

Applying Scalable Machine Learning Techniques on
Big Data using a Computational Cluster

Dev Dua1, Sujala D. Shetty2, Lekha R. Nair3

Department of Computer Science
BITS Pilani – Dubai Campus

Dubai, U.A.E.
devdua@live.com1, sujala@dubai.bits-pilani.ac.in2, lekharnair@gmail.com3

Abstract— Machine Learning is a relatively new avenue in
exploring Big Data, and this involves having a working
understanding of the commonly used machine learning
techniques, and the algorithms that each technique
employs. There will be a focus on making the algorithms
scalable to utilize large amounts of data, and this will be
done using open source machine learning tools and
libraries. Since big data resides on the internet, or on a
cloud network, the machine learning algorithms studied in
this paper will be utilized in applications deployed on a
cloud service like Windows Azure or Amazon Web Services,
which will carry out compute tasks on big data residing in
the cloud.

Keywords - Big Data, Machine Learning, Cluster Computing

I. INTRODUCTION
The computers of the current year have been improving

exponentially in terms of performance as per Moore’s Law, and
development of fast and efficient computing platforms has
significantly helped us to understand computationally and
structure-wise complex systems, such as biochemical
processes, and sophisticated industrial production facilities and
financial markets [7]. The human tendency of thinking and
analyzing, and further predicting, arises from the fact that given
historical data, we can estimate and model the processes in the
system at a level of abstraction that, although not able to provide
a complete understanding of the inner workings, is detailed
enough to provide useful information about dependencies and
interconnections at a higher level. This, in turn, can allow us to
classify new patterns or predict the future behavior of the
system.

We have been harnessing the processing power of computers
to build intelligent systems, systems that, given training data or
historical data as mentioned above, can learn from, and as a
result give us results when the test data is fed into the system.
During the previous few decades, there has been incremental
growth in our data generation and storage capabilities [2]. In
general, there is a competitive edge in being able to properly
use the abundance of data that is being collected in industry and
society today. Efficient analysis of collected data can provide
significant increases in productivity through better business and

production process understanding the highly useful applications
for e. g. decision support, surveillance and diagnosis.

The focus of this paper is on exploring and implementing
intelligent applications that harness the power of cluster
computing (on local machines as well as the cloud) and apply
machine learning on big data. However, the concepts that will
be explored are by no means specific to these fields, and can be
extended/modified for other fields as well.

II. OBJECTIVES
The objective of this paper is to meet the following

objectives:

 Explore machine learning techniques, and evaluate the
challenges faced when operating on Big Data.

 Explore current machine learning libraries, analyze the
feasibility of exploiting them on a cloud platform

 Understand the basics of cluster computing, and how
an Apache Spark cluster can be setup on Microsoft
Azure.

 Cluster geospatial data, and analyze the performance
of the implementation on a cluster.

III. UNDERSTANDING MACHINE LEARNING

 To put it simply, one can say that machine learning focuses
on designing and implementing algorithms and applications
that automatically ‘learn’ the more they are executed. We will
however not be concerned with the deeper philosophical
questions here, such as what learning and knowledge actually
are and whether they can be interpreted as computation or not.
Instead, we will tie machine learning to performance rather than
knowledge and the improvement of this performance rather
than learning. These are a more objective kind of definitions,
and we can test learning by observing a behavior and comparing
it to past behaviors. The field of machine learning draws on
concepts from a wide variety of fields, such as philosophy,
biology, traditional AI, cognitive science, statistics, information
theory, control theory and signal processing. This varied
background has resulted in a vast array of methods, although
their differences quite often are skin-deep and a result of
differences in notation and domain. Here we will briefly present
a few of the most important approaches and discuss their
advantages, drawbacks and differences.

Int'l Conf. Internet Computing and Big Data | ICOMP'15 | 17

A. Association Rule Learning

ARL is an ML method for discovering relations among
attributes in large transactional databases, and is quite popular
and well researched. The measures used to discover similarities
are varied, and it mainly involves generation of item sets
recursively to finally build the rules, based on support count and
confidence. This way of learning is often applied in market
basket analysis (affinity analysis) where trends that relate
products to transaction data are discovered to boost the sales of
the organization.

