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Abstract— Machine Learning is a relatively new avenue in 
exploring Big Data, and this involves having a working 
understanding of the commonly used machine learning 
techniques, and the algorithms that each technique 
employs. There will be a focus on making the algorithms 
scalable to utilize large amounts of data, and this will be 
done using open source machine learning tools and 
libraries. Since big data resides on the internet, or on a 
cloud network, the machine learning algorithms studied in 
this paper will be utilized in applications deployed on a 
cloud service like Windows Azure or Amazon Web Services, 
which will carry out compute tasks on big data residing in 
the cloud. 
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I.  INTRODUCTION 
The computers of the current year have been improving 

exponentially in terms of performance as per Moore’s Law, and 
development of fast and efficient computing platforms has 
significantly helped us to understand computationally and 
structure-wise complex systems, such as biochemical 
processes, and sophisticated industrial production facilities and 
financial markets [7]. The human tendency of thinking and 
analyzing, and further predicting, arises from the fact that given 
historical data, we can estimate and model the processes in the 
system at a level of abstraction that, although not able to provide 
a complete understanding of the inner workings, is detailed 
enough to provide useful information about dependencies and 
interconnections at a higher level. This, in turn, can allow us to 
classify new patterns or predict the future behavior of the 
system.  

We have been harnessing the processing power of computers 
to build intelligent systems, systems that, given training data or 
historical data as mentioned above, can learn from, and as a 
result give us results when the test data is fed into the system. 
During the previous few decades, there has been incremental 
growth in our data generation and storage capabilities [2]. In 
general, there is a competitive edge in being able to properly 
use the abundance of data that is being collected in industry and 
society today. Efficient analysis of collected data can provide 
significant increases in productivity through better business and 

production process understanding the highly useful applications 
for e. g. decision support, surveillance and diagnosis. 

The focus of this paper is on exploring and implementing 
intelligent applications that harness the power of cluster 
computing (on local machines as well as the cloud) and apply 
machine learning on big data. However, the concepts that will 
be explored are by no means specific to these fields, and can be 
extended/modified for other fields as well. 

II. OBJECTIVES 
The objective of this paper is to meet the following 

objectives: 
  

 Explore machine learning techniques, and evaluate the 
challenges faced when operating on Big Data. 

 Explore current machine learning libraries, analyze the 
feasibility of exploiting them on a cloud platform 

 Understand the basics of cluster computing, and how 
an Apache Spark cluster can be setup on Microsoft 
Azure. 

 Cluster geospatial data, and analyze the performance 
of the implementation on a cluster. 

III. UNDERSTANDING MACHINE LEARNING 

 To put it simply, one can say that machine learning focuses 
on designing and implementing algorithms and applications 
that automatically ‘learn’ the more they are executed. We will 
however not be concerned with the deeper philosophical 
questions here, such as what learning and knowledge actually 
are and whether they can be interpreted as computation or not. 
Instead, we will tie machine learning to performance rather than 
knowledge and the improvement of this performance rather 
than learning. These are a more objective kind of definitions, 
and we can test learning by observing a behavior and comparing 
it to past behaviors. The field of machine learning draws on 
concepts from a wide variety of fields, such as philosophy, 
biology, traditional AI, cognitive science, statistics, information 
theory, control theory and signal processing. This varied 
background has resulted in a vast array of methods, although 
their differences quite often are skin-deep and a result of 
differences in notation and domain. Here we will briefly present 
a few of the most important approaches and discuss their 
advantages, drawbacks and differences.  
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A. Association Rule Learning  

ARL is an ML method for discovering relations among 
attributes in large transactional databases, and is quite popular 
and well researched. The measures used to discover similarities 
are varied, and it mainly involves generation of item sets 
recursively to finally build the rules, based on support count and 
confidence. This way of learning is often applied in market 
basket analysis (affinity analysis) where trends that relate 
products to transaction data are discovered to boost the sales of 
the organization. 

B. Artificial Neural Networks 
An ANN learning algorithm is inspired by the structure of 

the biological computer i.e. the brain, and is structurally 
designed in a manner similar to biological neural networks. The 
interconnected group of artificial neurons structure and divide 
the computation in such a manner that information can be 
processed in a parallel manner. Applications of NNs include use 
in tools that model non-linear statistical data. NNs make it easy 
to model complex relationships and process a large amount of 
inputs and compute outputs in a massively parallel manner. 
Other applications include pattern discovery and recognition, 
and discovering structure in statistical data distributions. 

