
Table 1: Aircraft parameters provided by telemetry

Recorded Telemetry       
Parameter Accuracy Unit Update Frequency

Latitude (WGS84) 0.06" degree 5 Hz

Longitude (WGS84) 0.06" degree 5 Hz

Altitude (AGL) 0.1 meter 100 Hz

Yaw (Euler) 1° degree 100 Hz

Pitch (Euler) 1° degree 100 Hz
Bank (Euler) 1° degree 100 Hz
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Abstract - The use of synthetic datasets to develop, prototype 
and qualify new computer vision algorithms is currently not 
widely accepted, though highly sought after by the industry. 
This is due to lack of knowledge on how the results acquired 
with such datasets will transfer to real live performance. 
Therefore, this paper introduces an approach to evaluate 
modelled synthetic datasets against their real counterparts. In 
a use case, the performance of common feature detectors is 
evaluated using the repeatability metric against real and 
synthetic datasets. Based on resulting performances; general 
usability, rendering techniques and modelling efforts for 
generation of synthetic datasets are discussed. 
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1 Introduction 
  Today the development of new CV-algorithms often 
depends on the quality of design, training or test datasets. 
However, when it comes to applications striving to process 
data from aircraft mounted sensors, public availability of 
datasets is rare and available data are homogeneous or 
fragmented. Therefore, the resulting algorithms are often 
limited to the operational conditions available in the used 
datasets to perform as intended. Datasets such as VIVID[1] or 
NGSIM[2] are providing good means for prototyping of 
specific algorithm but cannot cover the complexity of weather 
and lighting influences in aerial imagery due to their recording 
at one specific date and location. 
In 1995 [3] already discussed the concept of using a synthetic 
environment to develop CV-algorithms. In the last 20 years 
computer graphic technologies experienced a technology leap 
allowing to model weather conditions, illumination or 
shadowing in photo-realistic qualities. In [4] an airborne 
object algorithm designed on real datasets was evaluated on 
its performance with synthetic data. It has become a common 
procedure to use abstract synthetic datasets for initial 
development of new computer vision algorithms [5] followed 
by further steps using real datasets. Several image processing 
benchmarks [6]–[8] use synthetic data due to the easy to 
access ground truth for quantitative performance 
measurements. Still, in the final stage, the computer vision 
domain seeks to extract information from real (recorded) 
imagery, which is much more complex than its synthetic 
representations. Thus the acceptance using synthetic data for 

evaluation of algorithms is low, since while the content of the 
scene can be the same, the image structure may be 
fundamentally different (e.g. texture, color, contrast, etc.) [9]. 
This paper details the CV-algorithm evaluation step suggested 
in the concept presented in [10] using geo-referenced airborne 
image datasets of real and synthetic nature. Therefore, the 
general concept is briefly introduced in the following section. 

2 General concept 
The general evaluation concept is intended to allow 

investigation of essential image properties and influencing 
rendering technologies and to identify a trade-off between 
modelling detail and algorithm performance. It further aims to 
provide suggestions and design guidelines towards a 
benchmark simulation system. This shall be achieved by 
evaluating basic CV-algorithms against datasets consisting of 
sequential images by varying rendering techniques and to 
compare their performance. Thus, we can derive conclusions 
on the suitability of conducted modelling and rendering 
efforts of synthetic datasets. 
The multi-level concept consists of four different levels as 
depicted in Fig. 1. The bottom layer (layer 1) contains the 
datasets and their corresponding ground truth. These datasets 
consist of aerial imagery and aircraft telemetry derived from 
test flights performed in either the real (“real datasets”) or the 
synthetic environment (“synthetic datasets”). The ground truth 
contains the camera movement between compared images as 
geometric transformation. Level two analyzes the image 
structure of evaluated datasets using image descriptors 
(MPEG7) usually deployed for image queries to search 
engines or image databases. This mechanism is explained in 
detail in [10]. It allows the direct comparison of image 
properties. Level three uses computer vision algorithms as test 
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Table 2: Generated terrain databases detailed with raw data used 
for modelling in meters per pixel (mpp).

