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Abstract—An algorithm is presented for image blur detection 
with the 2D Haar Wavelet transform (2D HWT). The algorithm 
classifies an image as blurred or sharp by splitting it into N x N
tiles, applying several iterations of the 2D HWT to each tile, and 
grouping horizontally, vertically, and diagonally connected tiles 
with pronounced changes into tile clusters. Images with large tile 
clusters are classified as sharp. Images with small tile clusters are 
classified as blurred. If need be, the blur extent can be estimated 
as the ratio of the total area of the connected tile clusters and the 
area of the image. When evaluated on a sample of five hundred 
images, the algorithm performed on par or better than two other 
blur detection algorithms found in the literature. The effect of 
blur detection on skewed barcode scanning is investigated by 
integrating the presented blur detection algorithm into a skewed 
barcode scanning algorithm. The experimental results indicate 
that blur detection had a positive effect on skewed barcode 
scanning rates. 

Keywords—computer vision; image blur detection; Haar 
wavelets, 2D Haar wavelet transform, barcode scanning 

I. Introduction 
In our previous research [1, 2], we developed an algorithm for 
in-place vision-based skewed barcode scanning with relaxed 
pitch, roll, and yaw camera alignment constraints. The skewed 
barcode scanning experiments were conducted on a set of 506 
video recordings of common grocery products. Our 
experiments showed that the scanning results were 
substantially higher on sharp images than on blurred ones. A
limitation of that algorithm was that it did not filter the blurred 
frames out of the barcode localization and scanning process. 

The same limitation was experimentally discovered in 
another algorithm that we developed for mobile vision-based 
localization of skewed nutrition labels (NLs) on grocery 
packages that maximizes specificity, i.e., the percentage of 
true negative matches out of all possible negative matches [3].
The NL localization algorithm works on frames captured from 
the smartphone camera’s video stream and localizes NLs
skewed up to 35-40 degrees in either direction from the 
vertical axis of the captured frame.  

The NL localization algorithm uses three image processing 
methods: edge detection, line detection, and corner detection. 
We experimentally discovered that the majority of false 
negative matches were caused by blurred images. Both the 

Canny edge detector [4] and dilate-erode corner detector [5]
used in the algorithm require rapid and contrasting changes to 
identify key points and lines of interest. These data cannot be 
readily retrieved from blurred images, which results in run-
time barcode scanning and NL localization failures. 
Consequently, effective image blur detection methods will 
likely improve both skewed barcode scanning and NL 
localization rates. 

Toward this end, in this paper, an algorithm is presented 
for image blur detection based on the 2D HWT [6]. The 
algorithm classifies an image as blurred or sharp by splitting it 
into N x N tiles, applying several iterations of the 2D HWT to 
each tile, and grouping the horizontally, vertically, and 
diagonally connected tiles with pronounced changes into 
clusters. Images with large clusters are classified as sharp 
whereas images with small tile clusters are classified as 
blurred. If need be, the blur extent can be estimated as the 
ratio of the total area of the connected tile clusters and the area 
of the image. The effect of blur detection on skewed barcode 
scanning is investigated by integrating the blur detection 
algorithm into our in-place vision-based skewed barcode 
scanning with relaxed pitch, roll, and yaw camera alignment 
constraints [1, 2]. The experimental results indicate that blur 
detection improves skewed barcode scanning rates. 

The remainder of our paper is organized as follows. In 
Section II, we present and analyze related work. In Section III, 
we outline the details of our image blur detection algorithm. In 
Section IV, we present our experiments with the blur detection 
algorithm and experimentally compare the algorithm’s
performance with two other blur detection algorithms found in 
the literature [7, 8]. In Section V, the results of the 
experiments are discussed. Section VI summarizes our 
findings, presents our conclusions, and outlines some research 
venues we would like to pursue in the future. 

II. Related Work
A. Blur Detection 

Mallat and Hwang [9] mathematically prove that signals carry 
information via irregular structures and singularities. In 
particular, they show that the local maxima of the wavelet 
transform detect the locations of irregularities. For example, 
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the 2D wavelet transform maxima indicate the locations of 
edges in images. The Fourier analysis [10], which has been 
traditionally used in physics and mathematics to investigate 
irregularities, is not always suitable to detecting the spatial 
distribution of such irregularities. 

According to Tong et al. [7], image blur detection methods 
can be broadly classified as direct or indirect. Indirect methods 
characterize image blur as a linear function ,
where  is the original image,  is an unknown image blur
function,  is a noise function, and  is the resulting image
after the introduction of the blur and noise.  