C. Support Vector Machines (SVMs) 

SVMs, is a binary learner used for regression and 
classification, are supervised ML methods. It is applied mostly 
to categorical data, where the training set of data has records 
belonging to 1 of 2 categories. The model generated by the 
SVM training algorithm is then used on the test data to predict 
which category does each record fall into. Thus it can be seen 
as a non-probabilistic linear classifier. The data is represented 
as points in space, mapped so that the 2 categories are divided 
by a gap that is ideally as far apart as possible. The test records 
are then fit into the same space so that they fall into a point in 
space that corresponds to the category they fall into. 

D. Clustering 
Clustering can be viewed as separating records of data into 

subsets, called clusters, so that data points lying within the same 
cluster are highly similar, and this similarity is determined by 
employing pre-designated criteria. Data points belonging to 
different clusters are ideally placed as far as possible, i.e. they 
are highly dissimilar. There are various types of clustering 
techniques – partitional, hierarchical, and density based 
clustering being the most common. They are built on the basis 
of some similarity metric and the result of clustering is 
scrutinized by looking at the relative placement of members 
within the same cluster (internal compactness), and also how 
well separated different clusters are from each other. This ML 
method is an example of unsupervised learning. Applications of 
clustering are varied, from spatial data analysis to document 
clustering. 
 

E. Collaborative Filtering 

CF is a recommendation technique being increasingly for 
generating suggestions/recommendations. Collaborative 
filtering can be viewed as the process of filtering information to 
discover patterns involving ‘collaboration’ among data sources, 
viewpoints, multiple agents, etc. Collaborative filtering can be 
applied to very large data sets, and is a commonly applied to 
social media and entertainment services, like Netflix. 

These approaches above are applied to many types of data 
sets, which vary in size, structure, attributes and complexity. 
Also, most of these approaches don’t work well with all kinds 
of data, i.e. there is no ‘super-algorithm’ that can encompass all 
types of data sets. Therefore this is one problem that connects 
machine learning with big data. This scenario is better 
described as scalability [6], where the application/algorithm has 
to be redesigned to deal with huge sets of data, which are 
structurally big and complex to be read and operated upon by 
conventional computers. The structure of the data being used 
also matters, and impacts the way that it has to be pre-processed 
before the machine learning application can actually start 
working on the data. 

IV. BIG DATA AND THE CHALLENGES TO DATA ANALYTICS 
Big data is a buzz word used to describe the explosive 

generation and availability of data, mainly on the web [1]. Big 
Data, going by the name, is so large that traditional software 
techniques and databases fail to process this exponentially 
growing structured and unstructured data. It is not only the 
monolithic structure of big data that makes it a challenge, other 
factors include its rate of generation (that might be too fast to 
capture such huge amounts of data successfully without losing 
the other incoming data) or one may not have the processing 
prowess to quickly analyze the data. It can be characteristically 
described by [10] -  

 
 Volume: This describes the scale of data being 

handled. An estimate shows that 40 zettabytes 
(equivalent to 43 trillion gigabytes) of data will be 
created by 2020, a 300x increase compared to data 
generated by 2005. It is also estimated that 2.3 trillion 
gigabytes of data are generated every day, and is 
exponentially growing. 

 Variety: This refers to the different forms of data. It 
also indicates the various sources that generate 
structured and unstructured data. Taking healthcare as 
an example, in 2011 itself, data in healthcare was 
estimated to be 161 billion gigabytes. On YouTube, 
more than 4 billion hours are viewed every month. 

 Velocity: It deals with the rate at which sources like 
human interaction with things like social media sites, 
mobile devices, etc., networks, machines and business 
processes, generate the data. This characteristic is 
most important when dealing with huge flows of 
streaming data. Velocity of Big Data can be handled 
by sampling data from data streams. For example, 1TB 
of information about stock trades is captured by the 
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New York Stock Exchange during each trading 
session. If this is analyzed in an efficient way, 
businesses can really benefit. 

 Veracity: Veracity describes the abnormality, biases, 
noise and inaccuracy in data. The immense flow and 
size of the data itself is so overwhelming that noise and 
errors are bound to exist. Thus, to have clean data, 
filters and other monitoring measures need to be 
implemented to prevent ‘dirty data’ from 
accumulating. 

