Int'l Conf. IP, Comp. Vision, and Pattern Recognition | IPCV'15 |

Gesture Recognition with the Leap Motion Controller

R. McCartney', J. Yuan', and H.-P. Bischof" >
!Department of Computer Science, Rochester Institute of Technology, Rochester, NY, USA
2Center for Computational Relativity and Gravitation, Rochester Institute for Technology, Rochester, NY, USA

Abstract— The Leap Motion Controller is a small USB
device that tracks hand and finger movements using infrared
LEDs, allowing users to input gesture commands into an
application in place of a mouse or keyboard. This creates
the potential for developing a general gesture recognition
system in 3D that can be easily set up by laypersons using
a simple, commercially available device. To investigate the
effectiveness of the Leap Motion controller for hand gesture
recognition, we collected data from over 100 participants
and then used this data to train a 3D recognition model
based on convolutional neural networks, which can rec-
ognize 2D projections of the 3D space. This achieved an
accuracy rate of 92.4% on held out data. We also describe
preliminary work on incorporating time series gesture data
using hidden Markov models, with the goal of detecting ar-
bitrary start and stop points for gestures when continuously
recording data.

Keywords: Gesture recognition, CNN, HMM, deep learn-
ing

1. Introduction

There was a time when communication with programs
like ‘vi’ [1] was done via keyboard only. The keyboard was
used to input data and to change the execution behavior of
the program. The keyboard was a sufficient input device for
a one-dimensional system.

At the moment that operating systems moved to GUI’s the
use of a mouse became handy to switch between graphical
applications and exert control over them. The first notable
applications making use of a mouse came when Microsoft
introduced a mouse-compatible Word version in 1983 and
when Apple released Macintosh 128 with an updated version
of the Lisa mouse in 1984 [2].

Visualizations and games moved parts of computing into 3
dimensional spaces. The visualizations of these 3D worlds
are either projected onto the 2D space of your screen or
experienced with stereoscopic viewing devices. The control
of these 3D worlds is not easy, some would say extremely
unnatural, with a 2D mouse. The availability of 3D input
devices allows for better control of this 3D world, but
requires gesture recognition algorithms in order to use such
devices in a natural way. This paper evaluates different
gesture recognition algorithms on a novel dataset collected
for such purposes.

2. Problem Description

The inputs coming from a mouse or a keyboard are
discrete and have limited interpretation. A mouse down event
is a single event at a given position on the screen, and
dependent on the environment carries information with it
about the position of the mouse pointer, time of the click,
and so on. A double or triple click is an event over time,
and will only count as such if the click events happen within
a predefined window. Apple’s Magic Mouse [3] somewhat
opened the door to 2D gestures, allowing users to swipe
between pages or full screen applications and to double tap
for access to mission control.

A keyboard or mouse sends an event only if a key or
button is pressed or the mouse is moved. They do not start to
send events as your hand approaches the device. In contrast,
3D input devices, like the Leap Motion controller!, start to
send frames as soon as they are turned on. These devices
send a series of positions in space over time of whatever
they detect in their views. The problem becomes to convert
the output of these devices into something meaningful.

The output from motion sensing devices comes in two
flavors: high-level and low-level. Low-level output is a series
of frames where each frame contains information on what
the device has sensed, such as the number of fingers, finger
tip positions, palm position and direction, etc. The frame rate
depends on the user settings and compute power, but 60 or
more frames per second is typical. High-level output is the
interpreted version of the raw frame data. This allows users
or application developers to be informed when a particular
predefined gesture is recognized.

We are interested in gesture recognition algorithms. There-
fore, we are interested in the low-level information in order
to interpret this into high-level information for others. The
next section will describe the device we have used as our
sensor, a relatively new and inexpensive motion sensing
device. Then, we will discuss the gestures used and the
dataset we captured for such purposes. Following that, we
will discuss the particular form of dimensionality reduction
and normalization we used on this data. The last sections
will discuss the different gesture recognition algorithms we
used as well as their results.