Terrain Databases       

Surface Detail
(Database Name)

Resolution 
Satellite 
Images

Resolution 
Digital Surface 

Model

Resolution 
Rasterized 
Shapefiles Objects

Low 5 mpp 15 mpp 5 mpp Yes

Mid 1 mpp 15 mpp 1 mpp Yes

High 0.2 mpp 15 mpp 0.2 mpp Yes

High no Building 0.2 mpp 15 mpp 0.2 mpp No

algorithm to extract the performance differences among 
datasets. For clarity, only widely used metrics measuring the 
quality of algorithms are selected (time based metrics are not 
considered). The last level performs dependency analysis 
using the results from level two and three, which allows 
correlation and weighing between resulting performance and 
identified image properties. Thus, conclusions in level four 
shall allow to identify rendering techniques suitable for 
computer vision algorithm testing and evaluation. This paper, 
discusses level three (CV-algorithm based evaluation) and 
level one (dataset generation). 

3 Dataset generation 
 Special interest in this work has been laid on the 
generation of datasets. First, we had to ensure the scenic 
correlation between synthetic and real datasets. Therefore, the 
test flight area was modelled in a virtual environment to create 
snapshots with identical scenery. Secondly, we had to record 
telemetry data representing the sensors pose and location (e.g. 
location, attitude and altitude of the aircraft at which images 
are taken in flight). This enables us to position the camera in 
the virtual environment equivalently. The following sub-
section explains the dataset in detail. 

3.1 Test flight dataset “Real”
 The taxiway of a former airport on the premises of the 
University of the Bundeswehr Munich was selected as test 
site, because it was easy to access, free from unauthorized 
persons, allows small aircraft operation and had changing 
terrain (e.g. field, woods, buildings, etc.). As sensor platform, 
a Multicopter equipped with eight 350W motors and 13" 
propellers was selected due to its payload, in air stability and 
low vibrations. This platform has a maximum take-off weight 
(MTOW) of 6kg allowing 2.2kg payload at max. The aircraft 
can be navigated via waypoints at a fixed above ground 

altitude. The camera has been mounted perpendicular to the 
aircraft frame using a fixed rigid non-stabilized mount. The 
deployed camera, a XIMEA MQ042CG-CM has been con-
figured to a resolution of 2048x2048 at 30 Hz. A detachable 
C-Mount lens from Myutron, achieving a total field of view of 
25.4° has been deployed. The telemetry was received directly 
from the flight control system via serial interface at 100 Hz 
and containing several aircraft parameters detailed in Table 1.
Telemetry and image data were recorded on-board in sync 
using Linux based distributed data services [11], running on a 
Commel LS-37B Single-board computer. 
The actual test flight was conducted on March 18, 2015 at 
noon on sunny weather leading to crisp shadows and some 
reflections on buildings. The altitude has been fixed to 75 
meters above ground. During the flight, 1000 meter of terrain 
have been covered that were categorized in nine classes of 
which three are presented in this paper later on. Each category 
was reduced to 11 sequentially taken images at 1 Hz to reduce 
data while retaining sufficient overlap. The images have been 
resized and cropped to 1024x768 pixels for comparison with 
synthetic datasets. Due to automatic white balancing the 
images of the real dataset had a slightly green tint. In future 
tests manual color calibration may minimize this effect. 

3.2 Synthetic dataset
 At first, a virtual environment (engine) suitable for geo-
referenced dataset generation was selected. VBS3 from 
Bohemia Systems was preferred as it is widely used in tactical 
military simulation, capable to reproduce high ground detail, 
wide terrain areas, providing a resource database and tools for 
geo-referenced map generation. The virtual database was 
modelled in four different quality levels as can be seen in 
Table 2. The raw data used to model the database variants 
comprised satellite images, elevation data, geo-spatial vector 
data and 3D-Objects. The department of geo-information of 
the Bundeswehr provided orthographic satellite images used 
in various resolutions and a digital surface model (3D altitude 
mesh) in 15 meters per pixel (mpp) resolution. Rasterized 
Shapefiles are used as masks populating the area with 
different detail maps (e.g. concrete, grass high, etc.) for high-
resolution texture details at low altitude. Finally, the terrain 
was populated using geo-referenced and geo-specific 3D-
Objects either provided by VBS3 or created using Blender. 
All Buildings were modelled after their blueprints to ensure 
accurate dimensions.  