 
Loosely structured data is often inaccessible and incomplete. 

Difficulties in being able to create, manipulate, and manage big 
data are the most common problems organizations face when 
dealing with large databases. Since standard procedures and 
tools are not built from the ground up to analyze massive 
amounts of data, big data particularly poses a problem in 
business analytics. As can be inferred, the above elicited 
characteristics of big data make it particularly hard for machine 
learning tasks to be carried out on it. Sampling such huge data 
is the first difficulty that is faced. The lack of structure (or 
poorly defined structure) is another hurdle while preprocessing 
the data. The performance of the algorithm also suffers because 
of the sheer volume of the data to be trained. Thus, an efficient 
platform with high computational prowess and the ability to 
handle huge sizes of data is required. 
 

V. CURRENT MACHINE LEARNING CAPABLE CLUSTER 
COMPUTING PLATFORMS AND THEIR LIMITATIONS 

Since the 4 V’s of big data, as described in the previous 
section are a hurdle to processing of data at a small scale, a high 
performance computing solution, or an alternative to high 
performance computing on a small or distributed scale has to be 
explored. There are platforms that have been in existence for a 
long time now, but not all of them currently support applying 
machine learning on big data, in an explicit and intuitive way, 
or tradeoff between performance and ease of use.  

The key idea behind Hadoop is that instead of having a single 
juggernaut server that handles the computational and storage 
task of a very large dataset, Hadoop divides the whole task into 
a set of many subtasks, using the divide and conquer paradigm. 
After all the single tasks have been done, Hadoop is responsible 
for managing and recombining all the single subsets once their 
computation is over and the output is generated. In this case, it 
is possible to divide heavy computational tasks into many single 
node machines even if they are not so powerful, and obtain the 
results.  

The simple programming model of Hadoop provided by the 
built in software library is basically a framework that enables 
distributed processing of large datasets across single clusters 
containing a few worker nodes (as shown in Figure 1), to 
clusters of computers containing several nodes each. Hadoop 
can take advantage of the storage and local computation offered 
by every node in the cluster, and can scale up from single 
servers to thousands of machines effortlessly. 
 

 
 

Figure 1. A high level abstraction of Hadoop’s MapReduce 
paradigm. 

 
    Users who wished to exploit this great performance model 
offered by Hadoop to run machine learning tasks, used Apache 
Mahout, as it was tuned to Hadoop in a very efficient way. 
Apache Mahout [8][9], another Apache Software Foundation 
project, is a suite of open source implementations of scalable 
machine learning algorithms. The library contains algorithms 
primarily in the areas of classification, clustering and 
collaborative filtering. To enable parallelized operations, the 
implementations of the algorithms in Mahout use the Apache 
Hadoop platform. Like most of the projects in Apache 
Incubator, Mahout is a work in progress as various machine 
learning algorithms haven’t yet been made available to users, 
even though the number of implemented algorithms has grown 
quickly.      
    Mahout fixes one of the major issues with Machine Learning 
techniques, which is scalability. Mahout can scale algorithms to 
large data sets. Since the algorithms implemented in Mahout 
have been written with Hadoop and MapReduce at their core, 
the core libraries of machine learning contain code that highly 
optimized to extract maximum performance out of the available 
nodes in the cluster. Currently Mahout supports mainly three 
use cases: collaborative filtering, clustering, and classification.  
    Even though Mahout on Hadoop are advantageous in many 
ways, there are some limitations [4][5]. Apache Mahout on 
Hadoop, although a great platform for data scientists, is not 
intuitive and easy to learn. The real-time and offline Hadoop 
backend are not integrated into one system. There exist some 
performance bottlenecks in the computation of item-item 
similarities, and finer control needs to be implemented over the 
sampling rate in most applications. Hadoop tends to convert the 
Job into a Batch Processing task. Also, since it is iterative in 
nature, just I/O and serialization of the data during Mapping (in 
MapReduce) can take up 90% of the processing time. The 
machine learning task itself runs for only about 10% - 15% of 
the actual running time. Also, there is no real-time data analysis 
or data stream analysis for dynamic machine learning 
applications. This called for development of and even more 
powerful and fast computing platform, that could take the best 
of Hadoop’s MapReduce, but implement it in a much more 
optimized and efficient way. 
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VI. THE APACHE SPARK PLATFORM

