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Abstract—The wind speed forecasting in Hong Kong is more
difficult than in other places in the same latitude for two reasons:
the great affect from the urbanization of Hong Kong in the long
term, and the very high wind speeds brought by the tropical
cyclones. Therefore, prediction model with higher learning ability
is in need for the wind speed forecast in Hong Kong. In this
paper, we try to employ the Deep Neural Network (DNN) to
solve the time series problem of wind speed forecasting in Hong
Kong since it is believed that Neural Network (NN) with deep
architectures can provide higher learning ability than shallow NN
model. Especially, in our paper, we use the continuous Restricted
Boltzmann Machine (CRBM) to build the network architecture
of the DNN. The CRBM is the continuous valued version of the
classical binary valued Restricted Boltzmann Machine (RBM).
Compared with the Stacked Auto-Encoder (SAE) model applied
in our previous study, this CRBM model is more generative, and
therefore more suitable for simulating the data in wind speed
domain.

In our research, we employ the DNN to process the massive
wind speed data involving millions of hourly records provided
by The Hong Kong Observatory (HKO)1. The results show that
the applied approach is able to provide a better features space
for computational models in wind speed data domain, and this
approach is also a new potential tool for the feature fusion of
continuous valued time series problems.

Keywords—Deep Neural Network, Continuous Restricted Boltz-
mann Machine, Wind Speed Forecasting, Feature Representation

I. INTRODUCTION

Wind speed forecasting has great significance not only in
atmospheric related area but also in every aspect of people’s
life [1]. e.g., in the wind energy industry the forecasting
of wind speed can guide the selection of the site position
[2]; Engineers frequently utilize information based on wind
speed forecasts in the design and construction of large wind-
resistantstructures such as bridges, high-rise buildings, and off-
shore oil platforms [3]; even in financial markets, wind speed

1http://www.hko.gov.hk/contente.htm

forecasts also play a critical role as weather derivatives and
the need to manage weather-related risks, including wind risk
and grows[4]. Therefore, the academical and practical value of
efficient wind speed forecast approach is obvious.

Currently, there are mainly two families of approaches em-
ployed on wind speed forecasting problem: using the numerical
models and using the Computational Intelligent(CI) models.
Different from numerical models that are too dependent on the
psychical restrictive conditions[5], the advantage of using the
CI models is that the CI models can “learn” the disciplines
from the historical information itself in a statistical manner.
One of the mainstream ideas of using the CI models on fore-
casting is to apply the Neural Networks (NNs) to deal with the
given time series data. NNs can recognize the hidden patterns
or relationships from the historical observations, meanwhile,
additional advantages of the NN approach over the numerical
models include data error tolerance, ease of adaptability to
online measurements,etc. [6].

On the other hand, in the very recent years, theories
about NNs and learning systems have experienced a fast
development. More specifically, the applications of DNN or
Deep Learning (DL) make breakthroughs in many difference
areas [7]. DNN represents a series of multi-layer architecture
NNs that training with the greedy layer-wise unsupervised pre-
training algorithms[8], [9]. Albeit controversial, this family
of NNs have won great success in some fields including
Computer Vision, Speech Recognition, Natural Linguistic Pro-
gramming and Bioinformation Processing. By applying the
greedy layer-wise unsupervised pre-training mechanism, DNN
can reconstruct the raw data set, in other words, DNN can
“learn” features from the original data with a learning system
mechanism instead of selecting features manually that we did
traditionally[10]. And the intelligent models, like classifiers
or regressors usually can obtain higher accuracy and better
generalization with the learned features.

As its name suggested, DNN is a kind of NNs that
structured by multiple layers. The word “Deep” indicates
that such NN contains more layers than the “shallow” ones,
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which mainly includes the most widely used three-layer (single
hidden layer) Feed Forward NNs in the past 30 years. Actually,
multi-layer NN is not a new conception, some earlier studies
have been conducted since 1990s [11], [12], but the successful
implementation of multi-layer NNs was not realized until the
provision of the novel training mechanism by Hinton in 2006
that a so-called Layer-wise unsupervised Pre-training mecha-
nism is employed to solve the training difficulties efficiently
[8]. Via the Layer-wise unsupervised Pre-training mechanism,
a DNN represents the raw data set projected from the original
feature space into a learned feature space layer by layer in the
training process. In each layer, the unsupervised training may
provide a kind of regularization to the data set and minimize
the variance .