Indirect methods consider  unknown and use various 
techniques to estimate it. Rooms et al. [11] propose a wavelet-
based method to estimate the blur of an image by looking at 
the sharpness of the sharpest edges in the image. The Lipschitz 
exponents [12] are computed for the sharpest edges and a 
relation between the variance of a Gaussian point spread 
function and the magnitude of the Lipschitz exponent is shown 
to be dependent on the blur present in the image and not on the 
image contents.  

Venkatakrishnan et al. [13] show that the wavelet 
transform modulus maxima (WTMM) detect all the 
singularities of a function and describe strategies to measure 
their regularity and propose an algorithm for characterizing 
singularities of irregular signals. The researchers present a
method for measuring the Lipschitz exponents that uses the 
area between the straight line satisfying specific properties and 
the curve of the WTMM in a finite scale interval in the log-log 
plot of scales versus WTMM as the objective function. 

Pavlovic and Tekalp [14] propose a formulation of the 
maximum likelihood (ML) blur identification based on 
parametric modeling of the blur in the continuous spatial 
coordinates. Unlike ML blur identification methods based on 
discrete spatial domain blur models, their method finds the 
ML estimate of the extent and the parameters of arbitrary 
point spread functions that admit a closed form parametric 
description in the continuous coordinates. Experiments show 
significant results for the cases of 1D uniform motion blur, 2D 
out-of-focus blur, and 2D truncated Gaussian blur at different 
signal-to-noise ratios. 

Panchapakesan et al. [15] present an indirect method for 
image blur identification from vector quantizer encoder 
distortion. The method takes a set of training images from all 
candidate blur functions. These sets are used to train vector 
quantizer encoders. The a-priori unknown blur function is 
identified from a blurred image by choosing among the 
candidate vector quantizer encoders the encoder with the 
lowest distortion. The researchers investigated two training 
methods: the generalized Lloyd algorithm and a non-iterative 
discrete cosine transform (DCT)-based approach. 

Direct methods estimate blur extent on the basis of some 
distinctive features directly found in images such as edges, 
corners, or discrete cosine transform (DCT) coefficients. 
Marichal et al. [16] estimate image blur based on the 
histogram computation of non-zero DCT coefficients 
computed from MPEG or JPEG compressed images. The 
proposed method takes into account the DCT information 
from the entire image. A key assumption is that any edge type 
will likely cross some 8 x 8 blocks at least once in the image. 

The camera and motion blur is estimated through the 
globalization among all DCT blocks. 

Figure 1. Edge classification 

Tong et al. [7] propose a direct method similar to the one 
proposed in this paper in that it also uses the 2D Haar Wavelet 
Transform (2D HWT). Their method is based on the 
assumption that the introduction of blur has different effects 
on the four main types of edges shown in Figure 1: Dirac, A-
Step, G-Step, and Roof. It is claimed that in blurred images 
the Dirac and A-Step edges disappear while G-Step and Roof 
edges lose their sharpness. The method classifies an image as 
blurred on the basis of the presence or absence of Dirac and 
A-Step edges and estimates the blur extent as the percentage 
of G-Step and Roof edges present in the image.     

The algorithm presented in this paper is also based on the 
2D HWT. However, it does not extract any explicit 
morphological features such as edges or corners from the 
image. Instead, it uses the 2D HWT to detect regions with 
pronounced changes and combines those regions into larger 
segments without explicitly computing the causes of those 
changes. Since the algorithm is based on the 2D HWT, the 
regions are square tiles whose side is an integral power of 2. 
This algorithm continues our investigation of vision-based 
barcode and nutrition label scanning on mobile phones with 
relaxed pitch, yaw, and roll constraints [1, 2]. As we have 
previously reported, most false negatives in our experiments 
were caused by blurred images. While newer models of
smartphones will likely have improved camera stability and 
focus, software techniques to detect blurred images can still 
make vision-based skewed barcode scanning and nutrition 
information extraction more reliable and efficient. Since our 
barcode scanning and nutrition information extraction 
algorithms are cloud-based, eliminating blurred images from 
processing will likely improve the network throughput and 
decrease data plan consumption rates. 

B. 2D Haar Transform 

126 Int'l Conf. IP, Comp. Vision, and Pattern Recognition |  IPCV'15  |



Our implementation of the 2D HWT is based on the approach 
taken in [6] where the transition from 1D Haar wavelets to 2D 
Haar wavelets is based on the products of basic wavelets in the 
first dimension with basic wavelets in the second dimension. 
For a pair of functions  and  their tensor product is defined
as . Two 1D basic wavelet
functions are defined as follows: 

The 2D Haar wavelets are defined as tensor products of 
 and : ,

,
.