Apache Spark[11] was an incubator project, and gained a lot 
of attention from the data science community, regardless of its 
incubation status. Apache Spark is now a fully supported 
Apache product, and is out of its incubation status. Apache 
Spark is an open source computing engine evolved from 
Hadoop, and built from the ground up to deliver speed, ease of 
use, and sophisticated analytics as a powerful platform for the 
computing community 

The component of prime interest is MLLib, the Machine 
Learning library for Apache Spark. It features highly optimized 
implementations of machine learning algorithms in Scala, and 
written from the base up to handle big data effectivelySpark 
give users access to a well-designed library of parallel and 
scalable machine learning algorithms. MLLib contains high-
quality scalable machine learning algorithms as well as 
unbelievable speed that out performs MapReduce and many 
other machine learning libraries available publically. Since it is 
a component of Spark, it is usable through not only Scala, but 
Python and Java as well. MLlib is a Spark subproject providing 
machine learning primitives, relevant to mainly classification, 
regression, clustering, collaborative filtering and gradient 
descent. Algorithms under each category are:  

 classification: logistic regression, linear support vector 
machine(SVM), naive Bayes  

 regression: generalized linear regression (GLM)  
 collaborative filtering: alternating least squares (ALS)  
 clustering: k-means  
 decomposition: singular value decomposition (SVD), 

principal component analysis (PCA) 

A. Experimental Setup 
The setup of Spark is fairly simple [12], and it is 

recommended that the pre-built binaries be download from the 
Spark website. The results obtained for this paper were 
collected by running the program on Spark version 0.9.1, when 
it was still in the incubation state. No substantial changes were 
made in the MLLib library, so the results obtained using Spark 
0.9.1 will be identical to those possible with version Spark 1.0. 
A Spark cluster was deployed using Cloud Services on 
Microsoft Azure, and Linux VMs were used as the cluster 
nodes. Each machine had 4 core processors, with 14GB of 
memory each. Since the VMs had to be connected to each other 
in the cluster, a Virtual Network was setup, with RSA secured 
SSH.  

VII. CLUSTERING GEO-SPATIAL DATA USING THE K-MEANS 
CLUSTERING IMPLEMENTATION OF MLLIB 

Most clustering methods used today either use k-means in 
conjunction with other clustering techniques, or they modify the 
algorithm in terms of sampling or partitioning. Given the 
number of clusters to be formed ‘k’, and ‘n’ data points in the 
data set, the goal is to choose k centers so as to maximize the 
similarity between each point and its closest center. The 
similarity measure most commonly used is the total squared 
distance between the point and the mean. This algorithm, also 
called the Lloyd’s algorithm first initializes k arbitrary 

“centers” from the data points, typically chosen at random, but 
using a uniform distribution. Each point is then assigned to the 
cluster whose center it is nearest to. After this, the centers are 
re-evaluated, keeping in mind the centers of mass of the points 
that surround the current center. Until the centers stabilize, the 
last 2 steps are repeated.  

Thus, it can be considered to be one of the simplest 
unsupervised learning algorithms that can be used to find a 
definite clustering of a given set of points, even with varied data 
types. The objective function that this algorithm aims to 
minimize, is the squared error function. The objective function 
is given as below: 
 

 
 

Here J is a chosen distance measure between a data point 
and the cluster center, and thus J is an indicator of the distance 
of the n data points from their respective cluster centers.  

Since there are only a limited number of clustering ways that 
are possible, this algorithm will always give a definite result, 
and will always terminate. Also, users who go for the k-means 
algorithm are interested not in the accuracy of the result it 
produces, but the simplicity and speed with which it gives the 
clustering result. It does sometimes generate arbitrarily bad 
clustering, but the fact that it doesn’t rely on how the starting 
dummy cluster centers were placed with respect to each other 
makes it a good option when performing clustering tasks. In 
particular, it can hold with high probability even if the centers 
are chosen uniformly at random from the data points. The area 
in which k-means can be improved considerably is the way the 
initial centers are chosen. If this process is optimized, the 
algorithm can be considered to be more computationally sound, 
and overall a good option to go for. In the next section, we look 
at 2 of the best improvements made to the algorithm to date, 
both of which are used in the clustering library of Spark. 