Thttps://www.leapmotion.com/

Int'l Conf. IP, Comp. Vision, and Pattern Recognition | IPCV'15 |

3. Leap Motion Device

There are many motion sensing devices available in the
marketplace. The Leap Motion controller was chosen for
this project because of its accuracy and low price. Unlike
the Kinect, which is a full body sensing device, the Leap
Motion controller specifically captures the movements of a
human hand, albeit using similar IR camera technology.

The Leap Motion controller is a very small (1.2 x 3 x
7.6cm) USB device [4]. It tracks the position of objects in
a space roughly the size of the top half of a 1m beach ball
through the reflection of IR light from LEDs. The API allows
access to the ‘raw’ data, which facilitates the implementation
of gesture recognition algorithms. A summary of the spec-
ifications of the API: Language support for Java, Python,
JavaScript, Objective C, C# and C++; data is captured from
the device up to 215 frames per second; the precision of the
sensor is up to 0.0lmm in the perception range of 1 cubic
feet, giving it the ability to identify 7 x 10° unique points
in its viewing area.

The SDKv2 introduced a skeletal model for the human
hand. It supports queries such as the five finger positions
in 3 dimensional space, open hand rotation, hand grabbing,
pinch strength, and so on. The SDK also gives access to
the raw data it sees. Here we use this device to implement
and analyze different gesture recognition algorithms from a
dataset collected by this API.

4. Previous Work

One commonly used method of recognition involves an-
alyzing the path traced by a gesture as a time series of
discrete observations, and recognizing these time series in a
hidden Markov model [5]. Typically, the discrete states are
a set of unit vectors equally spaced in 2D or 3D, and the
direction of movement of the recorded object between every
two consecutive frames is matched to the closest of these
state vectors, generating a sequence of discrete directions
of movement for each gesture path [6], [7], [8]. Hidden
Markov models have also been used to develop online
recognition systems, which record information continuously
and determine the start and stop point of a gesture as it
collects data in real time [8], [9].

Another class of methods for recognition of dynamic
gestures involves the use of finite state machines to represent
gestures [10], [11]. Each gesture can be represented as a
series of states that represent regions in space where the
recorded object may be located. The features of these states,
such their centroid and covariance, can be learned from
training data using methods such as k-means clustering.
When evaluating a new gesture, as the recorded object travels
through the regions specified by these states, these sequences
of states are fed into finite state machines representing each
of the trained gestures. In this way, gestures whose models
are consistent with the input state sequences are identified.

Neural networks have typically been used to recognize
static gestures, but recurrent neural networks have also been
used to model gestures over time [12], [13]. One of the
main advantages of this type of model is that multiple inputs
from different sources can be fed into a single network,
such as positions for different fingers, as well as angles [13].
Additionally, convolutional neural networks and deep learn-
ing models have been used with great success to recognize
offline handwriting characters [14], which can be considered
analogous to hand gestures under certain representations as
shown in this paper. A similar problem domain of gesture
recognition, although in a lower dimensional space, is that of
handwritten text recognition, where long-short term memory
networks are the current state of the art [15], [16], [17].

5. Dataset

Fig. 1: Leap Motion Visualizer

In order to examine various machine learning algorithms
on gestures generated through the Leap Motion controller,
we needed to have a dataset that captured some prototypical
gestures. To this end, a simple GUI was created that gave
users instructions on how to perform each of a chosen set
of 12 hand gestures and provided visual feedback to the
participant when the system was in the recording stage. All
gestures were performed by holding down the ‘s’ key with
the non-dominant hand to record and then using the primary
hand to execute the gesture at a distance 6" to 12" above the
top face of the controller. The code for this capture program
is located online?.