Although theoretically, a shallow NN with three layers
trained with Back-Propagation(BP) training algorithm has been
proved that can approximate any nonlinear functions with
arbitrary precision [13], once the number of hidden neurons
is limited, the learning ability of a shallow NN may not
be enough and poor generalization may be expected when
using an insufficiently deep architecture for representing some
functions. The significance of “deep” is that compared with
a simple and shallow model, NN with deep architecture
can provide a higher learning ability: functions that can be
compactly represented by a deep architecture might be required
to handle an exponential number of computational elements
(parameters) to be represented by a deep architecture. More
precisely, functions that can be compactly represented by a
depth k architecture might require an exponential number of
computational elements to be represented in a depth k− 1 ar-
chitecture [9]. Therefore, by adding the number of layers in the
network architecture, DNN can provide higher learning ability
with less hidden neurons in each layer, this advantage may be
more useful for the big data cases. In general, compared with
shallow NNs, the DNN model can learn from the massive raw
data and map the raw data into a new feature space, classifiers
or regressors thus may have chances to obtain higher accuracy
and better generalization.

The main work of this paper is an extension of our previous
work published in WORLDCOMP’14 last year [14]. In this
work, we are continually exploring the potential of DNN
in time series problems, especially in weather forecasting
domain. In previous research, we noted that for time series
problem, a good representation of original feature space may
be helpful for the applied model to get better performance [15].
Meanwhile, in time series problems, the correlations among
features are obvious but not easy to be identified. If we can
analyze the correlations and have the features represented,
the prediction accuracy is expected to be improved, and the
DNN is a reasonable and suitable tool to analyze the time
series features. Moreover, in [14], we have shown that the
Stacked Auto Encoder(SAE) [16] can provide positive results
on our weather data sets. However, the SAE is considered as
a discriminative approach, and for time serise problem, we
hope to use a more generative method to build the DNN in
order to get the prior knowledge from the data sequence in the
model training process. Therefore, in this paper, we applied the
Continuous Restricted Boltzmann Machine (CRBM) to build
the DNN to deal with the wind speed forecasting problem in
Hong Kong. In detail, in the experiment, the CRBM model
based DNN is employed to predict the wind speed in the next

few hours. The massive data involving millions of weather
records employed in this study is provided by The Hong Kong
Observatory (HKO).

The contribution and significance of our investigation
demonstrate that: we give a further investigation to show that
NNs with deep architectures can improve the prediction ac-
curacy in weather forecasting domain; moreover, the modified
version of the Restricted Boltzmann Machine(RBM), CRBM,
is empolyed in our paper to show that the RBM with continu-
ous stochastic units can partly solve the limitation of classical
RBM; more importantly, in our work, we focus on the wind
speed forecasting of Hong Kong. For wind speed forecasting in
Hong Kong case, we have some special challenges: (i) for wind
data at Hong Kong, there is urbanization effect over the long
term; (ii) there are tropical cyclones in Hong Kong bringing
high speed winds, which are difficult to predict [17], the results
of our experiment demonstrate that our model can learn the
wind speed change trends better than the previous models.

II. THE WIND SPEED PREDICTION PROBLEM IN HONG

KONG

Unlike data sets in other domain, weather data has some
particularities. Specifically, there is season-to-season, and year-
to-year variability in the trend of weather data. The cycle
could be multi-month, multi-season or multi-year, and the main
difficulty of investigations on weather data is to capture all the
possible cycles. Hong Kong is characterized by a long coastline
and numerous islands for such a relatively small territory.The
mesoscale weather system of Hong Kong is quite different
from other places since it is heavily affected by rainstorms and
tropical cyclones[18], moreover, the high building density may
also affect the weather condition of Hong Kong. Therefore,
finding the disciplines and capturing the possible cycles of
wind speed change in Hong Kong is more difficult than other
places in sub-tropical regions.