A. The k-means++ and k-means|| algorithms 
As discussed earlier, k-means is relatively not a good 

clustering algorithm [13] if the quality of clustering or the 
computational efficiency is considered. Analysis shows that the 
running time complexity of k-means is exponential in the worst 
case scenario. K-means aims at locally optimizing the clusters 
by minimizing distance to the center of the clusters, and thus 
the results can possibly deviate from the actual globally optimal 
solution to a considerable extent. Although repeated random 
initializations can be used to tweak the results a little bit, they 
prove to be not so effective in improving the results in any way. 
In spite of all these shortcomings, there are a meagre number of 
algorithms that can match the simplicity of and speed of the k-
means algorithm. Therefore, recent research has focused on 
optimizing and tweaking how the centers are initialized in the 
first step. If the initialization method is improved, the 
performance of the algorithm can be vastly sped up, both in 
terms of convergence and quality. One of the procedures to 
improve the initialization is k-means++. 

The k-means++ algorithm makes a small change in the 
original initialization, by choosing just the first mean (center) at 
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random, uniformly from the data. It also takes into 
consideration the contribution of a center to the overall error, 
and each center chosen by the k-means++ algorithm is selected 
with a probability that is proportional to this contribution. Thus, 
intuitively, k-means++ exploits the relatively high spread out of 
a good clustering. The new cluster centers chosen by k-
means++ are thus the ones that are preferably further away from 
the previously selected centers.  After analysis, it has been 
shown that k-means++ initialization improves the original 
algorithm by serving a constant approximation (O(log k) in 
some cases, when the data is difficult to cluster) of the optimum 
solution, if the data is known to be well cluster-able. The 
evaluation of the practical execution of the k-means++ 
algorithm and its variants is critical if performance of an actual 
running implementation is to be optimized. Tests demonstrated 
that correctly initializing the original k-means algorithm did 
lead to crucial improvements and lead to a good clustering 
solution. The k-means++ initialization obtained order of 
magnitude improvements, using various data sets, when the 
random initialization was put into effect.  

However, its inherent sequential structure is one downside 
of the k-means++ initialization. Although when looking for a k-
clustering of n points in the data set, its total running time is the 
same as that of a single K-Means iteration, it is not easily 
parallelizable. The probability with which a point is chosen to 
be the ith center depends critically on the realization of the 
previous i-1 centers (it is the previous choices that determine 
which points are away in the current solution). 

A simple bare bones implementation of k-means++ 
initialization makes k iterations through the data in order to 
select the initial k centers. This fact is augmented and made 
clear when big data is brought into picture. As datasets become 
bigger, as in the case of big data, so does the number of 
partitions into which the data can be divided.  For example, a 
typical cluster number k = 100 or 1000 is chosen to cluster, say 
clustering millions of points. But in this case, k-means++ being 
sequential in nature, proves to be very inefficient and slow. This 
slowdown is even more noticeable and unfavorable when the 
rest of the algorithm, i.e. the actual k-means algorithm can be 
parallelized to run in a parallel environment like MapReduce. 
For many applications, an initialization algorithm is desirable 
that guarantees efficient parallelizability, while providing the 
same or similar optimality to k-means++. 

To make k-means++ even better, and to formulate a parallel 
implementation, Bahmani et al. developed k-means||. the k-
means|| algorithm, instead of sampling a single point in each 
iteration, samples O(k) points and repeat the process for 
approximately O(log n) rounds. These O(k log(n)) points are 
then re-clustered into k initial centers for the original k-means. 
This initialization algorithm, which we call k-means||, is quite 
simple and lends itself to easy parallel implementations. 

B. Description and pre-processing of the dataset 
3D Road Network (North Jutland, Denmark) Data Set is 

essentially geo-coordinates of a road network in North Jutland 
(spanning over 185x135 sq. km), which has been augmented by 
adding the altitude (elevation information) of those geo-
coordinates to the data set[3]. The Laser Scan Point Cloud 

Elevation technology was used to achieve this. This 3D road 
network was eventually used for benchmarking various fuel and 
CO2 estimation algorithms. For the data mining and machine 
learning community, this dataset can be used as 'ground-truth' 
validation in spatial mining techniques and satellite image 
processing.  
Attribute Information: 

1. OSM_ID: OpenStreetMap ID for each road segment 
or edge in the graph.  

2. LONGITUDE: Web Mercaptor (Google format) 
longitude  

3. LATITUDE: Web Mercaptor (Google format) latitude  
4. ALTITUDE: Height in meters.  

 
Since the first attribute is not significant in clustering the 

points, only the other 3 relevant attributes had to be extracted 
for the actual clustering step. The data set file was loaded into 
GNU Octave, and extraction was achieved by initializing a 
matrix of dimensions 434874X4 and then slicing off the first 
attribute using the built in slicing implementation of Octave. 
The resulting matrix was a 434874X3 matrix, which was then 
written to disk as a TXT file. This file was then used in the next 
step, which is dividing the data into training and test data sets.  