Students and staff on the RIT campus used the GUI
to record their versions of each of 12 gesture types: one
finger tap, two finger tap, swipe, wipe, grab, release, pinch,
check mark, figure 8, lower case ‘e’, capital ‘E’, and capital
‘F’. The one and two finger taps were vertical downward
movements, performed as if tapping a single or set of keys on
an imaginary keyboard. The swipe was a single left to right
movement with the palm open and facing downwards, while
the wipe was the same movement performed back and forth

Zhttps://github.com/remccartney/DataCollector

several times. The grab motion went from a palm open to a
closed fist position, while the release was performed in the
opposite direction. Pinch was performed with the thumb and
forefinger going from open and separated to touching. The
check mark was performed by pointing just the index finger
straight out parallel to the Z axis, then moving the hand in
a check motion while traveling primarily in the X-Y plane.
The figure 8, lower case ‘e’, capital ‘E’, and capital ‘F’
were all similarly performed by the index finger alone, in the
visual pattern indicated by their name in the plane directly
above the Leap Motion controller. The native Leap Motion
Visualizer shown in Figure 1 was available for each subject
to use alongside of our collection GUI while performing the
gestures if so desired, providing detailed visual feedback of
the user’s hand during motion.

As each gesture was performed, the Leap Motion API
was queried for detailed data that was then appended to
the current gesture file. The data was captured at over 100
frames per second, and included information for the hand
such as palm width, position, palm normal, pitch, roll, and
yaw. Positions for the arm and wrist were also captured.
For each finger 15 different features were collected, such as
position, length, width, and direction. In all, we collected
116 features for each frame of the recording, with the
typical gesture lasting around 100 to 200 frames, although
this average varies greatly by gesture class. Files for each
gesture are arranged in top-level folders by gesture type,
inside which each participant in the study has an anonymous
numbered folder that contains all of their gesture instances
for that class. Typically, each user contributed 5 to 10
separate files per gesture class to the dataset, depending on
the number of iterations each participant performed.

In all, approximately 9,600 gesture instances were col-
lected from over 100 members of the RIT campus, with
the full dataset totaling around 1.5 GB. The data is hosted
online for public download®. Individual characteristics of
each gesture vary widely, such as stroke lengths, angles,
sizes, and positions within the controller’s field of view.
Some users had used the Leap Motion before or were
comfortable performing gestures quickly after starting, while
others struggled with the basic coordination required to
execute the hand movements. Thus, there is considerable
variation within a gesture class, and identifying a particular
gesture performed given the features captured from the Leap
Motion device is not a trivial pattern recognition task.

6. Image Creation

In its raw form, the varying temporal length of each ges-
ture and large number of features make it difficult to apply
traditional machine learning techniques to this dataset. Thus,
a form of dimensionality reduction and normalization is
needed for any learning technique to be effectively applied.

3http://spiegel.cs.rit.edu/~hpb/LeapMotion/

Int'l Conf. IP, Comp. Vision, and Pattern Recognition | IPCV'15 |

For the convolutional neural network (CNN) that we employ
in Section 7, this dimensionality reduction took the form
of converting each instance of real-valued, variable length
readings into a fixed-size image representation of the gesture.

CIOIC
13

Fig. 2: One instance example of each of the gestures used
for the CNN experiment

Fig. 3: The mean image of the dataset on the left and the
standard deviation on the right used for normalization

CNNss traditionally operate on image data, using alternat-
ing feature maps and pooling layers to capture equivariant
activations in different locations of the input image. Due to
the complex variations that are nevertheless recognizable to
a human observer as a properly performed gesture, CNNs
offer a way to allow for differences in translation, scaling,
and skew in the path taken by an individual’s unique version
of the gesture. To transform each gesture into constant-sized
input for the convolutional network, we created motion im-
ages on a black canvas using just the 3 dimensional position
data of the index finger over the lifetime of the gesture.
That is, for each frame we took the positions reported in
the Leap coordinate axes, which varies approximately from
-200 to 200 in X and Z and 0 to 400 in Y, and transformed
those coordinates into pixel space varying from 0 to 200 in
three different planes, XY, Y Z, and X Z. For each reported
position, the pixels in the 5z5 surrounding region centered
on the position were activated in a binary fashion. From this

Int'l Conf. IP, Comp. Vision, and Pattern Recognition | IPCV'15 |

point, each of the three coordinate planes are separately or
jointly able to be used as image input data in the learning
model. However, for this first experiment on the dataset
we kept only the XY plane of index finger positions and
concentrated on those gestures that mainly varied in that
plane, as explained below.

