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Abstract - For vision guided robotic assembly, one of the 
fundamental enablers is the robust estimation of 6 degree-of-
freedom (DOF) pose of industrial parts or subassemblies. In 
this paper, we present a method to estimate 6 DOF pose of 
automotive sheet metal panels using 3D closed loop boundary 
(CLB) features from a stereo vision. The 3D CLBs extracted 
are used to identify the corresponding CAD model and 
estimate its 6 DOF pose with reference to the camera frame.  
The novelty of the proposed method lies in the fact that 3D 
CLBs are extracted efficiently by matching 2D CLBs from the 
stereo pair with its search space confined to the region of 
interest (ROI) and by reconstructing only the 3D data of the 
matched CLBs using the epipolar constraint. Our proposed 
method of the 6 DOF pose estimation using 3D CLBs has been 
demonstrated and applied to several decklid inner panels at 
GM Research Lab. Experimental results indicate that the 
proposed method offer computation efficiency less than one 
second and high performance under occlusion: over success 
rate 90% under 15% of occlusion.  

Keywords: 6DOF pose estimation, 2D/3D closed loop 
boundary, and stereo camera.  

1 Introduction and related work 
  For vision-guided robotic assembly applications, a 

robust 6 DOF pose estimation is a critical enabler. Popular 
approach of object pose estimation [1] consists of 3 steps: (a)
propose feature correspondences (matches) between model 
features and image features, (b) computing a hypothesized 
geometric transformation (hypothesis generation), and (c)
check the agreement of image features and the transformed 
model features to confirm the suggested pose (hypothesis 
verification). This popular approach can be applied ideally to 
objects with rich 3D geometric features such as automotive 
inner panels shown in Figure 1 left.

Several methods of 6 DOF pose estimation from 3D 
shape features have been published recently. 3D planar 
surfaces and 3D cylinders [2] [3] are modelled using 3D point 
cloud data, and then these 3D features are used to determine
the object pose by matching 3D mesh surfaces from CAD 
model [4].  On the other hand, several feature descriptors and 
matching algorithms have been extended from 2D to 3D such 
as Harris 3D [5] and 3D SURF [6] on 3D meshes or 3D point 
cloud data. Additionally, Rusu proposed the viewpoint feature 
histograms for fast 3D pose estimation [7]. These descriptors 

are invariant to rigid body transformation, however, sensitive 
to noise and occlusion. Additionally they are significantly 
expensive in computation for 3D than 2D. 

Figure 1 An example of automotive inner body panel (left) 
outer body panel (right)

 In automotive bodyshop applications, outer body panels,
as shown in Fig. 1 right, generally have non-texture or few 
geometric features. Thus very low number of features, key 
points, or descriptors such as 3D Harris and 3D SURF can be 
detected even with high computation time. However, inner 
body panels with rich 3D geometric features are ideal objects 
to use 3D closed loop boundaries [8] where 3D images are 
generated from range images by applying morphology 
techniques [8]. However, reflective object surfaces are not 
well suited for the structured light camera. For this class of 
objects, the stereo vision is the best choice to construct 3D 
features from corresponding 2D features. Several stereo 
camera based circular detection have been proposed to 
determine location of object for real-time tracking [9].

 Stereo 3D reconstruction can be divided into two main 
approaches: dense [10] and sparse [11] stereo correspondence. 
The “dense” approach produces a disparity estimate at every 
pixel that can provide 3D information for all image region. 
The “sparse” is based on the corresponding 2D features. 
Correct correspondence between 2D features of paired images 
is a critical step. To reduce searching space in finding 
corresponding pair, an image rectification is a step where 2D 
projective transformations are used to form an epipolar line 
for depth recovery in one dimension space.

Our method is based on the “sparse” approach with 3D 
CLB features. Five major steps are needed to estimate 6 DOF 
pose of an automotive inner panel:
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1) Automatic 2D CLBs detection from edges extracted 
from two 2D images of stereo camera by Lanser’s
method [12] individually; 

2) The region of interest (ROI) identification based on 
the epipolar constraints with working distance;  

3) The stereo correspondence of 2D CLBs is established 
in its respective ROI using the shape and size 
indexes, and their 3D CLBs can be reconstructed 
quickly;

4) 6 DOF pose hypothesis generation between 3D 
model CLB and image CLBs;

5) A hypothesis and candidate transformation of 6 DOF 
pose for the object is generated using reconstructed 
3D CLBs and 3D CLBs of CAD model. The final 6
DOF pose is selected to minimize least-square-
fitting-error (LSE).  