Fig. 1. Evaluation concept of datasets against known computer vision algo-
rithms. This concept is part of the more general concept presented in [10].
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Facade textures have been photographed and applied after 
rectification using perspective transformation. Roofs are most 
prominent in aerial images therefore after identification of 
type, material and color; their textures have been modeled 
precisely using free texture databases. Each 3D model 
consists of geometry, texture map, normal map, specular map 
and material definition (setting the lighting behavior). 
Common industrial tool chains and efforts have been 
employed in generating the virtual database and its 3D 
objects. However, the additional requirement of a geo-
referenced database necessary for real- and synthetic- dataset 
comparison increased the development time significantly. 
To create synthetic imagery correlating to the test flight, the 
virtual camera had to be positioned according to recorded 
telemetry data. Thus, the telemetry data were replayed and 
used as a trigger to synchronize the image extraction of the 
virtual environment. Lighting was adjusted using a hemi-
spherical lighting model to adjust day light color and strength 
as well as length and orientation of shadows. The implement-
ted camera model of VBS3 was employed which enables the 
parametrization of focus, aperture, field of view and zoom. 
These were set to comparable values of its real counterpart. 
The image resolution has been fixed to 1024x768. The focus 
was set to infinity equivalent to the real camera. 

3.3 Specific dataset categories 
 The test flight route was separated in nine different 
classes concerning the nature of the scene. For each of these 
classes synthetic datasets were extracted. In this paper, the 
dataset classes Field, Woods and Concrete are discussed. 
Field designates a regularly mowed meadow on even terrain. 
There are no objects in the scene and it is homogenous 
without any sharp edges or specific high contrast textures. 
This dataset is intended to demonstrate the differences in 
terrain image quality between real and synthetic datasets. 
Woods designates a dense forest, hiding the ground texture 
almost completely. In the synthetic datasets, trees have been 
placed approximately and geo-typical tree models have been 
used. This dataset was used with caution for two reasons: 
Firstly, the virtual environment has been modelled using aerial 
images taken in summer, meaning all trees are in full bloom, 
while during real test flight they were leafless. Secondly, the 
height of trees (up to 15 meters) violates the homography 
constraint, which states that all features shall be in a plane. 
This reduces the overall results of real and synthetic datasets. 
However, the highly heterogenic, diverse and cluttered 
textures are demanding for feature detectors. 
Concrete designates a concrete area with transport containers, 
concrete plates, a mobile bridge and a silver car. This dataset 
provides sharp edges on several man-made objects as well as 
a highly textured surface. The object heights are not 
exceeding two meters, which is small compared to the aircraft 
altitude. Thus, the homography error was considered 
negligible. 

4 CV-algorithm based evaluation 
 To investigate the usability of synthetic data for CV-
algorithm development and prototyping it was important to 
use well-known algorithms to allow a comprehensible 
assessment of acquired results. Therefore, the feature 
detectors SIFT [12], SURF [13] and MSER [14] were 
selected as test algorithms. Feature detectors in particular are 
interesting, because they filter the image domain for 
recognizable locations, which were used to extract 
information from the image domain to the feature domain. 
Often, further processing is solely working on the feature 
domain (e.g. stereo vision, image stitching). Thus, the 
performance of feature detectors influences the performance 
of many specific algorithms and implementations. 
Performance of these algorithms is measured using evaluation 
concept and metric presented by Mikolajczyk in [15]. This
repeatability metric measures the number of detected 
corresponding regions in image pairs. It assumes that all 
features found in Image I, mapped to a plane, experience a 
global geometric trans-formation and can again be found on 
the transformed plane in Image J. The homography matrix Hij

describes this geometric transformation and allows 
reprojection of Features RJ to Image I. Features are described 
as regions R on the image with a location and a radius. A 
feature pair is corresponding when the region iRj = (Hij)T jRj

reprojected into Image I overlaps with RI [15]: 

O
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I
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J
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This means a pair is accurate when the overlap error eO