The superscripts h, v, and d indicate the correspondence of 
these wavelets with horizontal, vertical, and diagonal changes, 
respectively. The horizontal wavelets detect horizontal (left to 
right) changes in 2D data, the vertical wavelets detect vertical 
(top to bottom) changes in 2D data, and the diagonal changes 
detect diagonal changes in 2D data. 

In practice, the basic 2D HWT is computed by applying a
1D wavelet transform of each row and then a 1D wavelet 
transform of each column. Suppose we have a 2 x 2 pixel 
image 

. 

Applying a 1D wavelet transform to each row results in the 
following 2 x 2 matrix: 

Applying a 1D wavelet transform to each new column is 
fetches us the result 2 x 2 matrix: 

. 

The coefficients in the result matrix obtained after the 
application of the 1D transform to the columns express the 
original data in terms of the four tensor product wavelets 

, , , and :

.

The value 8 in the upper-left corner is the average value of 
the original matrix: (11+9+7+5)/4= 8. The value 1 in the upper 
right-hand corner is the horizontal change in the data from the 
left average, (11+7)/2=9, to the right average, (9+5)/2=7,
which is equal  The value 2 in the
bottom-left corner is the vertical change in the original data 
from the upper average, (11+9)/2=10, to the lower average, 
(7+5)/2=6, which is equal to 2= 4.
The value 0 in the bottom-right corner is the change in the 
original data from the average along the first diagonal (from 
the top left corner to the bottom right corner), (11+5)/2=8, to 
the average along the second diagonal (from the top right 
corner to the bottom left corner), (9+7)/2=8, which is equal to 

. The decomposition operation can be
represented in terms of matrices: 

. 

III. Blur Detection Algorithm
The first stage of the blur detection algorithm is to find image 
regions that have pronounced horizontal, vertical, or diagonal 
changes. A captured frame is divided into N x N windows, 
called tiles, where . Figure 2 shows square tiles
of size . The border pixels at the right and bottom 
margins are discarded when captured frames are not evenly 
divisible by N. A candidate tile must have a pronounced 
change along at least one of the three directions: horizontal, 
vertical, or diagonal. Whether a change is pronounced or not is 
determined through a threshold.  

Figure 2. Tile splitting 
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Each tile is processed by four iterations of the 2D Haar 
transform.  The number of iterations and the tile size are 
parameters and can be made either smaller or larger. The 
values reported in this paper were experimentally found to 
work well in our domain of vision-based skewed barcode 
scanning and nutrition information extraction [1, 2, 3].

Let HC be the horizontal change between the left half of 
the tile and the right half of the tile. Let VC be the vertical 
change between the upper half of the tile and the lower half of 
the tile. Let DC be the change between the first diagonal (top 
left to bottom right) and the second diagonal (top right to 
bottom left). If at least one of the values HC, VC, and DC is 
above the corresponding thresholds , , and ,
respectively, the tile is marked as having a pronounced 
change. Figure 3 (left) shows the tiles with pronounced 
changes marked as squares.  

Figure 3. Squre tiles with pronounced changes (left); Tile 
clusters found by DFS (right) 

Figure 4. Tiles with pronounced changes in a blurred 
image 

After the tiles with pronounced changes are found, the 
depth-first search (DFS) is used to combine them into tile 
clusters. The DFS starts with an unmarked tile with a 
pronounced horizontal, vertical, or diagonal change and 
proceeds by connecting to its immediate horizontal, vertical, 
and diagonal tile neighbors if they have pronounced changes. 
If such tiles are found, they are marked with the same cluster 

number and the search continues recursively. The search stops 
when no other tiles can be added to the current cluster. The 
algorithm continues to look for another unmarked tile to which 
it can apply the DFS. If no such tile is found, the algorithm 
terminates. Figure 3 (right) shows five DFS-found tile 
clusters. 

Figure 5. DFS-found tile clusters 

 

Figure 6. Pseudocode of the blur detection algorithm 

After the iterative applications of the DFS have found the 
tile clusters, two cluster-related rules are used to classify a 
whole image as sharp or blurred. The first rule is the 
percentage of the total area of the image covered by the 
clusters. The second rule uses the number of the tiles in each 
cluster to discard small clusters.