B. Artificial Neural Networks
An ANN learning algorithm is inspired by the structure of

the biological computer i.e. the brain, and is structurally
designed in a manner similar to biological neural networks. The
interconnected group of artificial neurons structure and divide
the computation in such a manner that information can be
processed in a parallel manner. Applications of NNs include use
in tools that model non-linear statistical data. NNs make it easy
to model complex relationships and process a large amount of
inputs and compute outputs in a massively parallel manner.
Other applications include pattern discovery and recognition,
and discovering structure in statistical data distributions.

C. Support Vector Machines (SVMs)

SVMs, is a binary learner used for regression and
classification, are supervised ML methods. It is applied mostly
to categorical data, where the training set of data has records
belonging to 1 of 2 categories. The model generated by the
SVM training algorithm is then used on the test data to predict
which category does each record fall into. Thus it can be seen
as a non-probabilistic linear classifier. The data is represented
as points in space, mapped so that the 2 categories are divided
by a gap that is ideally as far apart as possible. The test records
are then fit into the same space so that they fall into a point in
space that corresponds to the category they fall into.

D. Clustering
Clustering can be viewed as separating records of data into

subsets, called clusters, so that data points lying within the same
cluster are highly similar, and this similarity is determined by
employing pre-designated criteria. Data points belonging to
different clusters are ideally placed as far as possible, i.e. they
are highly dissimilar. There are various types of clustering
techniques – partitional, hierarchical, and density based
clustering being the most common. They are built on the basis
of some similarity metric and the result of clustering is
scrutinized by looking at the relative placement of members
within the same cluster (internal compactness), and also how
well separated different clusters are from each other. This ML
method is an example of unsupervised learning. Applications of
clustering are varied, from spatial data analysis to document
clustering.

E. Collaborative Filtering

CF is a recommendation technique being increasingly for
generating suggestions/recommendations. Collaborative
filtering can be viewed as the process of filtering information to
discover patterns involving ‘collaboration’ among data sources,
viewpoints, multiple agents, etc. Collaborative filtering can be
applied to very large data sets, and is a commonly applied to
social media and entertainment services, like Netflix.

These approaches above are applied to many types of data
sets, which vary in size, structure, attributes and complexity.
Also, most of these approaches don’t work well with all kinds
of data, i.e. there is no ‘super-algorithm’ that can encompass all
types of data sets. Therefore this is one problem that connects
machine learning with big data. This scenario is better
described as scalability [6], where the application/algorithm has
to be redesigned to deal with huge sets of data, which are
structurally big and complex to be read and operated upon by
conventional computers. The structure of the data being used
also matters, and impacts the way that it has to be pre-processed
before the machine learning application can actually start
working on the data.

IV. BIG DATA AND THE CHALLENGES TO DATA ANALYTICS
Big data is a buzz word used to describe the explosive

generation and availability of data, mainly on the web [1]. Big
Data, going by the name, is so large that traditional software
techniques and databases fail to process this exponentially
growing structured and unstructured data. It is not only the
monolithic structure of big data that makes it a challenge, other
factors include its rate of generation (that might be too fast to
capture such huge amounts of data successfully without losing
the other incoming data) or one may not have the processing
prowess to quickly analyze the data. It can be characteristically
described by [10] -

 Volume: This describes the scale of data being

handled. An estimate shows that 40 zettabytes
(equivalent to 43 trillion gigabytes) of data will be
created by 2020, a 300x increase compared to data
generated by 2005. It is also estimated that 2.3 trillion
gigabytes of data are generated every day, and is
exponentially growing.

 Variety: This refers to the different forms of data. It
also indicates the various sources that generate
structured and unstructured data. Taking healthcare as
an example, in 2011 itself, data in healthcare was
estimated to be 161 billion gigabytes. On YouTube,
more than 4 billion hours are viewed every month.