smaller is then the intersection of RI and IRJ divided by its 
union. The overlap error is set to 0.4  40%. This metric is 
scale dependent, thus punishing differences in region size. 
The resulting number of correspondences against all possible 
correspondences is the repeatability measure depicted in 
percentage. The evaluation is performed in MATLAB and 
based on the benchmark framework “VLBenchmark” [16]. 
Additionally to the repeatability, the number of resulting 
correspondences was analyzed to provide an absolute measure 
that needs to be considered when evaluating the relative 
repeatability. Thus, it is possible that the performance of a 
detector, which only detects four regions in an image but 
identifies them all results in 100% repeatability. The number 
of correspondences shows that the detector performs poorly 
on given dataset, since these few features were not sufficient 
for possible subsequent processing steps. The necessary 
ground truth (homography matrix between the images) is first 
calculated using SURF features [13] matched with a brute 
force SSD matching algorithm as initialization of an iterative 
RANSAC-Algorithm for optimization [17]. 
By using homography, it was possible to measure algorithm 
performance against generated ground truth in real and 
synthetic datasets. The decision to create the ground truth of 
the simulation also using homography deems from the 
intention of having comparable results therefore using the  
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Fig. 2.Evaluation of the dataset class Field using parameter group Ground Texture Resolution. Each box presents the performance of one dataset. 
The red line inside the box marks the merdian, the upper and lower end mark the 75th and 25th percentile, the black whiskers mark the outmost 

inliers. Outliers are marked with a red plus.

Fig. 3. Evaluation of the dataset class Field using parameter group Ground Texture Resolution. In general synthetic datasets using anti-aliasing 
increased their performance (except 1.5x SSAA). Using SIFT and SURF synthetic datasets achievied similar performance to real dataset, however 

finding less corresponding features in total.
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Table 3: Resolution of parameters in group ground texture 
resolution given in meter per pixel (mpp)

Ground Texture Resolution

Level Surface Texture Resolution Detail Texture Resolution

default (high) 0.2 mpp 0.03 mpp

mid 1 mpp 0.06 mpp

low 5 mpp 0.12 mpp

same evaluation chain. It needs to be noticed that homography 
can only be used when either the camera has no or small 
translation between to images or the displayed surface is 
planar. Altitude information confirms that the surface of the 
recorded premises is adequately planar. Due to high aircraft 
altitudes (75m) and a top down view, small altitude difference 
of occasional trees and buildings are considered negligible. In 
the worst case, performance would drop on all datasets and 
the relative results between tested datasets would not be 
influenced. 

4.1 Evaluated parameter groups 
 After generation of dataset Real and its ground truth, 
several different synthetic datasets have been created. The 
first dataset generated was the Default dataset, defining the 
default parameter settings of the rendering engine. Afterwards 
each additional synthetic dataset was created by modifying a 
parameter of the engine to identify its influence. Because of 
space limitations, only a selection of parameters is evaluated 
in this paper. The parameters have been clustered in two 
groups. These groups were evaluated against a specific dataset 
class and results were discussed in detail. Additional 
significant findings were reviewed without full presentation of 
the evaluation results. 
The first group of parameters was named ground texture 
resolution consisting of surface texture resolution (surface)
and detail texture resolution (texture). The used engine creates 
ground surfaces by overlaying the geo-specific surface texture 
with a procedural detail texture. This detail texture emulates a 
higher resolution of the ground surface but does not provide 
much contrast due to texture blending. The recorded flight 
imagery in the real dataset has a ground resolution of 
0.03mpp, which corresponded to the highest detail texture 
resolution setting (see Table 3). This group was tested against 
dataset class Field that depicts only the ground texture with a 
repetitive detail texture (meadow). 
The second parameter group called Antialiasing (AA)
embraces three anti-aliasing techniques, namely Multi 
Sampling (MSAA), Fast Approximate (FXAA) and Super 
Sampling (SSAA). These techniques all had the goal to reduce 
jagged nature of sharp edges or lines, which were introduced 
during rasterization. The reason for different techniques to 
exist is mostly due the different computation effort necessary. 
The dataset demonstrating eightfold MSAA shows selective 
sampling depending on polygon-pixel coverage, simple 
sprites (i.e. tree leaves) are unaffected. The FXAA dataset, a 

post processing antialiasing method, used a high pass filter to 
detect edges followed by a blur only along those edges. The 
SSAA method simply renders the whole scene in 1.5x of the 
output resolution and resizes it to its original resolution by 
averaging. This group was tested against dataset class 
Concrete in detail showing its capabilities on objects in the 
scene. Each group was additionally tested against Default and 
Real dataset to allow absolute comparison. 