The remainder of this paper is organized as follows: we 
present the stereo vision setup and the algorithm overview in 
Section 2, followed by detailed description of 2D CLB feature 
extraction, ROI identification, and 3D CLB reconstruction in 
Section 3. Next, we outline the 6 DOF pose estimation 
approach in Section 4. The experimental results and algorithm 
performance are summarized in Section 5. We discuss our 
future work and conclude our paper in Section 6. 

2 System and algorithm overview 
Figure 2 shows the stereo camera setup with detailed 

parameters listed in Table 1. Each camera is a 5 megapixel 
digital camera, specifically Prosilica GC2450C GigE [17]
from Allied Vision Technologies. The baseline distance is 
140mm which was fixed for another project. This baseline 
distance can be increased for a better Z resolution for the 
decklid inner part. Similarly we can select a longer focal 
length than current 8.6 mm for a better X and Y resolution.

Figure 2 Camera system configuration 

Table 1 Camera system configuration 
Baseline Distance (B) 140 mm
Focal Length (F) 8.6 mm
Pixel Number 2448 x 2050
Pixel size (δd) 0.0034 mm
X and Y resolution 0.513 mm (at Z depth = 1.3 m)
Z resolution 4.3 mm ( at Z depth = 1.3 m)

7.5 mm ( at Z depth = 1.8 m)

Figure 3 6DOF Pose Estimation Algorithm Overview 

 Fig. 3 above is the algorithm overview of our 6DOF 
pose estimation based on the stereo vision system. Halcon 
vision run-time environment [18] is used for 2D image 
acquisition from stereo cameras, 2D feature extraction, and 
final 3D pose display and update. We implemented an event 
loop with a fixed 0.5 second loop time within Halcom vision 
run-time environment. This means that 2D images and outputs 
are updated every 0.5 seconds. We developed an external 
library in C++ that is loaded into Halcon vision run-time event 
loop manager. 3D CLB construction algorithm, as described 
in Section 3, and 6DOF pose estimation algorithm, as 
described in Section 4, have been implemented in this external 
C++ library. 

3 3D closed loop boundary extraction 
 To speed up the image processing time in later steps of 
edge detection, we used color images to segment the inner 
panel object (silver grey) from the background clusters.  As 
shown in Fig. 4 below, we converted 2D images in RGB 
(Red-Green-Blue) color space to HSI (Hue-Saturation-
Intensity) color space, and then filtered the converted images 
based on S value (0 to 120) and I value (120 to 255).  The 
filtered image is then clustered to find the biggest connected 
cluster for the inner panel part. The smallest rectangle area 
that completely covers the biggest cluster is our region of 
interest (ROI) where all edges of the parts reside inside this 
rectangle. 
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Figure 4 Original image in RGB is filtered and segmented 
based on HSI values to segment and identify the smallest 

rectangular ROI area for the inner panel part. 

Our 3D CLB extraction algorithm consists of three major 
steps: 

1) Automatic 2D CLBs detection from edges extracted 
from two 2D images of stereo; 

2) the region of interest (ROI) identification based on 
the epipolar constraints;  

3) 3D CLBs reconstruction based on the shape and size 
similarity;

We describe each of these steps in next two sections in detail.   

3.1 2D closed loop boundary extraction 
 Closed edges usually are the openings on the inner panel   
whose start pixel and end pixel are the same. The definition is 
similar to the circle or ellipse but the shape of the closed edge 
are random. Edges detected by Lanser’s method [12] could be 
closed, opened or mixed. For each edge, we perform 
following steps to extract closed loop: 

1) Un-assign distance for all the point of a detected edge.  
2) Choose a point randomly, push it into a pop queue, set 

its distance to zero, and assign it as its parent.  
3) Take out a point from queue, search its neighbors and 

check each searched neighbor,  
a) if it is un-assigned, set its distance to pop distance 

plus one, assign the taken out point as its parent, push 
it to pop queue.  

b) On the other hand, if it is assigned already and 
assigned distance equal to distance of taken out point, 
then a closed loop exists. Go to Step 4. 

