
The Role of Planning in Object-Oriented
Programming for Beginners

Christina Schweikert 1
1 Division of Computer Science, Mathematics and Science, St. John's University, Queens, NY USA

Abstract - Programming languages, environments, and tools
have evolved over time and various programming paradigms,
including procedural, functional, object oriented, and
scripting languages, have been developed. Despite the
advancements, programming remains a difficult task for some
novices. Learning an object-oriented language, such as C++
or Java, as a first language presents additional challenges for
students and instructors. Incorporating the concept of
planning into the learning of object-oriented programming
may facilitate beginners’ understanding of implementing the
solution to a problem, as well as the design and
implementation of objects. Focus is also placed on properly
integrating objects into a problem solution.

Keywords: object-oriented programming, knowledge
representation, planning, computer science education

1 Introduction
Learning object-oriented programming continues to be a

challenging task for many students in introductory
programming courses. Object-oriented languages, such as
C++ or Java, have additional layers of abstraction, due to the
use of objects, that may be more easily grasped by some
students than others. There has been ongoing discussions
within the computer science community about how objects
should be presented. [3,4,5] Many textbooks that attempted
the "early objects" approach have released "late objects"
versions due to demand. In order to understand how to
implement classes, one must first understand data types,
methods, parameters, return values, among other concepts. A
professor could take a mixed approach in which programming
is taught starting from the basics, but demonstrates built-in
classes early on - for example, from the Java library. It is
becoming more critical that, in addition to learning the
programming language, students develop strong problem-
solving skills. There have been several visual and interactive
environments for exposing students to programming,
including Scratch [7], Alice [2], and BlueJ [1], to name a few.

2 Plan Knowledge Representation
Utilizing the concept of plans in programming is rooted

in the idea that “experts” in a field develop specialized
knowledge through their experiences, which could include a
set of actions needed to accomplish a goal. For example, a
master in the game of chess has built up years of “experiential
knowledge” that is drawn upon when a chess master faces a

new, but similar, situation to one encountered in the past. It is
then that the expert draws upon their experience, or set of
plans, to make the moves necessary to achieve the goal – in
this example, winning the game. We can represent this
experiential knowledge as a plan. The concepts of scripts and
plans for knowledge representation originated in the area of
natural language processing (NLP). A script is a structure that
contains a predetermined sequence of events that applies
within a particular context. Plans account for general
knowledge that can be used in new situations. Plans contain a
set of choices needed to accomplish a goal. For example,
when discovering a plan while reading a book, one can make
guesses about the intentions of an action in an unfolding story
and use these guesses to make sense of the story. [10]
Experienced programmers can remember programs better than
beginners if the programs have some meaningful structure, or
plan. [11] Experts can recognize plans they have become
familiar with through experience, such as a program that
searches for a value in a list. Concepts from the research area
of planning in the field artificial intelligence can be applied
when dealing with applications on a larger scope and scale [6,
8]; however, here the focus is strictly on novice programming.

3 Class Design using Plans
When learning to program, beginners often have

difficulty in properly designing and implementing classes, and
using objects. This includes errors in determining the
appropriate attributes and methods for a class, as well as
failure to properly utilize objects in a problem solution. To get
learners accustomed to class design, we can utilize a “plan” to
design a class, along with component plans for creating
attributes and methods, as well as inheritance relationships.
Plans can also be used to integrate resulting objects into a
program. The idea is to help beginners design classes and
incorporate objects as part of a larger solution to a problem.
Plans, and their components, are then implemented in the
chosen object-oriented programming language. As an
example, a simple Inventory Plan will necessitate an Item
Object. Based on the specification of the Inventory Plan, the
proper attributes and methods will be created and integrated
into the Item Object. Here, the Item Object would require
itemID, itemName, and price attributes, as well as a
displayItem() method.

4 Learning with Plans and Objects
A prototype system, Web Plan Object Language

(WPOL), which uses the concept of programming plans

Int'l Conf. Artificial Intelligence | ICAI'15 | 239

within an object-oriented paradigm has been designed. [9]
Representing programming knowledge, even simple tasks
such as computing an average, as plans can help develop
students understand how the solution to a problem is
translated into code. Most problems are complex and involve
multiple plans that need to be integrated together. Plan
integration refers to the relationship between plans, such as
plans that are sequential (appended), branched, embedded, or
interleaved. The system consists of 3 phases of learning: Plan
Observation, Integration, and Creation. The phases are
described in the following sections.

4.1 Plan Observation

In this phase, solutions to sample programs are visually
demonstrated, step by step, using plans to design necessary
objects and to design other program tasks. Plans are
integrated to form the final problem solution, and then the
plans are transitioned into code. The Observation Phase
begins with the problem description and identification of the
major components. The Student Average Plan is used as an
introductory example.

Student Average Plan Description: Compute the average of a
student's assignment, midterm, and final scores. A student's
id, assignment, midterm, and final scores will be input. The
student's id, along with the computed average, will be
displayed.

A portion of the Observation Phase of a sample Student
Average Plan is illustrated in Fig. 1; this screen shows the
implementation of the computeAverage() method of the
Student class. The Student Object Plan contains embedded
plans for attributes (Data Member Plan), and methods
(Member Function Plan). In this case, the language of choice
is C++. If using Java, the corresponding terminology would
be used. Fig. 2 shows the integration of the Student Object
Plan into the Student Average Main Plan and a sample
running of the program. “Object Utilities” is included here
and consists of a Set Plan and Get Plan, which create set and
get methods for the attributes. Constructors (and destructor if
needed) would also belong here. (Note: Only a portion of the
entire solution process is shown due to space constraints.)