Despite being equivariant across feature maps, CNNs still
have some difficulty in classification over widely varying
positions and orientations of input activations. Thus, we
cropped each image to fit the minimum and maximum in-
dices of nonzero activations, and then sampled the resulting
pixels to resize each image to a constant 50250 input size.
After resizing, the pixel activations were normalized by
subtracting the mean and standard deviation for that pixel
across the entire training set, rather than using the statistics
within a single image. Note that using only the XY positions
of the index figure is a significant simplification of the data
contained in an instance of the Leap dataset, but it served
to show the applicability of computer vision techniques to
the task of gesture recognition. As a result of this, we kept
only those gestures that varied in the XY planes for the
CNN experiments, namely the check mark, lower-case ‘e’,
capital ‘E’, capital ‘F’, and figure 8. Since this subset of
the gestures are guided by the index finger in the XY plane
they appear rather well-formed there, but appear as mostly
noise in the other two planes as their appearance in those
projections largely depends upon unconscious movements of
the hand. Expanding this representation to all three planes
of movement for all gesture classes should be sufficiently
expressive to broaden the learning algorithm to the entire
dataset, and will be explored in future work. An example
of each of the gesture classes in this representation after
preprocessing is shown in Figure 2. Figure 3 shows the
normalization factors used for the dataset, with the mean
image on the left and the standard deviation on the right.

Note that there are other possibilities for generation of
the images here that we did not do, such as removing skew
and including motion history into gray-scale representations.
There are still present many forms of variation in the input
activations that are inherent to the users, such as the left-
handed version of the check mark shown in Figure 4. While
such differences as this and other examples of allowable
variance in gestures from a given class are easily and
unconsciously accounted for by humans, for instance by two
people conversing in American Sign Language, they pose
a significant challenge to the classification models that we
discuss further in Section 7 and must be accounted for when
training such classifiers.

7. Models

We have chosen our initial experiments on this dataset
using two diverse models for classification of temporal
sequences. The first is to convert the data into a fixed
image representation as discussed above and use a CNN for

Fig. 4: A left-handed check mark after cropping, sampling,
and normalization

classification. The second is to use a hidden Markov model
to aid in a time series recognition task.

7.1 Convolutional neural network

Convolutional neural networks are powerful models in
computer vision due to their ability to recognize patterns
in input images despite differences in translation, skew, and
perspective [14], [18], [19], [20]. They can be effective
at finding highly complex and nonlinear associations in a
dataset. They do so in the context of supervised learning,
by allowing the model to update parameters dynamically so
as to minimize a cost function between a target value and
the observed output of the model. An advantage they have
over traditional, fully-connected neural networks is that the
learned feature maps are applied with the same parameters
to an entire image, drastically reducing the number of
parameters required to learn without seriously degrading the
capacity of the model [14]. This allows for more complex
and deeper architectures to be employed without as serious
a risk of overfitting the training data.

Human gestures are highly complex, nonlinear, and
context-dependent forms of communication with both con-
siderable overlap and great divergence between gesture
types. People often perform the same gesture class in highly
unique and differing ways, yet to the human brain these are
easily recognized as constituting the same meaning. Further,
very subtle and small differences exist between gestures that
impart greatly differing meanings to the separate classes,
yet such differences are not easily defined or separated.
Given this type of data, convolutional neural networks have
the advantage of learning good features as part of the
classification task itself. Thus, we do not need to handcraft
features of each valid gesture but allow the model to learn
them as a product of minimizing the loss function. The
model can thus learn to classify gestures based off of the

Truth
E v e F 8
s|E 28 0 1 0 O
Slv 1 62 2 0 1
Sle 2 0 30 1 4
&F 1 2 1 40 0
8 1 0 1 0 34

Table 1: Confusion matrix for CNN without dropout

Truth
E v e F 8
s|E 28 0 0 0 1
v 0 63 1 0 1
Sle 2 0 30 0 3
S&|lF 2 1 1 41 0
8 1 0 3 0 34

Table 2: Confusion matrix for CNN with dropout

complex interactions between learned features that may not
otherwise be easily discerned or discovered.