The first rule captures the intuition that in a sharp image 
there are many tiles with pronounced changes. The second 
rule discards small clusters whose size, i.e., the number of tiles 
in the cluster, is below a given threshold. This cluster weeding 
rule is currently based on a threshold of 5. In other words, any 

1. DetectBlur(Img, N, NITER, , , , CSZ, A)
2. {
3. FOR each N x N tile T in image Img {
4. [AVRG, HC, VC, DC] = 2DHWT(T, NITER);
5. AH=Avrg(HC); AV=Avrg(VC); AD=Avrg(DC);
6. IF (AH > or AV > or AD > )
7.  Mark T as having pronounced change;
8. }
9. FOR each N x N tile T in image Img {
10. IF ( T is not in any tile cluster )
11.  Run DFS(T) to find and mark all tiles in the
12.  same cluster;
13. }
14. TotalArea = 0;
15. FOR each tile cluster TC {
16. IF ( TC’s size  >  CSZ ) {
17.  ClusterArea = TC’s size * N x N;
18.  TotalArea += ClusterArea;
19. }
20. }
21. IF ( TotalArea/Area(Img)  < A )  Return True;
22. ELSE Return False;
22. }
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cluster with fewer than five tiles is rejected by the second rule 
and does not contribute to the area of the image with 
pronounced changes.  Thus, in Figure 3, only two clusters are 
left after the application of the second rule: the cluster with 18 
tiles and the cluster with 6 tiles. Since both clusters are large, 
the image is classified as sharp by the first rule. The three 
singletons are discarded. On the other hand, all clusters found 
in the blurred image of  Figure 4 are shown in Figure 5. Since 
all of them are small, they are discarded by the second rule. 

Figure 6 gives the pseudocode of our blur detection 
algorithm. The first argument to the DetectBlur function is 
the image, the second argument is the size of the square tile 
into which the image is split, as shown in Figure 2. In our 
experiments presented in the next section, N=64. The next 
argument, NITER, is the number of iterations of the 2DHWT
function runs in each square tile in line 4. In our current 
implementation, NITER=4. Our Java source of the 2DHWT
function is available at [17]. This function returns an array of 
four matrices: AVRG, HC, VC, and DC. The matrix AVRG
contains the average numbers after all iterations and the 
matrices HC, VC, and DC contain the horizontal, vertical, and 
diagonal wavelet coefficients, respectively.  

If at least one of the averages of the HC, VC, or DC
matrices after all NITER iterations is above a corresponding 
threshold, which is computed in lines 5 and 6, then the 
appropriate tile is marked as having pronounced change. In 
lines 9-13, the DFS is used to find all tile clusters in the image, 
as shown in Figure 3 (right).   

In lines 14-20, the two rules described above to compute 
the total area occupied by the clusters greater than the value of 
the cluster threshold parameter CSZ. In lines 21-22, if the 
percentage of the total area occupied by the clusters with 
pronounced changes is smaller than the threshold value
specified by the last parameter A, the image is classified as 
blurred. If need be, the algorithm can be modified to return the 
blur extent as the ratio of the total area occupied by the large 
tile clusters and the total area of the image. The smaller the 
ratio, the more blur exists in the image.  

The outlined algorithm is based on the assumption that in 
blurred images square tiles with pronounced changes do not 
form large clusters but scatter across the image as singletons 
or form clusters whose combined area is small relative to the 
size of the image.  

For example, Figure 4 is a blurred image where 64 x 64
tiles with pronounced changes are marked. Figure 5 shows the 
tile clusters found by the iterative applications of the DFS to 
the image in Figure 4. As can be seen in Figure 5, most 
clusters are either singletons or are of size 2. The largest 
cluster in the bottom left of the image is of size 4.  

IV. Experiments
We took five hundred random RGB images from a set of 506 
video recordings of common grocery products that we made 
publicly available in our previous field investigations of 
skewed barcode scanning [18]. The videos have a 1280 x 720 
resolution and an average duration of 15 seconds. All videos 
were recorded on an Android 4.2.2 Galaxy Nexus smartphone 
in a supermarket in Logan, UT. All videos were taken by an 
operator who held a grocery product in one hand and a 

smartphone in the other. The videos covered four different 
categories of products: bags, boxes, bottles, and cans. 

Three human volunteers were recruited to classify each of 
the five hundred images as blurred or sharp. An image was 
classified as blurred if at least two volunteers classified it as
blurred. It was otherwise classified as sharp. The human 
evaluation resulted in 167 blurred images and 333 sharp 
images. These results were used as the ground truth.  

