beginning, the dewsite does not have the user’s

personal data. To let the dewsite synchronize with the

website, the user needs to grant his/her

http://www.facebook.com credentials to the dewsite. These

credentials will be recorded by the dewsite and used in the

future. The dewsite will be able to synchronize with the

website http://www.facebook.com and the user’s personal data

and his/her friends’ related data will be transferred to the

dewsite database. The dewsite will always be available even

when an Internet connection is not available. If the user makes

changes on the dewsite when there is no Internet connection,

the synchronization will not occur immediately, but it will be

performed automatically when an Internet connection is

available later.

 If many websites adopt cloud-dew architecture and many

dewsites are available for a local computer to host, the

potential experience of web-surfing without an Internet

connection will become a reality.

 In this paper, we analyze the cloud-dew architecture

from the distributed database system viewpoint, and further

explore the potential of the distributed database systems.

2 Single-super-peer hybrid P2P network

 Cloud-dew architecture extends client-server

architecture with dew servers. Such extension gives clients the

power of servers. The new architecture is very similar to peer-

to-peer networks [5-10], with the cloud server (web server) as

the central node. Such a new structure can be classified as a

hybrid P2P network, or a super-peer system. In this system,

some nodes are given special tasks to perform. Apparently,

the web server node is a super-peer. In a standard hybrid P2P

network, there are two or more super-peers; if there is only

one super-peer in the system, this reduces to the client-server

architecture [1].

 In the cloud-dew architecture, a single-super-peer P2P

network may not reduce to client-server architecture because

each peer (dew server) is not just a client, but also a server.

The database is replicated between the super-peer and the

other peers. If the communication link between the super-peer

and one peer fails, the peer is partitioned from the whole

86 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'15 |

system. The dew server on this peer node will provide some

basic web services and database services so that the goal of

web-surfing without an Internet connection can be achieved.

 A peer node not only deals with the super-peer node, but

also can perform other actions with other peers. The real P2P

features are reflected by these actions and new applications

are made possible by these features.

 Single-super-peer P2P is worth exploring not only as the

underlying structure of cloud-dew architecture, but also as a

promising extension of client-server architecture. Single-

super-peer P2P is much simpler than multiple-super-peer P2P;

therefore, it is easier to implement. However, it is more

complicated than client-server architecture so that it can

support various distributed database applications.

3 Transparencies

 Transparency refers to separation of the higher-level

semantics of a system from lower-level implementation issues

[1, 11]. In other words, a transparent system "hides" the

implementation details from users. There are different forms

of transparency. In the context of this paper, the following

forms of transparency are of our concern: replication

transparency and distribution transparency [1].

 Replication transparency refers to whether the users

should be aware of the existence of copies or whether the

system should handle the management of copies and the users

should act as if there is a single copy of the data.

 Distribution transparency, or network transparency,

refers to that there would be no difference between database

applications that would run on a centralized database and

those that would run on a distributed database.

 Although it is desirable that replication transparency and

distribution transparency be provided as a standard feature of

DBMSs, this is not always the case. The essences of

transparency are: (1) to hide some details; (2) to create an

illusion.

 Suppose we are accessing a website, say

http://www.facebook.com. If an Internet connection is not

available, this website will not be accessible. We may

replicate the website and the database in the local node so that

this website will still be available even though there is no

internet connection. If replication transparency and

distribution transparency are both kept, we may need to

modify the behavior of the browser so that when we want to

access http://www.facebook.com, the browser will first try to

connect to the website server; if the website server is

available, everything is normal; if the website server is not

available, the browser will try to connect to the local server

and access the replicated website and database.

 The transparency hides all the detailed behavior of the

browser, hides the communication link failure, hides the

existence and the operation of a local website and related

database, and creates an illusion that there are no

communication link failures and the website

http://www.facebook.com is still available.

 However, does this transparency arrangement give the

user what he/she wants? The ability to still use a website when

there is no Internet connection is convenient. Nevertheless,

the offline website cannot provide exactly the same services

as the online website. For example, the online web application

changes the online database status as the user makes changes,

but the offline web application will change the online

database only once the user is online again. Additionally, the

offline web application can only access a portion of the online

database. For these reasons, the illusion created by the

transparencies is, perhaps, too lofty and is not realistic. A

more practical solution is not to keep the transparencies, and

to tell the user exactly what is being provided.

 In the cloud-dew architecture, a local domain name

system is provided. Such a local domain name system is based

on the fact that transparencies are not supported. Users know

the cloud and the dew. Using the example mentioned above, a

user knows the difference between http://www.facebook.com

and http://mmm.facebook.com,, and has different expectations

for these two related websites.

 To summarize the above discussions, although

transparency is generally considered a great feature, a

concrete application may not want to support transparency for

either of the following reasons:

 (1) The illusion created by the transparency is not

realistic in this application.

 (2) The user needs to be involved in some details that

otherwise would be covered by transparency.

4 Replication update strategies

 Distributed database systems can increase system

availability and remove single points of failure by replicating

data [1]. In the case of cloud-dew architecture, database

replication is the foundation of web-surfing without an

Internet connection. Although data replication has clear

benefits, it poses the considerable challenge of keeping

different copies synchronized. In a cloud-dew architecture

application, if there is no Internet connection between the

cloud and the dew and the user has changed data at the dew

level, the dew changes must be synchronized with the cloud

server (the central node) when it is possible. In other words,

mutual consistency, which refers to the replicas converging to

the same value, is necessary [3].

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'15 | 87

 In terms of replication update methods, two orthogonal

dimensions can be used to classify [1]. One dimension is

eager update and lazy update; eager update performs all of the

updates within the context of the global transaction; lazy

update propagates the updates sometime after the initiating

transaction is committed. The other dimension is centralized

update propagation and distributed update propagation; the

centralized update requires that the updates are first applied at

a master copy; the distributed update applies the update on the

local copy at the site where the update transaction originates.