The convolutional neural networks used in these ex-
periments came from MatConvNet, a toolbox for Matlab
developed in the Oxford Visual Geometry Group [21]. All
experiments were run on a GeForce GTX 960 GPU, with
1024 CUDA cores and 2 GB memory. In addition, NVIDIA’s
CUDA Deep Neural Network library (cuDNN)* was in-
stalled as the convolution primitives inside the MatConvNet
library. The network consisted of alternating convolutions
and max pooling layers, as depicted in Figure 5, followed
by two layers of a fully-connected neural network with a
softmax output. All neurons were rectified linear units, as
they can be trained faster than their sigmoid counterparts
[18]. The model was trained both with and without dropout,
following the techniques described in [22], [23], [24]. See
Tables 1 and 2 for the results of training this network with
the 5 input gesture classes. The code for this network and
for image creation is hosted online’. Overall the network
produced a 92.5% recognition rate on held-out data after
training to perfectly fit the input data, with a very modest
improvement seen from using dropout with a rate of 50%
on the two fully connected layers. This modesty may be due
to the fact that dropout was not applied to the convolutional
layers, which in the future could lead to greater improve-
ments in generalization. A few of the misclassified gesture
image representations can be seen in Figure 6.

“https://developer.nvidia.com/cuDNN
Shttps://github.com/rcmccartney/LeapDeepLearning

Int'l Conf. IP, Comp. Vision, and Pattern Recognition | IPCV'15 |

7.2 Time series recognition with HMMs

Though the convolutional neural network performs well
on images of the whole gesture, it does not take into
account temporal information such as the order in which the
strokes are performed. This can be addressed by modeling
individual or groups of points as discrete states in a hidden
Markov model. However, one of the principle challenges of
definition and recognition of arbitrary gestures in 3D space
is the high variability of gestures within the sequence space.
For example, many traditional dynamic gesture recognition
models have used translations between pairs of consecutive
frames to generate a sequence of observations by fitting
the translations to the closest of a set of evenly-distributed
discrete vectors [6]. These methods work well in 2D, but
suffer in 3D because 3D motions tend to be more varied and
uncontrolled. Any portion of a single curved motion may
be represented by slightly different vector sequences, and
these sequences may result in highly distinct observations
sequences even though they represented the same intended
movement.

To solve this high-variability problem, we propose a
method to process a sequence of frames of positional data
and summarize them to a shorter and more generalized
sequence of lines and curves, which are then fed into
a hidden Markov model as discrete states. This method
involves first identifying line segments in the sequence of
frames by calculating average vectors of consecutive points
4AS from the sequence of average vectors those within a
minimum angle distance are combined into one growing
line segment. This line segment is then fit to one of 18
discrete observation states represented by vectors pointing
away from the origin distributed equally in 3D space. Next
those sequences of points that do not satisfy the criteria
above but are of some minimum length of frames are likely
curved segments. These sequences of points are fit to a
sphere using a least squares approximation method [25].
The sphere then defines the centroid of the curve’s rotation.
To discretize the curve, the normal vector of the rotation is
found by taking the cross product of the vectors emanating
from the discovered centroid to the two end points of the
curve. This normal vector is then fit to a set of six state
vectors (clockwise and counterclockwise for each of roll,
pitch, and yaw). The sequence of discovered lines and points
then serves as the observation sequence, which is much
shorter and more invariant to individual differences between
training examples.

The performance of this model was relatively poor, at
around 50% recognition for the specified gesture set. We
believe this time series model is less robust to sources of
error in the data, specifically the combination of very small
and very large drawn gesture examples, as well as exam-
ples containing large disjointed spaces between consecutive
segments of points due to sampling or user error. We hope
to address these errors in the future by experimenting with

Int'l Conf. IP, Comp. Vision, and Pattern Recognition | IPCV'15 |

8
20 ~ — =14] — > SO0 b =
Ex5xl i i 1 22 71 axaxso | £
3
Featuremaps Max pooling Feature maps Max pooling Feature maps Relu Full w/
Full w/ dropout
dropout
Fig. 5: A depiction of the CNN topology used
' ‘ -
//// iR T % TEE
7
Fig. 8: Example gestures described as sequences of lines

[1

Fig. 6: Examples of misclassified gestures

rescaling and re-sampling training gesture paths.

