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Abstract - Heat exchanger network (HEN) synthesis has been 
a well-studied subject over the latest decades. Many studies 
and methodologies were proposed to make possible the energy 
recovery. Based on simulated annealing and genetic 
algorithm, this paper presents an efficient simultaneous 
synthesis method that provides the optimal networks in a two-
level procedure. Genetic algorithm is used by an evolutionary 
algorithm to manage HEN topology and simulated annealing 
is used to manage heat load distribution among exchangers. 
This two-level method is applied to solve one benchmark that 
includes 28 instances with different dimensions, from 3 to 39 
streams. For every instance, this benchmark includes the best 
result obtained with a state-of-the-art algorithm from the 
literature, which has been useful in this work to compare our 
proposed hybrid algorithm with the best existing approaches. 
The results of this study show that, in some situations, the 
hybrid approach is able to derive networks that are more 
economical than those from the known solutions in the 
literature. 

Keywords: heat exchanger network synthesis; genetic 
algorithm; simulated annealing; hybridization; optimization; 
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1 Introduction 
  The problem of synthesizing optimal network 
configurations has received considerable attention in the 
literature in the last few decades, so as for its significant 
impact on energy and cost saving in industry. The objective is 
to design a heat exchanger network that minimizes total 
annualized cost (TAC) as the sum of annualized investment 
cost and annual operating cost with the given sets of streams 
and utilities.  

 The complexity of the HENs has a combinatorial nature. 
For a fixed number of streams, there are a wide range of 
possibilities of combinations among exchangers. However, 
the number of possible HEN configurations that contains the 
minimum utilities consumption is smaller than the entire 
number of configurations. This restriction ensures finding a 
HEN with the minimum utilities to a presented minimum 
temperature of approach (∆Tmin). 

 For addressing the HEN synthesis problem most of 
methods can be grouped into three different lines, which are 
thermodynamic based approaches, mathematical 

programming methods and metaheuristic optimization 
methods. 

 On one hand, thermodynamic approaches based on the 
pinch analysis by Linnhoff and Flower [1] and Linnhoff and 
Hindmarsh [2] are most commonly used. Pinch analysis 
method is flexible and provides an overview of the problem. 
It creates the problem into a sub-problems based on the 
concept of pinch and with various targets, which are then 
solved sequentially. The targets include minimum approach 
temperatures, ΔTmin. They will illustrate for the cumulative 
cost of the heat exchanger network, and certain way they can 
define the optimal level of ΔT min or can be used as an 
instrument of the optimization progresses. A review on this 
method was collected by Shenoy [3]. 

 On the other hand, mathematical programming methods 
could solve the problem with and without decomposition. 
With decomposition, commonly called sequential approach, 
the reduction of computational complexity is found. This 
method usually have mixed integer linear programming 
(MILP) or non-linear programming (NLP) formulation. The 
most well-known works are the transshipment model 
Papoulias and Grossmann [4], the explanation of Biegler [5], 
and superstructure model Floudas [6]. 

 Without decomposition, frequently called simultaneous 
approaches, near global optimal solutions are found by mixed 
integer non-linear programming (MINLP) formulations. Non-
convex terms as the LMTD of heat exchangers, the energy 
balances for mixers and splitters and the non-linear area cost 
function make the solution of these models much more 
difficult. For this reason, some simplifications in the problem 
must be done in order to reduce its complexity. For instance, 
the stage-wise network superstructure proposed by Yee [7] 
make the assumption of isothermal mixing for streams. Chen 
approximation of LMTD [8] term is usually used to avoid 
numerical difficulties, when the approach temperatures of 
both sides of the exchanger are equal. Other well-known 
approximation was made by Paterson [9]. Ciric et al [10] 
collected a review of mathematical programming method. 