4.2 Evaluation and discussion 
 The first group evaluates the Field dataset (empty 
meadow) against the detectors (SIFT, SURF, MSER) using 
the datasets real, computer generated imagery (CGI) default, 
CGI surface texture low, CGI surface texture mid, CGI 
texture low and CGI texture mid. The results are depicted in 
Fig. 2 using boxplots. Each detector has a separate plot 
providing its results for each dataset. A red line inside the box 
marks the median. The upper and lower edges mark the 75th

and 25th percentile of the dataset and black lines outside the 
box mark the maximum and minimum value still considered 
as inlier. Outliers are marked as a red plus. The results are 
depicted using the relative repeatability measure indicating 
the amount of corresponding regions that align with less ten 
40% difference of their area. The metric is supported by 
boxplots (lower row) depicting the absolute number of 
successfully matched correspondences.

4.2.1 Ground texture resolution 
 The SIFT detector as shown in Fig. 2 performed quite 
well (SIFT: 80% repeatability with more than 3000 
correspondences on dataset Real) on the Field dataset class.
Comparing the results of dataset Real and Default results in 
almost equal performance while the number of 
correspondences, however was halved. This can be explained 
by the low contrast of edges due to texture blending. 
Reducing the resolution of the surface texture results in a drop 
of repeatability accompanied by a drastically increased 
standard deviation as indicated by the size of the box. Low 
surface resolution reduces colored edges since it is smoothing 
the transition (between background pixels) heavily. This 
reduces the quality of regions resulting in a lower 
repeatability rate as shown in the dataset CGI surface low but 
also already indicated in dataset CGI surface mid. Reducing 
the ground surface detail to 0.12 mpp (CGI Texture Low)
actually disables all detectors. No tested detector was capable 
to cope the blurring effect of downscaling the detail texture. 
Interestingly, downscaling the detail texture only once, to a 
ground resolution of 0.06 mpp was not only allowing the 
detectors to provide correspondences but to perform even 
slightly better than dataset Default. 
Evaluating the SURF detector results showed very high 
relative repeatability for almost all datasets, but at a very low 
number of correct correspondences. While the Default dataset 
had 177 correspondences, all CGI datasets only had 12 
correspondences on average. Thus, the detector was not 
providing enough significant features, revealing that the box 
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filter approximation used to find SURF features could not 
handle homogenous areas of low structure well. Similar to 
SIFT, on dataset texture low no features could be found. 
MSER features tend to be small since they are robustly 
detected extremal regions by thresholding the image at several 
thresholds. These extremes however are sparse in the dataset 
class Field, therefore leading to repeatability rates of 53% for 
dataset Real and 28-40% on CGI datasets. In addition, the 
number of features is low in respect to usual values of the 
MSER detector. The performance between dataset Default,
CGI surface mid and CGI surface low dropped by 1% each, 
demonstrating the robustness of MSER features against 
surface texture changes on larger scale. However, CGI texture 
low and CGI texture mid depict that MSER was strongly 
influenced by reduction of high frequency details of the 
image. While CGI texture mid provides a median repeatability 
of 35% it only finds 27 correspondences in total, revealing the 
low absolute performance of the detector.

4.2.2 Antialiasing 
 In Fig. 3 the results of group Antialiasing in dataset class 
Concrete are depicted. Firstly, all datasets perform well using 
the SIFT detector. Differences between datasets are only 
small, since image changes were only minor and mostly 
limited to edges. Similar to aforementioned evaluation, here 
the detector found more correspondences on Real compared 
to CGI datasets (by factor two). However, repeatability as 
well as the total number of correspondences on synthetic data 
demonstrated acceptable performance of the detector. Using 
MSAA increased the repeatability, getting closer to Real 
performance values. Since this dataset contained no trees 
(sprites), this technique could perform to its fullest. Using 
FXAA reduces the repeatability by 3% showing a visible 
blurring effect on object edges. SSAA lead to repetitions of 
irregular aliasing patterns along edges leading to displacement 
errors of skewed lines, which results in a 5% repeatability 
drop compared to Default. 
The SURF detector detected five times fewer features than 
SIFT but achieved a slightly higher repeatability. With this 
detector, the MSAA dataset performed even better in 
comparison to dataset Default closing in to a performance 
difference of 3% to the Real dataset. FXAA also performed 
better on SURF, showing that box filters could take advantage 
of Antialiasing. Nonetheless, it should be noted that SURF 
repeatability rates dispersed much more than on SIFT. Super 
Sampling also showed a slight increase, which however can be 
considered to be within the error of measurement. 
Evaluating the repeatability of MSER on dataset Real against 
SIFT and SURF, displayed a drop in repeatability of 13-15%, 
making it the least suited region detector for aerial images of 
this nature. Here, all synthetic datasets heavily dropped in 
repeatability performance. However, MSAA and especially 
FXAA could slightly close the resulting gap. SSAA decreased 
the performance even further. 