Therefore, four combinations are possible: eager centralized,

eager distributed, lazy centralized, and lazy distributed.

 In the application context where the cloud-dew

architecture is proposed, Internet connections may get lost

constantly for an extended period of time. In such a situation,

eager replication update is not possible and not necessary.

Thus, lazy update is the choice. Between lazy centralized and

lazy distributed, the central super-peer node is often not

available when the Internet connection is lost. This leaves

only one applicable replication update method: lazy

distributed update. In this method, the propagation to other

copies is done asynchronously from the original transaction,

by means of refresh transactions that are sent to the replica

sites some time after the update transaction commits. Lazy

distributed replication protocols are the most complex ones

owing to the fact that updates can occur on any replica and

that they are propagated to the other replicas lazily [1, 12-14].

 Normally, the dew database is a partial replica of the

central database. The central database contains data of all

users, but the dew database can only contain data of the

current user. Therefore, the dew database is a subset of the

central database. In special cases, should the application

require, it is possible for the dew database to contain data

beyond the central database. There are two situations in which

part of the dew database is not replicated to the central

database. The first situation is that this portion of data is

trivial and only related to detailed execution of the dew

operations. The second situation is that this portion of data is

too important and the user does not want to take any risk in

sending this portion of data to the Internet. In either case, the

extra dew data will make more varieties of web application

possible.

5 Conclusions

 From a distributed database systems viewpoint, cloud-

dew architecture’s ability to provide a web-surfing experience

without an Internet connection is the realization of the

distributed database systems’ potential. The organization of

cloud-dew architecture can be considered as a single-super-

peer P2P network. Although multiple-super-peer P2P

networks are popular, the single-super-peer P2P network may

be a promising extension of the client-server architecture.

Transparencies are generally desirable features in the design

of distributed database systems, but they may not be always

desirable. In cloud-dew architecture, non-transparent solutions

are more suitable because users need to be aware of the

communications link failure and to expect a realistic

replacement. The local replica of a database not only is a

subset of the database, but also could have extra local data.

The local data is not replicated to the super-peer central

database because either the data is too trivial to be replicated

or is too important to be replicated. The extra local data could

lead to new applications. A distributed database system is a

generic, versatile structure; the proper use of its features may

bring great inspiration to the computing world.

Acknowledgement

 YW would like to gratefully and sincerely thank Prof.

Tamer Ozsu at the University of Waterloo. He has discussed

with YW about the direction of the cloud-dew architecture in

the early stage. His vision and guidance played an important

role in YW’s research.

References

[1] Ozsu and Valduriez. “Principles of Distributed Database

Systems”. Spinger Science, 2011.

[2] Marius Cristian MAZILU. “Database Replication”;

Database Systems Journal, Vol. I, No. 2, 33—38, 2010.

[3] Davidson, S. B., Garcia-Nilina, H., and Skeen, D.

“Consistency in partitioned networks”; ACM Comput. Surv.,

17(3):341-370, 1985.

[4] Yingwei Wang. “Cloud-Dew Architecture”;

International Journal of Cloud Computing, OPEN ACCESS,

http://www.inderscience.com/info/ingeneral/forthcoming.php?

jcode=ijcc, 2014

[5] Beverly Yang, Hector Garcia-Molina. "Designing a

Super-peer Network"; in Proceedings of the 19th International

Conference on Data Engineering (ICDE), Bangalore, India,

2003.

[6] Beverly Yang, Hector Garcia-Molina. "Comparing

Hybrid Peer-to-Peer Systems"; in Proceedings of the 27th

International Conference on Very Large Databases (VLDB),

Roma, Italy, 2001.

[7] Ulusoy, O. “Research Issues in peer-to-peer data

management”; in Proc. 22nd Int. Symp. On Computer and

Information Science, 1--8, 2007,

[8] Bernstein, P. A., Giunchiglia, F., Kementsietsidis, A.,

Mylopoulos, J., Serafini, L., and Zaihrayeu, I. “Data

management for peer-to-peer computing: A vision”; in Proc.

5th Int. Workshop on the World Wide Web and Databases,

89--94, 2002.

88 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'15 |

[9] Daswani, N., Garcia-Molina, H., and Yang, B. “Open

problems in data-sharing peer-to-peer systems”; in Proc. 9th

Int. Conf. on Database Theory, 1--15, 2003.

[10] Valduriez, P. and Pacitti, E. “Data management in large-
scale p2p systems”; in Proc. 6th Int. Conf. High Performance

Comp. for Computational Sci., 104--118, 2004.

[11] Umar Farooq Minhas, Shriram Rajagopalan, Brendan

Cully, Ashraf Aboulnaga, Kenneth Salem, Andrew Warfield.

“RemusDB: Transparent High-Availability for Database

Systems”; in Proc. of the VLDB Endowment, 4(11), 2011.

[12] Khuzaima Daudjee, Kenneth Salem. “Lazy Database
Replication with Snapshot Isolation”; in Proc. International

Conference on Very Large Data Bases (VLDB'06), 715--726,

2006.

[13] Khuzaima Daudjee, Kenneth Salem. “A Pure Lazy
Technique for Scalable Transaction Processing in Replicated

Databases”; in International Conference on Parallel and

Distributed Systems (ICPADS'05), 802--808, 2005.

[14] Khuzaima Daudjee, Kenneth Salem. “Lazy Database
Replication with Ordering Guarantees”; in Proc. International

Conference on Data Engineering (ICDE'04), 424--435, 2004.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'15 | 89