 Finally the third line, metaheuristic optimization 
methods, such as Simulated Annealing (SA), have been 
applied by Athier et al [11], Tabu Search (TS) by Lin and 
miller [12] and Genetic Algorithm (GA) by Lewin et al. [13], 
another contribution of their work is to introduce the concept 
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of ‘HEN level’ for structure representation which was then 
used in a two-level synthesis method of HENs combining 
harmony search (HS) and sequential quadratic programming 
(SQP) [14]. Differential evolution (DE) algorithm for 
synthesis of HENs have been proposed by Yerramsetty and 
Murty [15] and also utilized the structure representation 
similar to ‘HEN level’. A particle swarm optimization (PSO) 
method and a GA/PSO algorithm have been presented by 
Silva et al. [16] and Huo et al. [17] respectively. These 
techniques are able to solve complex problems without being 
limited by non-linearities, non-convexities and discontinuities 
of the models. All of them are robust and can find near 
optimal solution by means of searching space within a 
reasonable time but they still have the difficulty in converging 
to the precise global optimal solution in the feasible region. 

 This paper proposes a benchmark that has 28 problems 
with the same characteristics. To test this benchmark, some 
tests with hybrid algorithm are conducted. In the proposed 
hybrid algorithm, stochastic methods are combined in a two-
level approach to take the advantage of each method and 
compensate deficiencies of individual methods. This hybrid 
algorithm uses the GA and SA algorithm; GA is used to 
create for network structural, while the fitness of each 
structure is calculated by SA. 

 The remaining parts of this paper are organized as 
follow. In section 2, the mathematical formulation of HENS 
is presented. Section 3 describes the proposed two-level 
synthesis method in detail. Section 4 briefly describes 
available benchmark instances and also results obtained 
followed by conclusions in Section 5. 

2 Mathematical Formulation 
 The HENs problem was first rigorously defined by 
Masso and Rudd [18] and its objective is to find a sequence 
of combining exchangers in pairs of streams, getting that the 
network either optimal in relation to the global cost.  

 Section 2 presents the mathematical formulation solved 
by the two-level simultaneous synthesis method in this paper. 

2.1 HEN Structure Representation 

 A structure representation based on superstructure 
proposed by Yee [7] is presented, it has stages where only 
one exchange is allowed between a specific hot stream and a 
specific cold stream, however this stage wise superstructure 
allows a stream to split into several substreams (or branches) 
at each stage to exchange heat with other streams of the 
opposite kind. The utilities streams are placed at the ends of 
the sequence of stages. 

A stage-superstructure with branch involving two hot and two 
cold streams along with cold and hot utilities is shown in Fig. 
1. 

 For single heat exchanger with counter-current flow 
patterns, the feasibility of heat exchange temperature 
difference is rigorously required as shown in Fig. 2. 

 
Figure 2: Modification of HEN representation 

 

3 Method 
 A two-level method is proposed to optimize the binary 
and continuous variables, one is based on Genetic Algorithm 
(GA) [19] and other is settle on Simulated Annealing (SA) 
[20]. Both of them are in principle random methods generally 
used to solve large scale combinatorial optimization 
problems.  

  

 

 
Figure 1: Stage-wise superstructure 
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 GA is applied for binary variables optimization to search 
optimal network structure since it has been proven to be a 
powerful discrete variables optimization algorithm of 
combinatorial problem and SA algorithm is applied to the 
continuous variables optimization as well and designed to 
converge to the optimal heat distribution of each candidate 
structure with low computational effort [21, 22]. Fig. 3. 
Illustrates the basic concept of the two-level method.  

 SA can find good quality solutions in a neighborhood, but 
most it will get trapped in local minimum and takes longer to 
scope, while GA rapidly discovers the search space, but has 
difficulty in finding the exact minimum. For this reason a 
parallel GA/SA hybrid has been adopted in the present work 
where in the upper level, a series of candidate structures will 
be generated by specified strategy by GA and then sent to the 
lower level SA for solving minimum TAC until converging to 
an optimal HEN solution. 

 
Figure 3: Basic concept of the two-level method 

3.1 Genetic algorithm 

 Genetic algorithm is settling on the natural selection and 
genetic mutation in biological world. The genetic algorithm 
consists of three main operators: selection, crossover, and 
mutation. The individual with a better value of fitness (lower 
value of the objective function) has a greater chance to be 
selected to produce its offspring by crossover, or to return 
directly to the next generation. By using a crossover 
operation, two selected parents are combined to form their 
offspring. A mutation operation will introduce new genes into 
the population to avoid the evolution converging into a local 
optimum. 