 Velocity: It deals with the rate at which sources like
human interaction with things like social media sites,
mobile devices, etc., networks, machines and business
processes, generate the data. This characteristic is
most important when dealing with huge flows of
streaming data. Velocity of Big Data can be handled
by sampling data from data streams. For example, 1TB
of information about stock trades is captured by the

18 Int'l Conf. Internet Computing and Big Data | ICOMP'15 |

New York Stock Exchange during each trading
session. If this is analyzed in an efficient way,
businesses can really benefit.

 Veracity: Veracity describes the abnormality, biases,
noise and inaccuracy in data. The immense flow and
size of the data itself is so overwhelming that noise and
errors are bound to exist. Thus, to have clean data,
filters and other monitoring measures need to be
implemented to prevent ‘dirty data’ from
accumulating.

Loosely structured data is often inaccessible and incomplete.

Difficulties in being able to create, manipulate, and manage big
data are the most common problems organizations face when
dealing with large databases. Since standard procedures and
tools are not built from the ground up to analyze massive
amounts of data, big data particularly poses a problem in
business analytics. As can be inferred, the above elicited
characteristics of big data make it particularly hard for machine
learning tasks to be carried out on it. Sampling such huge data
is the first difficulty that is faced. The lack of structure (or
poorly defined structure) is another hurdle while preprocessing
the data. The performance of the algorithm also suffers because
of the sheer volume of the data to be trained. Thus, an efficient
platform with high computational prowess and the ability to
handle huge sizes of data is required.

V. CURRENT MACHINE LEARNING CAPABLE CLUSTER
COMPUTING PLATFORMS AND THEIR LIMITATIONS

Since the 4 V’s of big data, as described in the previous
section are a hurdle to processing of data at a small scale, a high
performance computing solution, or an alternative to high
performance computing on a small or distributed scale has to be
explored. There are platforms that have been in existence for a
long time now, but not all of them currently support applying
machine learning on big data, in an explicit and intuitive way,
or tradeoff between performance and ease of use.

The key idea behind Hadoop is that instead of having a single
juggernaut server that handles the computational and storage
task of a very large dataset, Hadoop divides the whole task into
a set of many subtasks, using the divide and conquer paradigm.
After all the single tasks have been done, Hadoop is responsible
for managing and recombining all the single subsets once their
computation is over and the output is generated. In this case, it
is possible to divide heavy computational tasks into many single
node machines even if they are not so powerful, and obtain the
results.

The simple programming model of Hadoop provided by the
built in software library is basically a framework that enables
distributed processing of large datasets across single clusters
containing a few worker nodes (as shown in Figure 1), to
clusters of computers containing several nodes each. Hadoop
can take advantage of the storage and local computation offered
by every node in the cluster, and can scale up from single
servers to thousands of machines effortlessly.

Figure 1. A high level abstraction of Hadoop’s MapReduce
paradigm.

 Users who wished to exploit this great performance model
offered by Hadoop to run machine learning tasks, used Apache
Mahout, as it was tuned to Hadoop in a very efficient way.
Apache Mahout [8][9], another Apache Software Foundation
project, is a suite of open source implementations of scalable
machine learning algorithms. The library contains algorithms
primarily in the areas of classification, clustering and
collaborative filtering. To enable parallelized operations, the
implementations of the algorithms in Mahout use the Apache
Hadoop platform. Like most of the projects in Apache
Incubator, Mahout is a work in progress as various machine
learning algorithms haven’t yet been made available to users,
even though the number of implemented algorithms has grown
quickly.
 Mahout fixes one of the major issues with Machine Learning
techniques, which is scalability. Mahout can scale algorithms to
large data sets. Since the algorithms implemented in Mahout
have been written with Hadoop and MapReduce at their core,
the core libraries of machine learning contain code that highly
optimized to extract maximum performance out of the available
nodes in the cluster. Currently Mahout supports mainly three
use cases: collaborative filtering, clustering, and classification.
 Even though Mahout on Hadoop are advantageous in many
ways, there are some limitations [4][5]. Apache Mahout on
Hadoop, although a great platform for data scientists, is not
intuitive and easy to learn. The real-time and offline Hadoop
backend are not integrated into one system. There exist some
performance bottlenecks in the computation of item-item
similarities, and finer control needs to be implemented over the
sampling rate in most applications. Hadoop tends to convert the
Job into a Batch Processing task. Also, since it is iterative in
nature, just I/O and serialization of the data during Mapping (in
MapReduce) can take up 90% of the processing time. The
machine learning task itself runs for only about 10% - 15% of
the actual running time. Also, there is no real-time data analysis
or data stream analysis for dynamic machine learning
applications. This called for development of and even more
powerful and fast computing platform, that could take the best
of Hadoop’s MapReduce, but implement it in a much more
optimized and efficient way.