We compared our algorithm with two other image blur 
detection algorithms frequently cited in the literature [7, 8]. 
Since we could not find the source code of [7] publicly 
available online, we implemented it ourselves in Python. Our 
Python source code is available at [19]. We found a MATLAB 
implementation of the other algorithm at [20] and used it for 
the experiments. 

Table 1 gives the numbers of true and false positives for all 
three algorithms. The columns TPB and FPB give the numbers 
of true and false positives, respectively, for the blurred 
images. The columns TPS and FPS give the numbers of true 
and false positives, respectively, for the sharp images. The 
row Algo 1 gives the statistics for our algorithm implemented 
in Java. The rows Algo 2 and Algo 3 give the statistics for the 
Python implementation of [19] and the MATLAB 
implementation of [8], respectively.  

Table 1. True and false positives 
Algorithm TPB FPB TPS FPS
Algo 1 163 4 254 79
Algo 2 167 0 183 150
Algo 3 81 86 268 65

To compare the performance numbers of each algorithm 
with the ground truth, we used the relative difference 
percentage, which is a unitless measure that compares two 
quantities while taking into account their magnitudes. Table 2 
gives the relative difference percentages computed as 

, where y is the humanly estimated number 
of blurred or sharp images, i.e., the ground truth, and x is the 
number of sharp or blurred images found by a given 
algorithm. For example, for Algo 1, the first relative 
difference is computed as 

=2.39, where 163 is the number of blurred images found 
by Algo 1 and 167 is the number of blurred images found by 
the human evaluators. 

Table 2. Relative differences 
Algorithm Blurred Sharp
Algo 1 2.39 23.72
Algo 2 0.00 45.05
Algo 3 51.50 19.52

Table 3. Effect of blur on barcode scanning I 
Sample Sharp Blurred Barcode 

in sharp
Barcodes 
in blurred

1 15 15 12 1
2 13 17 11 0
3 16 14 12 0

We investigated the effect of image blur on skewed 
barcode scanning. We chose three random samples of 30 
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images from the 500 images classified by the three human 
evaluators. In each sample, 15 images were classified as 
blurred and 15 as sharp. We integrated our blur detection 
algorithm into our cloud-based barcode scanning algorithm 
and estimated the effect of accurate image blur detection on 
skewed barcode scanning. Tables 3 and 4 give the results of 
our experiments. 

In Table 3, the first column gives the sample numbers. The 
column Sharp gives the number of sharp images classified as 
sharp by our algorithm. The column Blurred gives the number 
of images classified as blurred by our algorithm. The column 
Barcode in sharp gives the number of barcodes correctly 
scanned in the images classified as sharp. The column 
Barcodes in blurred gives the number of barcodes correctly 
scanned in the images classified by our algorithm as blurred. 
Thus, in sample 1, all blurred and sharp images were classified 
accurately.  However, in the 15 sharp images, the barcode 
scanner accurately scanned 12 barcodes whereas in the 15 
blurred images, the barcode scanner accurately scanned only 1 
barcode.  

In sample 2, 13 out of 15 images were accurately classified 
as sharp with 2 false negatives and 17 images were classified 
as blurred with 2 false positives. In 11 images classified as 
sharp, the barcodes were accurately scanned. No barcodes 
were accurately scanned in the images classified as blurred.  

In sample 3, 16 images were classified as sharp with 1 
false positive and 14 images were classified as blurred with 1 
false negative. Barcodes were successfully scanned in 12 
images classified as sharp. No barcodes were scanned in the 
images classified as blurred. 

Table 4. Effect of blur on barcode scanning II 
Sample Blurred Sharp Total Gain

1 1/15 12/15 13/30 0.37
2 0/17 11/13 11/30 0.50
3 0/16 12/14 12/30 0.46

Table 4 gives the results of the effect of blur detection on 
skewed barcode scanning. The first column gives the numbers 
of the random samples. The second column records the ratio 
of accurately scanned barcodes in the images classified as 
blurred. The third column records the ratio of accurately 
scanned barcodes in the images classified as sharp. The fourth 
column gives the ratio of recognized barcodes in all images. 
The fifth column gives the gain measured as the difference 
between the ratio of the accurately recognized barcodes only 
in the sharp images and the ratio of the accurately recognized 
barcodes in all images, which estimates the effect of blur 
detection on barcode scanning. Thus, in sample 1, we increase 
the barcode scanning rate by 37 percent if we eliminate 
images classified as blurred from barcode scanning. In sample 
2, if blurred images are eliminated from barcode scanning, we 
gain 50 percent in barcode scanning rates. In sample 3, the 
gain is 46 percent.   