The changes of wind speed may greatly impact Hong Kong
people’s daily life, for example, the government’s plan of wind
power generation system is greatly depending on the long-term
wind speed prediction [17], or, the short term forecasting may
affect the operation of airport and harbor in Kong Kong. There-
fore researchers on Hong Kong put great efforts on wind speed
forecasting. Many significant investigations including artificial
intelligence technologies have been accepted as appropriate
means for wind speed forecasting and reported encouraging
results since 1980s [19], [20].

Among many different intelligent models, univariate time
series regression is the most fundamental and most widely
applied one in wind speed forecasting, especially short-term
predictions. In this paper, we also concentrate on employing
DNN to represent the feature space for univariate time series
model. Generally speaking, for a certain variable, the objective
of univariate time series regression is to find the relationship
between its status in a certain future time point and its status
in a series of past time points, and estimate its future status
via:

vt = f(vt−1, vt−2, . . . , vt−n) (1)

The function f , can be obtained by employing different
intelligence models such as Linear Regression, Generalized
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Fig. 1. Training classification error vs training iteration on DNNs, which
shows the optimization difficulty for DNNs and the advantage of pre-training
methods.

Linear Model, Auto Regressive Integrated Moving Average
Mode (ARIMA), etc.

In our investigation, we target on the wind speed data in
the next few hours. We will input the raw data sets into our
DNN model, the input n-dimension vector is composed of the
status in (t − 1)th, (t − 2)th, . . ., (t − n)th time points, we
try to use the DNN to represent these statuses, and employ
a regressor to estimate the status in the tth time point. We
hope the seasonal cycles can be captured via massive volume
of data by the superior learning ability of DNN.

III. GREEDY LAYER-WISE UNSUPERVISED

PRE-TRAINING AND LAYER MODEL SELECTION IN DEEP

LEARNING

Although the idea of Multi-layer(Deep) NN has been pro-
posed for more than twenty years, it wasn’t widely used until
2006 since Hinton solved the training difficulties efficiently in
[8].

The essential challenge in training deep architectures is to
deal with the strong dependencies that exist during training
between the parameters across layers [21]. Multi-layer NN
has more parameters than NN with shallow architectures.
Moreover, in a multi-layer NN, due to the non-convexity of the
complex model, the optimization with traditional BP training
approach may fall in a local minimum rather than global
minimum. This may bring poor generalization to the model.

This problem wasn’t well solved until Hinton et al. intro-
duced Deep Belief Network (DBN) that greedily trained up
one layer with a Restricted Boltzmann Machine (RBM) at a
time in 2006 [8]. Shortly after, strategies for building deep
architectures from related variants were proposed by Bengio
[22] and Ranzato[23]. They solved the training problem of
deep NN in two phases: in the first phase, unsupervised
pre-training, all layers are initialized using this layer-wise
unsupervised learning signal; in the second phase, fine-tuning,
a global training criterion (a prediction error, using labels in
the case of a supervised task) is minimized. Such training
approach is called the Greedy Layer-wise Unsupervised Pre-
training. Fig.1 [21] shows the comparison among different
training methods for NNs with deep architectures.

The advantage of learning features from data via a unsu-
pervised approach is that the plentiful unlabeled data can be
utilized and that potentially better features than hand-crafted

Fig. 2. The typical architecture of a classical RBM model with two layers,
m neurons in the visible layer and n neurons in the hidden layer, all neurons a
binary-valued and no connection between any two neurons in the same layer.

features can be learned. This advantage reduce the need for
expertise of the data and often the learned feature space may
provide a better regularization effect on the raw data so that
can improve the accuracy of the applied model[1], [24]. There
are a number of NN architectures categorized into the family
of Greedy Layer-wise Unsupervised Pre-training approaches,
for example, the Auto Encoder and the Sparse Auto Encoder
that obtaining the connection weights of the hidden layer by
learning an approximation of the input variables; the RBM,
which models the static data via an energy function and the
joint distribution for a given visible and the hidden vector;
the Convolutional Neural Networks(CNN), which learns the
features via a convolutional kernel in each layer, etc. We cannot
say which unsupervised pre-training model is definitely better
than others since each of the models have its own properties.
The choices of model and how the data should be presented to
the model are highly dependent on the properties of the data
sets [24]. In our previous paper [14], we empolyed the SAE
model to do the weather forecasting in the short term. How-
ever, compared with SAE, which is a discriminative model,
the RBM model is a generative model. A generative model
means that it can generate observable data given a hidden
representation and this ability is mostly used for generating
synthetic data of future time steps [25], [24]. Thus for time
series problems, a generative model based DNN is reasonably
expected to be able to provide a better performance than the
stacked Auto Encoder.