Int'l Conf. Internet Computing and Big Data | ICOMP'15 | 19

VI. THE APACHE SPARK PLATFORM

Apache Spark[11] was an incubator project, and gained a lot
of attention from the data science community, regardless of its
incubation status. Apache Spark is now a fully supported
Apache product, and is out of its incubation status. Apache
Spark is an open source computing engine evolved from
Hadoop, and built from the ground up to deliver speed, ease of
use, and sophisticated analytics as a powerful platform for the
computing community

The component of prime interest is MLLib, the Machine
Learning library for Apache Spark. It features highly optimized
implementations of machine learning algorithms in Scala, and
written from the base up to handle big data effectivelySpark
give users access to a well-designed library of parallel and
scalable machine learning algorithms. MLLib contains high-
quality scalable machine learning algorithms as well as
unbelievable speed that out performs MapReduce and many
other machine learning libraries available publically. Since it is
a component of Spark, it is usable through not only Scala, but
Python and Java as well. MLlib is a Spark subproject providing
machine learning primitives, relevant to mainly classification,
regression, clustering, collaborative filtering and gradient
descent. Algorithms under each category are:

 classification: logistic regression, linear support vector
machine(SVM), naive Bayes

 regression: generalized linear regression (GLM)
 collaborative filtering: alternating least squares (ALS)
 clustering: k-means
 decomposition: singular value decomposition (SVD),

principal component analysis (PCA)

A. Experimental Setup
The setup of Spark is fairly simple [12], and it is

recommended that the pre-built binaries be download from the
Spark website. The results obtained for this paper were
collected by running the program on Spark version 0.9.1, when
it was still in the incubation state. No substantial changes were
made in the MLLib library, so the results obtained using Spark
0.9.1 will be identical to those possible with version Spark 1.0.
A Spark cluster was deployed using Cloud Services on
Microsoft Azure, and Linux VMs were used as the cluster
nodes. Each machine had 4 core processors, with 14GB of
memory each. Since the VMs had to be connected to each other
in the cluster, a Virtual Network was setup, with RSA secured
SSH.

VII. CLUSTERING GEO-SPATIAL DATA USING THE K-MEANS
CLUSTERING IMPLEMENTATION OF MLLIB

Most clustering methods used today either use k-means in
conjunction with other clustering techniques, or they modify the
algorithm in terms of sampling or partitioning. Given the
number of clusters to be formed ‘k’, and ‘n’ data points in the
data set, the goal is to choose k centers so as to maximize the
similarity between each point and its closest center. The
similarity measure most commonly used is the total squared
distance between the point and the mean. This algorithm, also
called the Lloyd’s algorithm first initializes k arbitrary

“centers” from the data points, typically chosen at random, but
using a uniform distribution. Each point is then assigned to the
cluster whose center it is nearest to. After this, the centers are
re-evaluated, keeping in mind the centers of mass of the points
that surround the current center. Until the centers stabilize, the
last 2 steps are repeated.

Thus, it can be considered to be one of the simplest
unsupervised learning algorithms that can be used to find a
definite clustering of a given set of points, even with varied data
types. The objective function that this algorithm aims to
minimize, is the squared error function. The objective function
is given as below:

Here J is a chosen distance measure between a data point
and the cluster center, and thus J is an indicator of the distance
of the n data points from their respective cluster centers.