V. Results 
In discussing the results of the experiments, we will again 
refer to our algorithm as Algo 1, to the algorithm by Tong et 
al. [7] as Algo 2, and to the algorithm by [8] as Algo 3. The 
experiments indicate (see Table 1) that, on our sample of
images, in classifying images as blurred. Algo 1 performs as 

well as Algo 2 and outperforms Algo 3. In classifying images 
as sharp, Algo 1 performs as well as Algo 3 and outperforms 
Algo 2.  

Table 2 confirms the observations recorded in Table 1. In 
image blur detection, there is almost no difference between 
Algo 1 and Algo 2 in that these algorithms do not deviate from 
the ground truth provided by the human evaluators on blurred 
images. On the other hand, Algo 3 shows a significant 
deviation from the ground truth on blurred images. On the 
other hand, in classifying images as sharp, Algo 1 and Algo 2 
deviate from the ground truth by approximately 20 points 
while Algo 2 deviates from the ground truth by 45 points.  

Tables 3 and 4 indicate that image blur detection has a 
pronounced positive effect on skewed barcode scanning. In all 
three random samples, the barcoding recognition gain was 
above thirty percent. While we ran these experiments only 
with our barcode scanning algorithm, we expect similar gains 
with other vision-based barcode scanning algorithms.   

Our experiments indicate that direct methods provide a 
viable alternative to indirect methods. While indirect methods 
may be more accurate, they tend to be more computationally 
expensive due to complex matrix manipulations. Direct 
methods may not be as precise as their indirect counterparts. 
However, they compensate for it by increased efficiency, 
which makes them more suitable for mobile and wearable 
platforms. 

Another observation that we would like to make is that in 
working with our samples of images we could not observe the 
blur effect on the edges observed by Tong et al. [7] in some 
images. The edge blur effect observed by these researchers is 
that the injection of blur in the images causes the Dirac and A-
Step edges disappear or turn into Roof and G-Step edges, 
respectively and the G-Step and Roof edges to lose their 
sharpness.  

Instead of using the 2D HWT to detect edge types, the 
algorithm proposed in this paper is based on the assumption 
that in blurred images square tiles with pronounced changes 
do not form larger clusters but scatter across the image as 
singletons or form clusters that are small in size relative to the 
overall size of the image.  

Our approach is rooted in the research by Mallat and 
Hwang [9] who show that the 2D HWT can detect the location 
of irregularities in 2D images. In our algorithm, the 2D HWT 
is used to detect the location of changes via square tiles 
without explicitly identifying the causes of the detected 
changes, e.g., edges or corners.

VI. Summary
We have presented an algorithm for direct image blur 
detection with the 2D Haar Wavelet transform (2D HWT).
The algorithm classifies an image as blurred or sharp by 
splitting it into N x N tiles, applying four iterations of the 2D 
HWT to each tile, and grouping the horizontally, vertically, 
and diagonally connected  tiles with pronounced changes into 
tile clusters. Images with large tile clusters are classified as 
sharp. Images with small tile clusters are classified as blurred. 
If necessary, the blur extent can be estimated as the ratio of the 
total area of the large tile clusters and the area of the whole 
image. 
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Our experiments on a sample of 500 images indicate that 
our algorithm either performs on par or outperforms two other 
blur detection algorithms found in the literature. The 
experiments also indicate that image blur detection has a 
pronounced positive effect on skewed barcode scanning. One 
possible implication of the research presented in this paper is 
that it may be possible to estimate blurriness in the images 
without explicitly computing the explicit features in the image 
that caused the blurriness (e.g., edges) or using involved 
methods to find the best fitting blur function.  

In our future work, we plan to investigate the effect of 
image blur detection on vision-based nutrition label scanning 
to improve the optical character recognition (OCR) rates. In 
our previous work, we proposed to a greedy spellchecking 
algorithm to correct OCR errors during nutrition label 
scanning on smartphones [21]. The proposed algorithm, called 
skip trie matching, uses a dictionary of strings stored in the 
trie data structure to correct run-time OCR errors by skipping 
misrecognized characters while going down specific trie paths. 

We expect that eliminating blurred frames from the 
processing stream, if done reliably, will improve the OCR 
rates and will make it possible to use open source OCR 
engines such as Tesseract (http://code.google.com/p/tesseract-
ocr) and GOCR (http://jocr.sourceforge.net) in vision-based 
nutrition label scanning. 
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