4.2.3 Objects, Shadows and Lighting 
 In every dataset class, containing man-made or natural 
objects the CGI dataset No Objects performed best, even 
better than corresponding Real datasets. This is due to the 
prominent 0.03 mpp pattern together with the 0.2 mpp surface 
texture along the ground surface. This is mainly due to the 
homography assumption of a planer surface was fully 
fulfilled. 
During evaluation of dataset class Woods the number of 
correspondences raised extensively for MSER (avg. 6000) and 
SURF (avg. 1700) even higher than evaluated real datasets 
(MSER: 2000 and SURF: 900). SIFT however behaved 
similar to its results in dataset class Field or Concrete. The 
difference between real and synthetic datasets lay in the 
absence of leaves in dataset Real. Leaves created a large 
number of extremes, because of their cluttered and 
overlapping distribution. Repeatability rates using Woods
datasets ranged from 34 to 67% indicating violation of the 
homography ground truth constraint. 
Dataset classes Woods and Concrete where used to evaluate 
the effect of shadows in CGI on detector repeatability and 
number of correspondences leading to differences of less than 
1% in repeatability and number of correspondences. Even the 
removal of shadows did not change this effect. Thus, shadow 
generation is not influencing the performance of feature 
detectors.

5 Conclusion 
 In this paper, the next step of a concept to evaluate 
synthetic datasets using computer vision algorithms has been 
presented. Here, feature detectors were used to evaluate their 
performance on real and scene-wise corresponding synthetic 
datasets depicting airborne reconnaissance imagery. In 
addition, differences in behavior between the detectors have 
been discussed. The objective was to investigate the use of 
synthetic environments for CV-algorithm prototyping and 
evaluation. Additionally the influence of specific rendering 
techniques has been investigated. 
Therefore, a test flight has been conducted recording airborne 
imagery and position of the aircraft, which was reproduced in 
a synthetic environment. To achieve correspondence, the 
terrain has been modelled in geo-referenced detail (textures, 
terrain and man-made objects). The recorded images have 
been separated into three terrain classes. The performance was 
evaluated using the repeatability metric, which used a 
homography-based ground truth. 
In general, Real datasets performed roughly equal for SIFT 
and SURF detectors and 20% better for the MSER detector 
then Default synthetic datasets. Additionally in total, more 
feature correspondences have been found in real datasets, due 
to more extremes in the images (e.g. intensity, edges). It has 
been identified that a high quality ground texture (at least half 
of the cameras ground resolution) was mandatory. 
These textures could however be procedural and repetitive. 
For increased performance, a high-resolution satellite image 
(0.2 mpp) was blended with the procedural texture. Additional 
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rendering methods, such as Multi Sampling (for SURF, SIFT) 
or Fast Approximate (for MSER) Antialiasing improved the 
repeatability of synthetic datasets. Synthetic datasets with and 
without objects have been evaluated resulting in too high 
performance when objects are missing, due to its planar 
surface. Shadow generation techniques were also tested 
showing no influence on repeatability measures. 
Aforementioned results lead to the conclusion that used setup 
demonstrated the usability of synthetic environments. 
Therefore, feature-based algorithms can be prototyped or 
evaluated in synthetic environments when mentioned 
constraints are considered and can be improved using anti-
aliasing methods. 
The next steps will be a dependency analysis weighing 
acquired results against numerical distance measures of 
MPEG7 image retrieval descriptors, intended to identify 
image parameters influencing the performance of synthetic 
datasets. Furthermore, a metric allowing evaluation on 
perspective datasets or without the planar level constraint 
would increase the range of possible datasets. Moreover, the 
study could be extended with additional rendering techniques, 
image descriptors and metrics. In addition, the evaluation of 
computer vision algorithms could be extended to CV-
algorithms that are more complex such as object detectors or 
trackers. 
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Fig. 4. Example patches of datasets (from left to right). Field: Real, CGI Default and CGI Texure Low. Concrete: Real, CGI Default and CGI MSAA.
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