Since there are only a limited number of clustering ways that
are possible, this algorithm will always give a definite result,
and will always terminate. Also, users who go for the k-means
algorithm are interested not in the accuracy of the result it
produces, but the simplicity and speed with which it gives the
clustering result. It does sometimes generate arbitrarily bad
clustering, but the fact that it doesn’t rely on how the starting
dummy cluster centers were placed with respect to each other
makes it a good option when performing clustering tasks. In
particular, it can hold with high probability even if the centers
are chosen uniformly at random from the data points. The area
in which k-means can be improved considerably is the way the
initial centers are chosen. If this process is optimized, the
algorithm can be considered to be more computationally sound,
and overall a good option to go for. In the next section, we look
at 2 of the best improvements made to the algorithm to date,
both of which are used in the clustering library of Spark.

A. The k-means++ and k-means|| algorithms
As discussed earlier, k-means is relatively not a good

clustering algorithm [13] if the quality of clustering or the
computational efficiency is considered. Analysis shows that the
running time complexity of k-means is exponential in the worst
case scenario. K-means aims at locally optimizing the clusters
by minimizing distance to the center of the clusters, and thus
the results can possibly deviate from the actual globally optimal
solution to a considerable extent. Although repeated random
initializations can be used to tweak the results a little bit, they
prove to be not so effective in improving the results in any way.
In spite of all these shortcomings, there are a meagre number of
algorithms that can match the simplicity of and speed of the k-
means algorithm. Therefore, recent research has focused on
optimizing and tweaking how the centers are initialized in the
first step. If the initialization method is improved, the
performance of the algorithm can be vastly sped up, both in
terms of convergence and quality. One of the procedures to
improve the initialization is k-means++.

The k-means++ algorithm makes a small change in the
original initialization, by choosing just the first mean (center) at

20 Int'l Conf. Internet Computing and Big Data | ICOMP'15 |

random, uniformly from the data. It also takes into
consideration the contribution of a center to the overall error,
and each center chosen by the k-means++ algorithm is selected
with a probability that is proportional to this contribution. Thus,
intuitively, k-means++ exploits the relatively high spread out of
a good clustering. The new cluster centers chosen by k-
means++ are thus the ones that are preferably further away from
the previously selected centers. After analysis, it has been
shown that k-means++ initialization improves the original
algorithm by serving a constant approximation (O(log k) in
some cases, when the data is difficult to cluster) of the optimum
solution, if the data is known to be well cluster-able. The
evaluation of the practical execution of the k-means++
algorithm and its variants is critical if performance of an actual
running implementation is to be optimized. Tests demonstrated
that correctly initializing the original k-means algorithm did
lead to crucial improvements and lead to a good clustering
solution. The k-means++ initialization obtained order of
magnitude improvements, using various data sets, when the
random initialization was put into effect.

However, its inherent sequential structure is one downside
of the k-means++ initialization. Although when looking for a k-
clustering of n points in the data set, its total running time is the
same as that of a single K-Means iteration, it is not easily
parallelizable. The probability with which a point is chosen to
be the ith center depends critically on the realization of the
previous i-1 centers (it is the previous choices that determine
which points are away in the current solution).

A simple bare bones implementation of k-means++
initialization makes k iterations through the data in order to
select the initial k centers. This fact is augmented and made
clear when big data is brought into picture. As datasets become
bigger, as in the case of big data, so does the number of
partitions into which the data can be divided. For example, a
typical cluster number k = 100 or 1000 is chosen to cluster, say
clustering millions of points. But in this case, k-means++ being
sequential in nature, proves to be very inefficient and slow. This
slowdown is even more noticeable and unfavorable when the
rest of the algorithm, i.e. the actual k-means algorithm can be
parallelized to run in a parallel environment like MapReduce.
For many applications, an initialization algorithm is desirable
that guarantees efficient parallelizability, while providing the
same or similar optimality to k-means++.

To make k-means++ even better, and to formulate a parallel
implementation, Bahmani et al. developed k-means||. the k-
means|| algorithm, instead of sampling a single point in each
iteration, samples O(k) points and repeat the process for
approximately O(log n) rounds. These O(k log(n)) points are
then re-clustered into k initial centers for the original k-means.
This initialization algorithm, which we call k-means||, is quite
simple and lends itself to easy parallel implementations.