IV. THE RESTRICTED BOLTZMANN MACHINE AND THE

CONTINUOUS RESTRICTED BOLTZMANN MACHINE

The RBM is a two-layer networking with one visible layer
and one hidden layer. Fig.2 gives an illustration of RBM
architecture. As shown in Fig.2, the standard type of RBM
has binary-valued (Boolean/Bernoulli) m hidden and n visible
neurons, and consists of a matrix of weights W = (wi,j) (size
m×n) associated with the connection between hidden neurons
hj and visible neuron vi, as well as bias weights (offsets) ai
for the visible units and bj for the hidden units. The word
“restricted” means that there is no connection between any
two neurons in the same layer.

Given these, the energy function of a configuration (pair
of boolean vectors) (v, h) is defined as:

E(v, h) = −
∑
i

aivi −
∑
j

ajvj −
∑
i

∑
j

viwijhj (2)

370 Int'l Conf. IP, Comp. Vision, and Pattern Recognition |  IPCV'15  |



Since the neurons is binary-valued, the probabilities of the
states of the visible and hidden neurons can be obtained via
the sigmoid function:

pvi = p(vi = 1) =
1

1 + exp(−∑i wijhj)
(3)

and

phj = p(hj = 1) =
1

1 + exp(−∑i wijvi)
(4)

respectively.

In RBM, the probability distributions over hidden and/or
visible vectors are defined in terms of the energy function in
Eq.(1):

P (v) =
1

Z

∑
h

eE(v,h) (5)

The RBMs are trained to maximize the product of proba-
bilities assigned to some training set V :

argmax
W

∏
v∈V

P (v) (6)

In the traning process of the RBM model, the Minimising
Contrastive Divergence (MCD) training rule for an RBM
replaces the computationally expensive relaxation search of the
Boltzmann Machine [26] with a single step of Gibbs sampling
[27]. In each iteration, we update the wij according MCD rule
by:

Δwij = ε(v · hT − v̂ · ĥT ) (7)

where v̂,ĥ is the reconstructed states of the node in the last
iteration.

As discussed above, we choose the layer component of
DNN according to the type of the data sets and the property of
the model. From the brief description of the RBM, we can see
that the neurons in this model are binary value, this is why we
chose Auto-Encoder rather than RBM approach in our previous
work to forecast the wind speed data that was continuous-
valued. However, according to [24], the RBM is a more
generative model than the Auto Encoder, that means, from
the aspetacts of model properties, the RBM model maybe a
better choice in wind speed forecasting application. Therefore,
in this paper, for using the RBM to process the continuous
valued wind speed data, a CRBM is employed to build the
DNN architectures.

The CRBM is introduced by H. Chen and A.F. Murray in
[28]. The continuous stochastic neurons are employed to take
the places of the binary-value neurons by adding a zero-mean
Gaussian noise to the input of a sampled sigmoid neuron. The
binary-value neurons in CRBM have the form:

sj = ϕj · (
∑
i

wijsi + σ ·Nj(0, 1)) (8)

with

ϕj(xj) = θL + (θH − θL) · 1

1 + exp(ajxj)
(9)

where Nj(O, 1) represents a Gaussian random variable with
zero mean and unit variance. The constant σ and Nj(O, 1)

Fig. 3. A 4-hidden-layer DNN with RBM model, by which each layer is
greedily pre-trained with an unsupervised RBM model to learn a nonlinear
transformation of its input (the output of the previous layer) that captures the
main variations in its input by a MCD training methods.

thus constitute a noise input component nj = σ · Nj(O, 1)
according to a probability distribution

p(nj) =
1

σ
√
2π

exp(
−n2

j

2σ2
) (10)

The parameters θL, θH and aj control the asymptotes and slop
of the sigmoid function in the neurons. By this way, the nature
and extent of the neurons stochastic behavior is simulated [29].
Such behaviour is similar to the noisy units in [30], where the
variance of the added noise is tuned [28].