4) From two points, we go back follow their parents, when 
their parent are same, we remove them from the edges 
as closed edge.  Go Step 3. 

Repeat (3) (4) until all points are assigned.  

 Fig.5 left shows the image with all edges with in ROI, 
the middle image is for the detected closed edges only, and 

the right illustration shows the points and their assigned pop 
distance to detect 2D CLB. The point marked 0 is root parent, 
points on the edge are pushed to queue to assign distance, 
when the distance of taken out point and the distance its 
neighbor point equal(47), we start go back to find closed 
loop. 

All edge Closed edge CLB searching
Fig. 5. 2D Image with all edges (left) with detected CLBs only 
(middle) and the pop distance assignment for CLB detection.

3.2 3D closed loop boundary reconstruction 
 Until now, 2D closed loop edges are obtained for both 
left and right images captured from the stereo camera. Some 
of them appear on both images, otherwise others appear on 
left only or on right only. To construct 3D closed loop edges, 
corresponding pairs of 2D CLBs should be determined first. 
To reduce the search area and also to increase the matching 
accuracy, we use epipolar rule with the minimum (Zmin) and 
maximum (Zmax) distance to define a region of interest (ROI) 
in right image for each left CLB.

 Given a point, , of 2D CLB in the left image,  we can 
project this point to a 3D point at Z distance in 3D space by 
(1), and then project it to a 2D point ( in the right image 
by (2) as shown in Fig.6.   

Where: 

 is the intrinsic matrix of left camera and right 
camera respectively 

is the extrinsic matrix of right camera, while the 
extrinsic matrix of left camera is the identity matrix.  
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Figure 6 Epipolar rule

For each 2D CLB on the left image, we project two 
CLBs onto the right image using (2) at the minimum (Zmin)
and maximum (Zmax) distance. Two new projected CLBs,
CLBmin and CLBmax, are generated as shown in Fig.7 below.  
The corresponding 2D CLB on the right image should be 
within the range between CLBmin and CLBmax. This area is 
our region of interest (ROI) for 2D CLB correspondence. 

Figure 7 Two Projected CLBs at  Zmin and Zmax distance is 
the Region of Interest (ROI) for the corresponding right CLB.  

When several 2D CLBs exist in this ROI area, all of 
them should be considered as a candidate corresponding CLB. 
To identify precise correspondence we will search the CLBs 
in the bounded area using a shape similarity score 
as in (3). In other words, exactly matched CLBs satisfy two 
shape similarity conditions: the similarity of boundary length 
(Nc in pixel counts) and similarity of enclosed interior area 
(Ac).

                   (3) 

Where: 

 is the CLB boundary length in pixel counts 
for the left CLB and the right CLB respectively. 

 is the CLB enclosed interior area in pixel 
counts for the left CLB and the right CLB respectively.

 are the control parameters (default to 2 for equal 
weight of both conditions).  

Once the correspondence of left CLBs and right CLBs are 
established, we can determine point-to-point correspondence 
between two matched CLBs. 

 We first compute the central displacement  that is 
distance between the center point of right CLB and the center 
point of left CLB at Zmin.  For a point ( on the right CLB, 
there is a corresponding point ( on the left CLB that is on 
the line defined by two points (  as shown in Fig. 
7.  Corresponding pair of points on two CLBs,  and ,
satisfies two conditions in Eq.(4) below: (1) their 
displacement is same as the central replacement  and (2) 

is on the line formed by two points (

)                      (4) 

  

Where: 

 are corresponding points of left CLBs at 
, .

 is a point on the right CLB. 
 are the control parameters (default to 2 for equal 

weight of both conditions). 

 Once CLB to CLB correspondence and point-point 
correspondence on two corresponding CLBs are determined, 
we apply the triangulation rule to construct a 3D CLB with all 
boundary points. Fig. 8 below is one example result with two 
corresponding 2D CLBs and the resultant 3D CLB.  