B. Description and pre-processing of the dataset
3D Road Network (North Jutland, Denmark) Data Set is

essentially geo-coordinates of a road network in North Jutland
(spanning over 185x135 sq. km), which has been augmented by
adding the altitude (elevation information) of those geo-
coordinates to the data set[3]. The Laser Scan Point Cloud

Elevation technology was used to achieve this. This 3D road
network was eventually used for benchmarking various fuel and
CO2 estimation algorithms. For the data mining and machine
learning community, this dataset can be used as 'ground-truth'
validation in spatial mining techniques and satellite image
processing.
Attribute Information:

1. OSM_ID: OpenStreetMap ID for each road segment
or edge in the graph.

2. LONGITUDE: Web Mercaptor (Google format)
longitude

3. LATITUDE: Web Mercaptor (Google format) latitude
4. ALTITUDE: Height in meters.

Since the first attribute is not significant in clustering the

points, only the other 3 relevant attributes had to be extracted
for the actual clustering step. The data set file was loaded into
GNU Octave, and extraction was achieved by initializing a
matrix of dimensions 434874X4 and then slicing off the first
attribute using the built in slicing implementation of Octave.
The resulting matrix was a 434874X3 matrix, which was then
written to disk as a TXT file. This file was then used in the next
step, which is dividing the data into training and test data sets.

The next step to preparing the data for training the K-Means
model was to sample the data into a training data set, and a test
data set. Different proportions of test and train data were tested
- 40% of training data and 60% of test data, 50% of training
data and 50% of test data, 60% of training data and 40% of test
data, 70% of training data and 30% of test data. The best results
were found in the last sample, as a good and robust model was
built. At the end of pre-processing two files were created,
train_70.txt (304412 records) and test_30.txt (134062 records).

C. Explanation of the program
In the program, we use the KMeans object of the MLLib

library to cluster the data into clusters. The number of desired
clusters is passed to the algorithm, which after performing
numerous rounds of clustering, computes the Within Set Sum
of Squared Error (WSSSE). WSSSE is the sum of the squared
distance between each point in the cluster and the center of the
cluster, and is used as a measure of variation within a cluster.
You can reduce this error measure by increasing k. In fact the
optimal k is usually one where there is an “elbow” in the
WSSSE graph.

The parameters accepted by the train() method of the
KMeans object are –

i. Data: The training data in the form of and RDD
(Resilient Distributed Dataset) is fed into the train
method, which will be iterated through to build the
KMeans model.

ii. No. of clusters: specifies the number of clusters that
the data is to be partitioned into.

iii. Max iterations: maximum number of iterations of the
initialization algorithm (random, k-means++ or k-
means||) is to be run.

iv. No. of runs: number of times the k-means algorithm
has to be run, and this is a crucial parameter as k-
means does not guarantee a globally optimal solution.

Int'l Conf. Internet Computing and Big Data | ICOMP'15 | 21

Increasing the number of runs can give some surety
that the best clustering result would be obtained.

v. Initialization mode: initializationMode specifies either
random initialization or initialization via k-means||.

VIII. TEST CASES AND ANALYSIS OF RESULTS
The test cases were formulated in a way that could help analyze
how the implementation of the clustering algorithms included
with the MLLib library of Apache Spark performed with a
relatively dense, yet simple data set. The data set used, due to
its spatial nature is inherently suitable for clustering. Yet, the
points that have been recorded as part of the 3D Road Network,
are at really close proximity of each other, and thus the data is
very dense. The data, being dense, is a challenge for k-means
as k-means goes for a partitional approach rather than a density
based clustering approach. This would lead to understandable
errors in clustering, and that would be an interesting point to
observe. Also, since there are 434874 lines containing 3 floating
point numbers each, performance of the algorithms with respect
to the parameters specified for the clustering would be a crucial
point to observe.