From [28],the energy function of CRBM is analogous to
that of the continuous Hopfield model:

ECRBM = −1

2

∑
i �=j

wijsisj +
∑
j

1

aj

∫ sj

0

ϕ−1(s)ds (11)

By using the MCD rule, in each iteration, parameters in
CRBM model can be updated via:

Δwij = εw(si · sTj − ŝi · ŝjT ) (12)

and
Δaj =

εa
a2j

(sj · sTj − ŝj · ŝjT ) (13)

Consequently, we need to combine the CRBMs layer by
layer with a stacked structure to build the DNN. We follow
the method introduced in [8], In each layer, we use a CRBM
to train the connection wight in this layer, and then have these
layers combined together. Specifically, in the training process
of each layer, as shown in Fig.1, the input vectors need to pass
through the two layers, meanwhile, the vectors in hidden layers
are representations of the input vectors and can be used to
reconstruct the input vectors. Thus, in each layer of the DNN,
the input of the current layer is the output of the previous
layer, then we train the input data via a CRBM, and use the
transformed vectors as the output of the current layer. Fig.3
shows the detailed mechanism of CRBM based DNN. We can
see that through a DNN, the raw data can be represented into
new feature spaces layer by layer, in other words, DNN can
learn features from the original data sets. And consequently,
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we need to employ a proper regression approach to compute
the output with the learned features.

V. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we will describe the experiment and give
the results and discussions

A. Wind Speed Data Collection and Pre-processing

The HKO has provided great support to our investigation.
Based on our collaboration with HKO, a massive volume
of high quality real weather data could be applied in our
experiment. The time range of the historical wind speed data
sets is almost 30-year long, which covers the period from
January, 1, 1983 to December, 31, 2012. The total number
of records is more than 230,000. Please note that our data set
contains massive records that cover data all the year round of
the 30 years in Hong Kong, by this way, we hope the model
can catch the urbanization effect change over the long term
and learn the rules of the daily, monthly and yearly cycles as
well as the seasonal rules of the tropical cyclones in Hong
Kong [31].

The wind speed data provided by the HKO has two dimen-
sions: the polar coordinate for the wind direction (measured
with degree angle) and the speed (measured with meters per
second), moreover, for a certain time points, the direction of
the air motion is not stable, i.e. the wind direction at that
time point is not fixed. such condition is denoted as “variable”
in the raw data. Therefore, according to the requirement of
our algorithm, we have to do some pre-processing on the data
sets: since the wind speed data (in a fixed horizontal plane) is a
vector quantity that has two dimensions in the polar coordinate
(as Fig.4), i.e. the angle to show its direction and the speed to
measure the magnitude in this direction: the polar coordinate
and the speed [32]. However, since our model is focused on
single variable time series problems, we have to transform the
data set to satisfy the model’s requirement. According to the
physical significance of the two dimensions, we denote the
angle as θ and the speed as v to obtain:

v0 = cosθ · v (14)

where v0 is the vector components of the wind speed in
0 degree angle direction (as Fig.5). Thus, what we actually
simulate is the time series of the speed components of the air
motion in 0 degree angle direction. Moreover, there are about
3% of wind speed data with the direction valued as “variable”,
for such condition, we consider it as a missing value in the
data set and use the average value of the wind direction in its
previous time point and its next time point to replace the value
“variable”.

B. Experiment Configuration

In our experiment, the whole data set is divided into two
parts, the training set contains the samples of the first 27 years,
and the testing set contains the samples of the last 3 years. Thus
the ratio of the sizes between the training set and the testing
set is 9:1.

To learn the complex effect of the seasonal and yearly
cycle of the wind speed change in Hong Kong, we don’t input
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training data to the model randomly as we did in [14] last
year. In this investigation, we use shift windows to organize
the input model, and there are 7-day data contained in each
window. The windows are input into the model according to
the time sequence.