3.2 Simulated Annealing algorithm 

 Simulated annealing is organized according to the Monte 
Carlo simulation technique developed by Metropolis et al. and 
the theory of Markov [23] chains provides mathematical 
properties about its asymptotic convergence. The simulated 
annealing algorithm was firstly introduced to solve large 
combinatorial optimization problems by Kirkpatrick et al. [20] 
who drew an analogy between the annealing of a solid and the 
optimization of a complex system. For it accepts and rejects 
‘moves’ generated randomly on the basis of a probability 
related to an ‘annealing temperature’, SA can accept uphill 
moves and consequently escape from a local optimum. 
Obviously, the accepted proportion of uphill moves increases 
with the annealing temperature T. Until a specified stop 

criterion is satisfied, the annealing temperature is periodically 
reduced according to the annealing schedule. The higher the 
temperature, the larger the possibility of having accepted 
random moves. Therefore, the ability of this algorithm to 
escape from the region of poor local optima can be controlled 
by adjusting the annealing schedule. 

3.3 Structure of the two-level method 

 The global optimization procedure can be summed up as 
follows. In the upper level, the candidate structure combined 
by 0 or 1 binary variables are evaluated based on the 
minimum TACs solved in the lower level. The current 
structure will be gradually improved by the genetic and 
simulated annealing mechanisms and finally converge to an 
optimal structure. The overall algorithm is illustrated in Fig. 4. 

 The optimization is started with a randomly initial 
population of structures that is produced by the GA. The 
structure search should be performed in a sufficiently feasible 
space to guarantee that the optimal structure is involved. A 
topological structure will be generated randomly as the first 
current structure, where zi,j,k = 1 denotes that a heat 
exchanger is matched between ith hot stream and jth cold 
stream at the kth stage. Each exchanger has an associated 
value, qi,j,k, which represents the exchanged heat load in this 
exchange. In the beginning, this value is set to 0 and the 
whole heat load is carried out by the utilities. SA is the 
responsible of the optimization of these heat loads as long as 
the total annual cost is concerned. Notice that SA is not 
allowed to change z structure; SA only handles the values of 
heat loads related to each exchange for calculating TAC. 

 After the optimal heat distribution for a structure has been 
obtained by SA, GA handles it within a population in order to 
obtain the best structure for applying operators by roulette-
wheel procedure and obtain offspring. 

 
Figure 4: Flow diagram describing the structure of the two-level 

method 

370 Int'l Conf. Artificial Intelligence |  ICAI'15  |



 GA presents two probability model establish Monte Carlo 
[23] sampling respectively to create new structures 
(offspring), this is add or delete heat exchangers as random 
moves for a given structure. These two moves are equally 
probable to be performed when a candidate structure is 
generated. Genetics operations are taken into account in 
accordance with TAC. The better the TAC, the bigger the 
likelihood to be chosen to create the offspring. Roulette-wheel 
is the responsible of choosing the adequate structure that the 
offspring will have, once the parents are selected; only one 
genetic operation is applied. This operation is chosen 
randomly. There are two different possible operators, one-
point crossover or mutation. 

 (i) One-point crossover to search the bigger solution space 
possible, combination of two structures selected by Roulette-
Wheel is repeated to generate new offspring. Two parents, p1, 
p2 are combined by simple crossover to create two offspring, 
s1, s2, a half of the structure will go to one offspring and the 
other half to the other. 

S1 = 0.5*p1 + 0.5*p2                  (28) 

S2 = 0.5* p2 + 0.5*p2                  (29) 

 (ii) In addition to maintain the diversity of the population, 
the main purpose of this operator is to help prevent 
information loss in the evolution progress. Mutation of the 
parents is made as follow. Randomly an exchange of each 
parent is selected, and then these values are switched as 
follows. 

1 → 0 

0 → 1 

Once the new structure is obtained, GA adds it to the 
population. Then, roulette-wheel updates the likelihood to 
choose parents. So, one child could be chosen in the next 
steps. The iteration ends when the second half of the 
structures is completely formed by offspring. 

4 Cases and discussion 
 In order to verify the performance of our algorithm, the 
computation is conducted on a benchmark. The benchmark is 
composed of instances taken from the literature. The instances 
are organized according to the number of streams; they are 
sorted in ascending order. 