The test cases were designed to range from less
computationally intensive to highly computationally intensive
tasks. The tests cases have been described below –

i. Cluster count k = 10, maxIterations = 10, Runs = 10

A relatively low number of clusters specified
guarantees that the algorithm will take a short amount
of time to run. Also, because the runs are limited to 10,
the algorithm will produce a high error of clustering.
Since this is the first test case, it serves to be a
placeholder for designing the next few test cases.

ii. Cluster count k = 20, maxIterations = 50, Runs = 100

Increasing the cluster count guarantees a lower WSSE,
but since the number of maxIterations have been
increased, along with the number of runs, it will be
interesting to note the effect this change in parameters
has on the performance as well as running time of the
clustering.

iii. Cluster count k = 30, maxIterations = 15, Runs = 50

iv. Cluster count k = 40, maxIterations = 15, Runs = 50

v. Cluster count k = 50, maxIterations = 15, Runs = 50

vi. Cluster count k = 100, maxIterations = 15, Runs = 50

The above 4 runs simply increase the number of
clusters, and this is done to observe trends in
performance when only the cluster count is increased.

The results obtained exhibited interesting patterns, and
helped infer that performance of the clustering is directly linked
to the cluster count parameter. The legend is a triple, (k,m,r)
which stands for cluster count k, maxIterations m and runs r.
The results were measured in seconds, and since the magnitude

of the results obtained when changing the no. of slave nodes
ranged from 100s of seconds to 1000s, the results had to be
normalized to have a clearer and more intuitive insight into the
patterns in performance. The normalization was carried out
using the z-score method, which transforms data into a range of
[-2,2]. It uses the standard deviation and mean of the data to
calculate the values. Also, this method proves useful to easily
identify outliers, as any value that has a z-score > 2 or z-score
< -2 doesn’t fall in the normal range of the data being
normalized. After z-score normalization, the runtime in seconds
was plotted against the number of slave nodes (Worker nodes)
being used by the algorithm. The resulting graph is shown in
the following figure.

Figure 2. Clustering time vs. Number of Slave Nodes

 As can be seen, in the first case, the time to cluster data
decreases as number of slave nodes are increased. The
performance doesn’t change much when the number of slave
nodes is increased from 4 to 8, as most of the slaves are
scheduled randomly, and the rest remain idle while the jobs are
running on the other nodes.
 In the 2nd case, the max iterations and runs are increased, and
the unnecessary stress on the computation is apparent. This case
completely stands out from the rest of the cases as time
complexity shoots up due to the relatively more extreme
parameters. The 100 runs take longer on 4 and 8 slave nodes,
which is unexpected according to the trend. This could be
explained by arguing that scheduling and distribution process
would be easier on 2 slaves as compared to that on 4 and 8
slaves, and more so when there is just one file being operated
upon. This case helps infer that the number of runs increases the
complexity and causes unnecessary fluctuations in running time,
when accuracy of the model is not favorable over the speed (as
in the case of big data). So, in further cases the runs are reduced
to 50, and max iterations reduced to 15, as it was observed that
the k-means++ converged in not more than 15 iterations every
time.
 In the consecutive cases, only the cluster count was increased
by 10 with each case, and the number of slave nodes were
varied as before. The trend remained the same across the last 4
cases – the running time decreased, with run times almost the

22 Int'l Conf. Internet Computing and Big Data | ICOMP'15 |

same in the case of 4 and 8 slave nodes. This is due to idle states
of the nodes when they’re not needed, mostly in the case of the
8 slave nodes.
 The result of clustering is however more understandable in
terms of the Average WSSE (Within Set Squared Errors) which
dropped considerably across all 6 cases. This is attributed solely
to the number of clusters being created, and has no relation with
the other parameters of the KMeans model. As the number of
clusters are increased, the WSSE decreases. Here, the values
plotted are the average of the WSSE calculated in each case
where the number of slave nodes was calculated.