The second example provided is a Sort Students Plan; this
program builds on the previous Student Average Plan and
extends it by incorporating concepts of inheritance, arrays,
loops, decision-making, and sorting. The Student class
inherits a newly created Person class, an array of Students is
created, Students are sorted by their computed average using
Bubble Sort, and the sorted array of objects is displayed.
Snapshots from this example are included in Fig. 3, 4, and 5.

Fig. 1 – Code View for computeAverage Plan

240 Int'l Conf. Artificial Intelligence | ICAI'15 |

Fig. 2 - Integration View for Student Average Main Plan

Fig. 3 - Sort Students Plan Description

Int'l Conf. Artificial Intelligence | ICAI'15 | 241

Fig. 4 - Implementation of Inheritance (IS-A) Relationship

Fig. 5 - Compare Adjacent Plan Demonstration

242 Int'l Conf. Artificial Intelligence | ICAI'15 |

4.2 Plan Integration

In the Integration Phase, a student's ability to properly
integrate plans to form a solution is tested. The purpose of this
phase is to reinforce concepts of plan integration and object
design. The student is provided with a description of a
program to be completed. Then, the student is presented with
plans and asked to select which plan(s) should be integrated.
The correct integration mode (Appended, Branched,
Embedded, or Interleaved) must also be selected. This
reinforces the students’ understanding since they are taking an
active role in creating the solution, and incorrect solutions are

explained. A sample incorrect plan integration is shown in
Fig. 6.

4.3 Plan Creation

In the Creation Phase, students can customize plans and
design new objects (classes). Plans are customized by setting
plan properties. This phase facilitates students in creating a
program template. For example, an Object can be created by
setting the properties of an Object Plan, as well as the
properties of its sub-plans. This includes setting class
attributes and methods. A screenshot from the creation of an
Object Plan for a Book class is demonstrated in Fig 7.

Fig. 6 – Selection of Incorrect Plan

Int'l Conf. Artificial Intelligence | ICAI'15 | 243

Fig. 7 – Function Plan Properties

5 Conclusions and implications
As computer science educators, we are constantly

seeking ways to enhance students' experience of learning
programming, and to enable better assimilation of
programming concepts, such as object oriented programming.
This project seeks to capture the way expert programmers
represent programming knowledge and visualize this
knowledge representation for novices to enhance their
learning of programming in the object-oriented paradigm.
Objects can be introduced early with a visual environment and
plan representation that reinforces object design and object
oriented concepts. A contribution of this research project is
using the concept of plans to teach object-oriented
programming and problem solving. This approach enhances
novice programmers’ ability to design, implement, and
integrate objects into their programs. Another contribution of
this work is a proposed learning environment that utilizes the
planning approach with three phases of learning: plan
observation, plan integration, and plan creation. The proposed
environment is easily adapted to any object-oriented language,
such as Java and C#.

6 References
[1] D. J. Barnes & Michael Kölling, Objects First with Java:
A Practical Introduction using BlueJ, Fifth edition, Prentice
Hall / Pearson Education, 2012.

[2] Conway, M. et al. Alice: Lessons Learning from
Building a 3D System for Novices. in Proceedings of CHI
(2000). ACM Press, 486-493.

[3] C. Hu, Rethinking of Teaching Objects-First. Education
and Information Technologies 9, 3 (September 2004), 209-
218, 2004.

[4] C. Hu, Just say 'A Class Defines a Data Type'. Commun.
ACM 51, 3 (March 2008), 19-21, 2008.

[5] A. Ehlert and C. Schulte, Empirical comparison of
objects-first and objects-later. In Proceedings of the fifth
international workshop on Computing education research
workshop (ICER '09). ACM, New York, NY, USA, 15-26,
2009.

[6] S. Lucci and D. Kopec, Artificial Intelligence in the 21st
Century, 2nd ed. Dulles, Virginia: Mercury Learning &
Information, 2015.

[7] J. Maloney, M. Resnick, N. Rusk, B. Silverman, & E.
Eastmond. The Scratch Programming Language and
Environment. Trans. Comput. Educ. 10, 4, Article 16
(November 2010), 15 pages.

244 Int'l Conf. Artificial Intelligence | ICAI'15 |

[8] S. J. Russell and P. Norvig, Artificial Intelligence: A
Modern Approach, 3rd ed. Upper Saddle River, New Jersey:
Prentice Hall, 2009.

[9] C. Schweikert, Study of novice programming: Plans,
object design, and the Web Plan Object Language
(WPOL). Ph.D. dissertation, The Graduate Center, City
University of New York, 2008.

[10] R. Schank and R. Abelson, Scripts, Plans, Goals and
Understanding: An Inquiry into Human Knowledge
Structures. Hillsdale, NJ: Erlbaum, 1977.

[11] E. Soloway, K. Ehrlich, J. Bonar, Tapping into Tacit
Programming Knowledge. Proceedings of the Conference on
Human Factors in Computing Systems, NBS, Gaithersburg,
Md, 1982.

Int'l Conf. Artificial Intelligence | ICAI'15 | 245