®,
B2
CQ

{\
e

Fig. 7: The set of discretized states describing the motion of
consecutive groups of 3D points, including 18 line directions
and 6 curve directions

8. Future Work

This experiment represents the first to use the novel
dataset collected from the Leap Motion controller. There
is still much to be explored with this dataset as well as
with applying other forms of learning algorithms to our
representations of the gestures. Different forms of dimen-
sionality reduction, such as PCA or gradient-based methods,
could be used to help deal with the large amount of features

(black) and curves (red)

available per gesture instance. Recurrent neural networks-
long short term memory models in particular-could prove
effective at dealing with the varying temporal nature of
human gestures. Future work will also expand the scope to
encompass the segmentation task as well as the classification
task. One particularly interesting avenue of research is in
combining the models discussed in Section 7 into a single
online recognition engine. The HMM could specialize in
segmenting gestures as they occur, using the two hidden
states of “in-gesture” and “between-gesture" to distinguish
between when a human hand is trying to semantically
communicate or just resting. Once segmented, the frames
of data from the “in-gesture" state could then be sent to the
CNN model for classification. Note that the requirement to
segment actual communication from idling is not an issue
when using other input devices such as a mouse, and arises
here due to the inability to set these 3D devices into non-
recording states.

9. Conclusions

The Leap Motion controller is a promising device for
enabling user-friendly gesture recognition services. Based
on our results, the data generated by this device can be
accurately classified by representing its 3D gesture paths as
sets of 2D image projections, which can then be classified
by convolutional neural networks. Here we limited the
classification results to gestures performed in the XY plane,

but the model can be extended to give equal consideration to
all 3 planes of 2D projections, allowing for a wide variety of
gesture representations. Despite its good performance, one of
the limitations of this model is that it cannot provide online
recognition of gestures in real time. As future work we look
to incorporate an alternative model, such as a hidden Markov
model, as a segmentation method to determine likely start
and stop points for each gesture, and then input the identified
frames of data into the CNN model for gesture classification.

References

[1] W.Joy and M. Horton. (1977) An introduction to display editing with
vi. [Online]. Available: http://www.ele.uri.edu/faculty/vetter/Other-
stuft/vi/vi-intro.pdf

[2] A. S.-K. Pang, “The making of the mouse,” American Heritage of
Invention and Technology, vol. 17, no. 3, pp. 48-54, 2002.

[31 R. Loyola, “Apple’s magic mouse offers multitouch
features,” p- 65, 01 2010. [Online]. Available:

http://search.proquest.com.ezproxy.rit.edu/docview/231461266?accountid=

[4] F. Weichert, D. Bachmann, B. Rudak, and D. Fisseler, “Analysis
of the accuracy and robustness of the leap motion controller,”
Sensors, vol. 13, no. 5, pp. 6380-6393, 2013. [Online]. Available:
http://www.mdpi.com/1424-8220/13/5/6380

[5] L. Rabiner and B.-H. Juang, “An introduction to hidden markov
models,” ASSP Magazine, IEEE, vol. 3, no. 1, pp. 4-16, 1986.

[6] M. Elmezain, A. Al-Hamadi, J. Appenrodt, and B. Michaelis, “A
hidden markov model-based continuous gesture recognition system
for hand motion trajectory,” in Pattern Recognition, 2008. ICPR 2008.
19th International Conference on, Dec 2008, pp. 1-4.

[71 T. Schlémer, B. Poppinga, N. Henze, and S. Boll, “Gesture recogni-
tion with a wii controller,” in Proceedings of the 2nd international
conference on Tangible and embedded interaction. ACM, 2008, pp.
11-14.