Figure 8 One example result of 2D CLBs and 3D CLBs 

4 6 DOF pose estimation 
Once we have 3D CLBs from previous steps, we can 

estimate 6 DOF pose of the decklid part with its CAD model. 
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Given the CAD model feature points M ( where its ith column 
is a 3D point Mi, i=1,…,n)  and the image feature points F
(where its jth column is a 3D point Fj, j=1,…,m) from the 3D 
CLBs, we have a rigid body transformation relationship 
between these two sets of 3D  points as illustrated in Eq. (5) 
below: 

                   (5) 
Where: T is a 4 by 4 homogeneous transformation matrix 
that includes a 3 by 3 rotation(R) and 3 by 1 translation (t). 

 In order to use (5) to estimate 6DOF pose, the 
corespondance between the model point Mi and the image 
point Fj has to be given or known. Without the prior known 
correpondenc, an iterative closest points (ICP) [14] is a well-
known method to compute the transformation matrix T[R|t].
With nosiy feature data F,  a least-square based fitting method 
[13][15] should be used.  However, both methods take a long 
time to yield a result as they are interative methods. To speed
up the 6DOF pose estimation algorithm, we can establish a 
good initial correspondence estimate among M and F using 
their shape similarity as shown in our algorithm flow chart in 
Figure 9 below.   

Figure 9 6DOF pose estimation algorithm 

  For each CLB, we compute its centeral 3D position 
and  as the average position of all CLB boundary points in 
the feature set and in the model set respectively.

         (6b)

We use similar shape to check all possible cases. This will 
significantly reduce the number of candidate pairs.  For each 
similar shaped CLBs, the least square error between model 
and object is computed. Assume that, M’ is a matrix form of 
points M’i of n points of model with each column for one 
point on model CLB, and F’ is matrix form of points F’j of m 

points of     image features with each column for one point on 
feature CLB, Eq. (5) becomes Eq. (7) below:  

                     (7)

  When the correspondence of n points are known by the 
shape similarity test, we can compute the singular value of 
decomposition [16] of the least square error fitting as in (8)
below:  

(8) 

Where: V and  are orthonormlaized engien vectors 
associated with n largest eigenvalue in S.  

Then the rotation matrix and the translation vector can be 
estimated by 

                        (9) 
                (10) 

The least square fitting error is computed for all candidate 
transformation T[R,t] and the one with the minimum least 
square error is chosen as final estimated 6DOF pose.

(a) Model CLBs
(b) Image CLBs

(c) Estimated 6DOF pose with the minimum least square error
Fig. 10. One Example of 6DOF Pose estimation.  

5 Experimental results and performance 
 In this section, we evaluate the performance of our 
algorithm for both computation and accuracy. The first major 
part in our algorithm is the 3D CLB reconstruction from two 
stereo images as detailed in Section II. Our 2D CLB matching 
and 3D CLB reconstruction has a better performance than two 
well-known methods, sum of absolute differences (SAD) and 
sum of squared differences (SSD), for stereo matching in term 
of measuring mean distance error (MDE). We use the window 
size 9x9 and find the minimum cost along the epipolar line 
from to with the 2 pixel gap. We set parameters 

to 2 for equal weights for all four factors. Both 3D
methods search the corresponding points in limited area 
defined by epipolar constraint and the known range of CLB 
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depth. We vary the object’s position in two directions: linearly 
along camera Z axis up and down by 10 cm and rotationally 
about the Y axis by 3 degree. Figure 11 below shows the 
mean distance error (MDE) of our method in comparison with 
SAD and SSD methods for the translational position change 
(upper graph) and rotational position change (lower graph)   

Fig. 11. Mean distance error (MDE) of our method in 
comparison with SAD and SSD 

 The second major part in our algorithm is the 6DOF 
pose estimation from the image 3D CLBs and the model 3D 
CLBs. To evaluate accuracy of 6DOF pose estimation, we
rotate the object’s position about the camera Z axis by 6 
degree for 60 increments to complete the whole 360 degree 
rotation at the fixed Z distance (1.5m). Our model is consisted 
of 50 CLBs with 15 of them that are bigger than 2.5cmx2.5cm.
These big CLBs play a bigger role to the 6DOF pose 
estimation than other remaining CLBs since they have 
significant shape information while smaller shapes are not 
distinguish enough and mainly used for calculate least square 
fitting error.  