4.1 Results 

 In this section, the instances of the benchmark are solved to 
test the performance of the presented two-level method. The 
results are compared to the best result obtained with a state-
of-the-art algorithm from the literature. These results are 
summarized in Table 1. 

 The algorithm proposed is able to achieve five best results 
as done by others in the literature for HTN2, HTN5, HTN9, 
HTN21 and HTN22 problems. 

 

Table 1: Summary results. 

Method Annual cost($/year) Method Annual cost($/year) Method Annual cost($/year) 
HNT1   HNT11   HNT21   

Bjoerk2002 76350 Silva2010 1624768 Brandt2011 6110902 

Huang2012 76327         

Huang2013 76327         
This work 76742.8 This work 1885667.4 This work 5520273.5 
HNT2   HNT12   HNT22   

Bjoerk2002 52429 Bjoerk2002 61295 Agarwal2008 43728 

        Huang2013 43359 
This work 47901.2 This work 64891.4 This work 36479 
HNT3   HNT13   HNT23   

Isafiade2008 97211 Isafiade2008 1150460 Petterson2008 43331 

Ponce-Ortega2010 97079 Ponce-Ortega2010 1121175 Escobar2013 44081.4 

    Huang2013 1115868     

This work 184798.7 This work 2152571.5 This work 43949.7 
HNT4   HNT14   HNT24   

Bjoerk2002 411746 Bjoerk2002 96001 Wei2004 43048 

    Huang2012 95643     

    Huang2013 94742     

    Huang2014 94742     

This work 434750.4 This work 126718.8 This work 44267.9 
HNT5   HNT15   HNT25   

Escobar2013 470732.1 Petterson2008 80962 Khorasany2009 5662366 

    Zamora1998 83400 Huang2012 5737274 

        Huang2014 5733679 

        Yerramsetty2008 5666756 
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Method Annual cost($/year) Method Annual cost($/year) Method Annual cost($/year) 

This work 280451.4 This work 1835556.8 This work 5673129.7 
HNT6   HNT16   HNT26   

Isafiade2008 311300 Bjoerk2002 139083 Bjork2005 1530063.55 

    Huang2012 128169 Escobar2013 1524678.3 

    Huang2013 123398     

This work 570378.3 This work 288465.5 This work 1852969.9 
HNT7   HNT17   HNT27   

Khorasany2009 11895 Isafiade2008 595100 Brandt2011 6110902 

    Fieg2009 571698     

    Wei2004 571585     

    Toffolo2009 570900     
This work 14324.7 This work 593102.7 This work 71211663.5 
HNT8   HNT18   HNT28   

Pettersson2008 84066 Khorasany2009 572476 Li2014 1805971 

Zamora1998 87328 Huang2012 571657 Escobar2013 1591070.1 

Yerramsetty2008 85972 Huang2013 570362 Huang2014 1937377 

Toffolo2009 82363 Huang2014 612362     
Pariyani2006 85307         
This work 108245 This work 590016.4 This work 2620949.3 
HNT9   HNT19       

Ponce-Ortega2010 385346 Isafiade2008 168700     
This work 376176.5 This work 174307.7     
HNT10   HNT20       

Ravagnani2005 117069.34 Chen2007 109765     

Chen2007 109765 Wei2004 99524     

    Huang2013 105403     
This work 154578 This work 109263.6     

 

5 Conclusions 
 A hybrid methodology for design and optimization of 
heat exchanger networks is presented. The HENs problem is 
solved by a two-level procedure, first GA is used to construct 
a HEN structure and then SA is employed to find optimum 
exchanger heat.  Throughout the evolutionary process by the 
GA the structures of the individuals alter continuously. This 
is due to the genetic operations of structure crossover and 
mutation, respectively. In the lower level, the heat distribution 
of each candidate structure is optimized for minimum TAC 
by simulated annealing algorithm. The synthesis performance 
of this two-level method has been demonstrated using a 
benchmark. The assessed results indicate that the proposed 
algorithm is competitive with other forms of optimization 
algorithms. Combinations of heuristic based optimization 
methods for the efficient synthesis of HEN seem therefore 
very promising. 
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