[8] H.-K. Lee and J.-H. Kim, “An hmm-based threshold model approach
for gesture recognition,” Pattern Analysis and Machine Intelligence,
IEEE Transactions on, vol. 21, no. 10, pp. 961-973, 1999.

[9] S. Eickeler, A. Kosmala, and G. Rigoll, “Hidden markov model based

continuous online gesture recognition,” in Pattern Recognition, 1998.

Proceedings. Fourteenth International Conference on, vol. 2. 1EEE,

1998, pp. 1206-1208.

P. Hong, M. Turk, and T. S. Huang, “Gesture modeling and recog-

nition using finite state machines,” in Automatic face and gesture

recognition, 2000. proceedings. fourth ieee international conference

on. 1EEE, 2000, pp. 410-415.

R. Verma and A. Dev, “Vision based hand gesture recognition using

finite state machines and fuzzy logic,” in Ultra Modern Telecommu-

nications & Workshops, 2009. ICUMT’09. International Conference

on. IEEE, 2009, pp. 1-6.

H. Hasan and S. Abdul-Kareem, “Static hand gesture recognition

using neural networks,” Artificial Intelligence Review, vol. 41, no. 2,

pp. 147-181, 2014.

K. Murakami and H. Taguchi, “Gesture recognition using recurrent

neural networks,” in Proceedings of the SIGCHI conference on Human

factors in computing systems. ACM, 1991, pp. 237-242.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based

learning applied to document recognition,” Proceedings of the IEEE,

vol. 86, no. 11, pp. 2278-2324, 1998.

A. Graves, M. Liwicki, S. Ferndndez, R. Bertolami, H. Bunke, and

J. Schmidhuber, “A novel connectionist system for unconstrained

handwriting recognition,” Pattern Analysis and Machine Intelligence,

IEEE Transactions on, vol. 31, no. 5, pp. 855-868, 2009.

A. Graves and J. Schmidhuber, “Offline handwriting recognition with

multidimensional recurrent neural networks,” in Advances in Neural

Information Processing Systems, 2009, pp. 545-552.

A. Graves, “Offline arabic handwriting recognition with multidimen-

sional recurrent neural networks,” in Guide to OCR for Arabic Scripts.

Springer, 2012, pp. 297-313.

[10]

[11]

(12]

[13]

[14]

[15]

[16]

[17]

Int'l Conf. IP, Comp. Vision, and Pattern Recognition | IPCV'15 |

[18]

[19]
[20]

[21]

[22]

[23]

134!

[25]

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet
classification with deep convolutional neural networks,” in Advances
in Neural Information Processing Systems 25, F. Pereira, C. Burges,
L. Bottou, and K. Weinberger, Eds. Curran Associates, Inc., 2012,
pp. 1097-1105. [Online]. Available: http://papers.nips.cc/paper/4824-
imagenet-classification-with-deep-convolutional-neural-networks.pdf

K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” arXiv preprint arXiv:1409.1556,
2014.

K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman, “Return of
the devil in the details: Delving deep into convolutional nets,” arXiv
preprint arXiv:1405.3531, 2014.

A. Vedaldi and K. Lenc, “Matconvnet — convolutional neural networks
for matlab,” CoRR, vol. abs/1412.4564, 2014.

G. E. Hinton, N. Srivastava, A. Krizhevsky, 1. Sutskever, and
R. R. Salakhutdinov, “Improving neural networks by preventing co-
adaptation of feature detectors,” arXiv preprint arXiv:1207.0580,
2012.

G. E. Dahl, T. N. Sainath, and G. E. Hinton, “Improving deep
neural networks for lvesr using rectified linear units and dropout,”
in Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE
International Conference on. 1EEE, 2013, pp. 8609-8613.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: A simple way to prevent neural
networks from overfitting,” J. Mach. Learn. Res., vol. 15,
no. 1, pp. 1929-1958, Jan. 2014. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2627435.2670313

D. Eberly. (2015) Least squares fitting of data. Geometric Tools, LLC.