Table 2 Error in Estimated 6DOF Pose 
Euclidean 
Distance 
Error
ratio

X
(mm)

Y
(mm)

Z
(mm) (deg) (deg)

(deg)

Our 
7.52 mm / 

5 mm 3.21 3.12 6.14 1.67 1.74
2.56

Y.Lee[8]
1.8 mm/ 
0.4 mm 1.4 0.8 0.5 - -

-

 Table 2 above lists the comparison of our estimated 
6DOF pose with Lee’s method [8]. Our method use stereo 
camera to test the decklid object shown in Fig 1.a at 1.5 m, 

Lee’s method use high quality camera to test object in 
working distance from 1m to 1.5m.  

The large positional error along X, Y, and Z in our method is 
most due to the resolution in our stereo camera setups. A high 
quality camera is used in Lee’s case [8]. Therefore it is not a 
equivalent comparison. However, if we use a ratio to 
normalize the depth resolution in each camera system, the 
ratio of Euclidean distance error and the depth resolution, our 
method yields the ratio of 1.5 ( 7.52mm/5mm)  which is better 
than the ratio of 4.5 (1.8/0.4) in Lee’s method.

 In addition, we also verified the performance of our 
6DOF pose estimation with occlusion. As the number of 
CBLs are occluded, the estimated pose success rate will 
decrease as expected. At fixed Z distance of 1.5 m, we vary 
the object’s position in X direction as a portion of the object is 
out of the view gradually. Fig.12 is the graph which shows the 
decreased number of valid CLBs (upper) where Num of REC 
indicate big CLBs and the reduced success rate (below) for 
the estimated 6 DOF pose. The success rate from 0 to 30% of 
occlusion obtained from experiments, and this value from 30% 
to 50% of occlusion is estimated. 

Figure 12 Estimated 6DOF Pose Performance with occlusion 

 Our method can be used in real-time application with the 
total computation time at 1.0 second. Roughly 0.85 second is 
for two 2D CLB extraction (0.5 seconds) and CLB 
correspondence (0.35 seconds) in Halcon run-time 
environment.  6DOF pose estimation using 3D CLBs takes 
0.15 seconds with a DLL library written in C++. 

6 Conclusion 
In this paper, we present a fast and robust method to 

estimate 6 DOF pose of automotive inner panels using 3D 
CLBs from a stereo vision. First, 2D closed loop boundaries 
are extracted from two RGB images of the stereo pair. Next, 
the region of interest (ROI) in the paired image is determined 
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based on the epipolar constraints within the known working 
distances. Then, the stereo correspondence of 2D CLBs is 
established in its respective ROI using the shape and size 
indexes, and their 3D CLBs can be reconstructed quickly. 
Finally, a hypothesis and candidate transformation of 6 DOF 
pose for the object is generated using reconstructed 3D CLBs 
and 3D CLBs of CAD model. The final 6 DOF pose is 
selected to minimize least-square-fitting-error (LSE). 

 We evaluate the performance of our 6 DOF pose estimation 
algorithm and demonstrate that the mean distance error (MDE) 
of our method is better than two well-known methods, SAD 
and SSD.  However, the absolute error in our results is worse 
than Lee’s method due to the poor depth resolution (the z 
resolution is 5mm at z = 1.5 meters). When measured by 
normalized error, i.e. with mean distance error to depth 
resolution ratio, our method performs better. We also evaluate 
the occlusion effect on the appearance of 3D CLB features 
and pose correct rate. As expected, these performance 
deteriorates as the number of distinguish 3D CLBs decreases 
from 12 to 4.  

Our 6DOF pose estimation algorithm is fast, within 1 
second, to be used for real-time applications. We have applied 
this method to several decklid inner panels at the 
manufacturing research lab, GM Global R&D Center, Warren, 
MI, US.  
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