Figure 3. Average WSSE vs. Number of clusters

IX. CONCLUSION
The focus of this paper was to explore platforms that can be

used to implement intelligent applications that harness the
power of cluster computing (on local machines as well as the
cloud) and apply machine learning on big data. Current cluster
computing platforms like Google Cloud Engine and Apache
Hadoop, and their corresponding machine learning libraries –
Prediction API, and Apache Mahout were studied, and
compared against Apache Spark and MLLib.

A cluster was created on Windows Azure, and each node in
the cluster had a quad core processor with 14 GB of RAM,
running Ubuntu Server 12.04 LTS. Apache Spark was
downloaded and built on each machine. The program was
written in Python, and interfaced with Apache Spark using
Pyspark. A simple clustering task was run on a relatively large
and complex data set, and the run times were recorded. Varying
the configuration of the cluster with every run showed some
interesting trends in the results. As compared to traditional
iterative implementations of k-means clustering, running it on
Apache Spark on a cloud cluster definitely gave it an advantage
on run time.

With the rise of diverse, flexible and economical cloud
service, users from both research and business backgrounds can
harness the power of Spark on a cloud cluster, and apply data

mining and machine learning concepts to their everyday tasks.
It is even more suited for big data, as Spark features excellent
parallelization of data, and optimized code libraries so that jobs
can be processed quickly. Big data and machine learning are
essentially a very good combination of areas to work upon, and
research carried out in these areas are definitely going to
influence the development of intelligent and computationally
powerful platforms for the ever growing domain of Big Data.

REFERENCES
[1] NG DATA, “Machine learning and Big Data analytics: the

perfect marriage”, Internet: http://www.ngdata.com/machine-
learning-and-big-data-analytics-the-perfect-marriage/

[2] Daniel Gillblad, Doctoral Thesis, Swedish Institute of Computer
Science, SE–164 29 Kista, Sweden, 2008, “On practical machine
learning and data analysis”, Internet: http://soda.swedish-
ict.se/3535/1/thesis-kth.pdf

[3] 3D Road Network (North Jutland, Denmark) Data Set, UCI
Machine Learning Repository, Internet:
http://archive.ics.uci.edu/ml/datasets/3D+Road+Network+%28N
orth+Jutland%2C+Denmark%29

[4] Sean Owen, Contributor at Quora, “What are the pros/cons of
using Apache Mahout when creating a real time recommender
system?”, Internet: http://www.quora.com/Apache-
Mahout/What-are-the-pros-cons-of-using-Apache-Mahout-
when-creating-a-real-time-recommender-system

[5] Nick Wilson, BigML, “Machine Learning Throwdown”,
Internet: http://blog.bigml.com/2012/08/02/machine-learning-
throwdown-part-1-introduction/

[6] Georgios Paliouras, Department of Computer Science, University
of Manchester, Thesis on “Scalability of Machine Learning
Algorithms”, Internet:
http://users.iit.demokritos.gr/~paliourg/papers/MSc.pdf

[7] Tom M.Mitchell, School of Compter Science, Carnegie Mellon
Univesity, Pittsburgh, July 2006, “The Discipline of Machine
Learning”, Internet:
http://www.cs.cmu.edu/~tom/pubs/MachineLearning.pdf

[8] Gaston Hillar, “Machine Learning with Apache Mahout: The Lay
of the Land”, Internet: http://www.drdobbs.com/open-
source/machine-learning-with-apache-mahout-the/240163272

[9] Apache Mahout, Apache Foundation, Internet:
https://mahout.apache.org/

[10] IBM, Articles on Big Data, Internet:
http://www.ibm.com/developerworks/bigdata/

[11] Apache Spark, Apache Foundation, Internet:
http://spark.apache.org/

[12] Mbonaci, “Spark standalone cluster tutorial”, Internet :
http://mbonaci.github.io/mbo-spark/

[13] Songma, S.; Chimphlee, W.; Maichalernnukul, K.; Sanguansat,
P., "Classification via k-means clustering and distance-based
outlier detection," ICT and Knowledge Engineering (ICT &
Knowledge Engineering), 2012 10th International Conference
on , vol., no., pp.125,128, 21-23 Nov. 2012

Int'l Conf. Internet Computing and Big Data | ICOMP'15 | 23