In our experiment, we build a four-layer network and
employed it to predict the wind speed in Hong Kong. The
large size of the data set can avoid the overfitting problem of
the complex model. Actually, there is a feature reconstruction
of the data sets in each layer, and we hope to obtain a better
feature space after 3 feature reconstructions so that the output
layer can provide a higher accuracy in the finally obtained
feature space. In the top layer, in our model, we choose the
Support Vector Regression (SVR) with the Gaussian kernel to
give the forecasting output [33]. The parameter configuration
of the whole model is given in Table I.

TABLE I. THE PARAMETER CONFIGURATION OF THE NETWORKING

Parameter Value

Number of neurons in hidden layer 1 168

Number of neurons in hidden layer 2 96

Number of neurons in hidden layer 3 84

Learning rate 0.001

Max Iteration 1000

Parameters in SVR Default as LibSVM [33]
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TABLE II. THE COMPARISON OF WIND SPEED PREDICTION BY THE

FOUR MODELS

Model NMSE DS R2

Single Layer ANN 0.4547 0.694 0.791

CRBM DNN with SVR 0.2213 0.727 0.921

SAE DNN with SVR 0.2395 0.830 0.901

Classical SVR 0.2947 0.741 0.871

C. Experiment Results

In this paper, to evaluate the performance of the CRBM
based DNN, other three models are also applied to predict
the wind speed in Hong Kong, and the results are compared.
Specifically, the four models are the single layer Artificial
Neural Networking(ANN), the Classical SVR, the SAE DNN
followed with an SVR and the proposed model. From the
results comparison, We hope to study the advantages and
disadvantages of the SVR and NN models; also, the results
will show that whether a feature representation is helpful for
improving the accuracy of wind speed prediction; and more
importantly; ,the performances of the SVR in feature spaces
obtained via the SAEs and via CRBMs are also compared.
Table II gives the comparison of the results on three major
criteria, and the performance of the four models is respectively
shown in Fig 6, Fig 7, Fig 8 and Fig 9.

From the results, we can observe that, all of the four
models can catch the main trends of the wind speed change in
Hong Kong, but the performances of the four models are not
in the same level. The single layer ANN provides the worst
results: the single-layer ANN model only has R2 value less
than 0.8; and also provides relatively poorer performance in
other two criteria. However, we believe that if we can add more
hidden neurons in ANN, the performance will be better, but
the computational cost will also be higher. From the results of
other three models, we can see that the performance of SVR
can be improved (0.03 as the least improvement on R2 value)
by using the DNN feature representation, moreover, compared
with the SAE model, DNN with CRBM can provide a 3%
improvement of accuracy on weather data prediction. These
results demonstrate that as a generative model, CRBM is more
suitable than SAE for the time series problem, e.g., wind speed
forecasting.

VI. CONCLUSION, LIMITATION AND FUTURE WORK

The wind speed forecasting in Hong Kong is more difficult
than that of other places in the same latitude for two reasons:
the great affect from the urbanization of Hong Kong in the
long term, and the very high speeds of winds brought by the
tropical cyclones. In our investigation, we modified the model
that applied in our previous paper [14], using the continuous
valued RBM model to build the architecture of the DNN
instead of the SAE that we used before. The RBM model
is more generative than the SAE models and more suitable for
time series problem, and we applied the continuous version of
the RBM so that the model can be employed to process the
wind speed data.

We use massive volume of wind speed data in Hong Kong
to test our model. The comparison results are positive: the
CRBM based DNN model can learn a better feature space
from the raw wind speed data so that the SVR can obtain

higher accuracy in this learned feature space. The network
can provide lower NMSE by using the CRBM than using the
SAE.

The main future work of our investigation is that, we will
try to employ the CRBM model on more difficult weather data,
such as rain fall data set; and moreover, we will continue ex-
ploring the theoretical principle of computational intelligence,
especially, we will try to give the mathematical explanation of
the DNN.
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Fig. 6. The prediction results of a singly layer ANN
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Fig. 7. The prediction results of the proposed model
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