The next step to preparing the data for training the K-Means 
model was to sample the data into a training data set, and a test 
data set. Different proportions of test and train data were tested 
- 40% of training data and 60% of test data, 50% of training 
data and 50% of test data, 60% of training data and 40% of test 
data, 70% of training data and 30% of test data. The best results 
were found in the last sample, as a good and robust model was 
built. At the end of pre-processing two files were created, 
train_70.txt (304412 records) and test_30.txt (134062 records). 

C. Explanation of the program 
In the program, we use the KMeans object of the MLLib 

library to cluster the data into clusters. The number of desired 
clusters is passed to the algorithm, which after performing 
numerous rounds of clustering, computes the Within Set Sum 
of Squared Error (WSSSE). WSSSE is the sum of the squared 
distance between each point in the cluster and the center of the 
cluster, and is used as a measure of variation within a cluster. 
You can reduce this error measure by increasing k. In fact the 
optimal k is usually one where there is an “elbow” in the 
WSSSE graph. 

The parameters accepted by the train() method of the 
KMeans object are –  

i. Data: The training data in the form of and RDD 
(Resilient Distributed Dataset) is fed into the train 
method, which will be iterated through to build the 
KMeans model. 

ii. No. of clusters: specifies the number of clusters that 
the data is to be partitioned into. 

iii. Max iterations: maximum number of iterations of the 
initialization algorithm (random, k-means++ or k-
means||) is to be run. 

iv. No. of runs: number of times the k-means algorithm 
has to be run, and this is a crucial parameter as k-
means does not guarantee a globally optimal solution. 
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Increasing the number of runs can give some surety 
that the best clustering result would be obtained. 

v. Initialization mode: initializationMode specifies either 
random initialization or initialization via k-means||. 

VIII. TEST CASES AND ANALYSIS OF RESULTS 
The test cases were formulated in a way that could help analyze 
how the implementation of the clustering algorithms included 
with the MLLib library of Apache Spark performed with a 
relatively dense, yet simple data set. The data set used, due to 
its spatial nature is inherently suitable for clustering. Yet, the 
points that have been recorded as part of the 3D Road Network, 
are at really close proximity of each other, and thus the data is 
very dense. The data, being dense, is a challenge for k-means 
as k-means goes for a partitional approach rather than a density 
based clustering approach. This would lead to understandable 
errors in clustering, and that would be an interesting point to 
observe. Also, since there are 434874 lines containing 3 floating 
point numbers each, performance of the algorithms with respect 
to the parameters specified for the clustering would be a crucial 
point to observe. 

The test cases were designed to range from less 
computationally intensive to highly computationally intensive 
tasks. The tests cases have been described below –  

 
i. Cluster count k = 10, maxIterations = 10, Runs = 10 

A relatively low number of clusters specified 
guarantees that the algorithm will take a short amount 
of time to run. Also, because the runs are limited to 10, 
the algorithm will produce a high error of clustering. 
Since this is the first test case, it serves to be a 
placeholder for designing the next few test cases. 

ii. Cluster count k = 20, maxIterations = 50, Runs = 100 

Increasing the cluster count guarantees a lower WSSE, 
but since the number of maxIterations have been 
increased, along with the number of runs, it will be 
interesting to note the effect this change in parameters 
has on the performance as well as running time of the 
clustering. 

iii. Cluster count k = 30, maxIterations = 15, Runs = 50 

iv. Cluster count k = 40, maxIterations = 15, Runs = 50 

v. Cluster count k = 50, maxIterations = 15, Runs = 50 

vi. Cluster count k = 100, maxIterations = 15, Runs = 50 

The above 4 runs simply increase the number of 
clusters, and this is done to observe trends in 
performance when only the cluster count is increased. 

The results obtained exhibited interesting patterns, and 
helped infer that performance of the clustering is directly linked 
to the cluster count parameter. The legend is a triple, (k,m,r) 
which stands for cluster count k, maxIterations m and runs r. 
The results were measured in seconds, and since the magnitude 

of the results obtained when changing the no. of slave nodes 
ranged from 100s of seconds to 1000s, the results had to be 
normalized to have a clearer and more intuitive insight into the 
patterns in performance. The normalization was carried out 
using the z-score method, which transforms data into a range of 
[-2,2]. It uses the standard deviation and mean of the data to 
calculate the values. Also, this method proves useful to easily 
identify outliers, as any value that has a z-score > 2 or z-score 
< -2 doesn’t fall in the normal range of the data being 
normalized. After z-score normalization, the runtime in seconds 
was plotted against the number of slave nodes (Worker nodes) 
being used by the algorithm. The resulting graph is shown in 
the following figure. 

 
Figure 2. Clustering time vs. Number of Slave Nodes 

    As can be seen, in the first case, the time to cluster data 
decreases as number of slave nodes are increased. The 
performance doesn’t change much when the number of slave 
nodes is increased from 4 to 8, as most of the slaves are 
scheduled randomly, and the rest remain idle while the jobs are 
running on the other nodes.  
    In the 2nd case, the max iterations and runs are increased, and 
the unnecessary stress on the computation is apparent. This case 
completely stands out from the rest of the cases as time 
complexity shoots up due to the relatively more extreme 
parameters. The 100 runs take longer on 4 and 8 slave nodes, 
which is unexpected according to the trend. This could be 
explained by arguing that scheduling and distribution process 
would be easier on 2 slaves as compared to that on 4 and 8 
slaves, and more so when there is just one file being operated 
upon. This case helps infer that the number of runs increases the 
complexity and causes unnecessary fluctuations in running time, 
when accuracy of the model is not favorable over the speed (as 
in the case of big data). So, in further cases the runs are reduced 
to 50, and max iterations reduced to 15, as it was observed that 
the k-means++ converged in not more than 15 iterations every 
time. 
    In the consecutive cases, only the cluster count was increased 
by 10 with each case, and the number of slave nodes were 
varied as before. The trend remained the same across the last 4 
cases – the running time decreased, with run times almost the 
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same in the case of 4 and 8 slave nodes. This is due to idle states 
of the nodes when they’re not needed, mostly in the case of the 
8 slave nodes.  
    The result of clustering is however more understandable in 
terms of the Average WSSE (Within Set Squared Errors) which 
dropped considerably across all 6 cases. This is attributed solely 
to the number of clusters being created, and has no relation with 
the other parameters of the KMeans model. As the number of 
clusters are increased, the WSSE decreases. Here, the values 
plotted are the average of the WSSE calculated in each case 
where the number of slave nodes was calculated.  

 

Figure 3. Average WSSE vs. Number of clusters 

IX. CONCLUSION 
The focus of this paper was to explore platforms that can be 

used to implement intelligent applications that harness the 
power of cluster computing (on local machines as well as the 
cloud) and apply machine learning on big data. Current cluster 
computing platforms like Google Cloud Engine and Apache 
Hadoop, and their corresponding machine learning libraries – 
Prediction API, and Apache Mahout were studied, and 
compared against Apache Spark and MLLib. 

A cluster was created on Windows Azure, and each node in 
the cluster had a quad core processor with 14 GB of RAM, 
running Ubuntu Server 12.04 LTS. Apache Spark was 
downloaded and built on each machine. The program was 
written in Python, and interfaced with Apache Spark using 
Pyspark. A simple clustering task was run on a relatively large 
and complex data set, and the run times were recorded. Varying 
the configuration of the cluster with every run showed some 
interesting trends in the results. As compared to traditional 
iterative implementations of k-means clustering, running it on 
Apache Spark on a cloud cluster definitely gave it an advantage 
on run time. 

With the rise of diverse, flexible and economical cloud 
service, users from both research and business backgrounds can 
harness the power of Spark on a cloud cluster, and apply data 

mining and machine learning concepts to their everyday tasks. 
It is even more suited for big data, as Spark features excellent 
parallelization of data, and optimized code libraries so that jobs 
can be processed quickly. Big data and machine learning are 
essentially a very good combination of areas to work upon, and 
research carried out in these areas are definitely going to 
influence the development of intelligent and computationally 
powerful platforms for the ever growing domain of Big Data. 
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