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Abstract— Efficient and effective speech understanding sys-
tems are highly interesting for development of robots work-
ing together with humans. In this paper we focus on interpre-
tation of commands given to a robot by a human. The robot
is assumed to be equipped with a number of pre-defined
action primitives, and an uttered command is mapped to
one of these actions and to suitable values for its associated
parameters. The approach taken is to use data from shallow
semantic parsing to infer both the action and the parameters.
We use labeled training data comprising sentences paired
with expected robot action. Our approach builds on the
hypothesis that the expected action can be inferred from
semantic frames and semantic roles, information that we
retrieve from the Semafor system. The generated frame
names and semantic roles are used to learn mappings to
expected robot actions and their associated parameters. The
results show an accuracy of 88% for inference of action
alone, and 68% for combined inference of an action and
its associated parameters. Given the large linguistic variety
of the input sentences, and the limited size of data used
in for learning, these results are surprisingly positive and
promising.
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1. Introduction
Speech is one of the most efficient means of communi-

cation for humans, and has also been extensively addressed

in human-robot interaction research [1], [2]. While robust

speech recognition is a major unsolved problem in natural

language processing (NLP), challenges also remain in other

areas of NLP, such as syntactic and semantic analysis. Even

if these problems would be solved, a general method to

generate correct robot responses to speech requires a level

of intelligence that is out of reach for current research

in both cognitive science and artificial intelligence. The

challenges in finding a general solution has of course not

prevented researchers from proposing solutions to specific

domains and sentence structures. Most implementations of

NLP in robotics is concerned with imperative commands

and this is also the target for the work presented in this

paper. We propose a method to create mappings from

sentences to expected robot actions. Humans, not least young

children, are able to the perform such learning in a non

supervised manner, i.e. without being explicitly told what

to do when a certain sentence is uttered. For an excellent

analysis of this process see [3]. While still awaiting human

level intelligence in robots, we make the task somewhat

simpler by providing the expected robot action for each

sentence. Thus, we provide labeled training data comprising

sentences paired with the expected robot action. A robot

action comprises the name of the pre-defined action, and

values for one or several parameters specifying the action.

Our approach build on a hypothesis that the expected action

can be inferred from shallow semantic data. In the learning

phase, the labeled sentences are semantically parsed using

the commonly available Semafor system [4]. The generated

frame names and semantic roles are used to create mappings

to expected robot actions including associated parameters.

The evaluation shows very good results for cross-validated

data.

This paper is organized as follows: Section 2 gives a

brief overview of earlier related work. The theory behind

semantic roles is briefly described in Section 3, followed by a

description of our approach for generation of mappings from

sentences to frames and semantic roles. The mechanism for

inference of actions and parameters is described in Section 4.

Results are presented in Section 5, followed by a discussion

of results and limitations in Section 6, and plans for future

work in Section 7.

2. Related earlier work
Substantial research has been focused on speech-based

systems for giving commands to robots. In [5], a system for

programming a robot for complex tasks through verbal com-

mands is presented. The system filters out unknown words,

maps predefined keywords to actions and parameters, and

generates graphs representing the required task. The authors

in [6] propose a speech-based robot system for controlling a

robotic forklift. The proposed system requires commands to

be given according to a given syntax. In [7], teaching soccer

skills via spoken language is addressed. The vocabulary is

predefined and focus is rather on constructing advanced

control expressions than on language understanding. The

authors in [8] use labeled sentences to learn a combinatory

categorical grammar (CCG) for the specific task of inter-

pretation of route instructions. In [9], specific techniques

for incremental language processing coupled to inference

of expected robot actions are described. The approach is
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to construct a grammar that facilitates incremental analysis

such that robots can act pro-actively already during a verbal

command is given.

The present work is similar to the once mentioned above

in the aim to interpret natural language sentences by map-

ping sentences to expected robot actions. However, it differs

by the method of using semantic frames and roles from an

existing parser as inputs in the mapping.

Other attempts to human-robot interaction through natural

language build on more traditional grammatical analysis

combined with reasoning mechanisms to generate suitable

robot actions. Low recognition rates and ungrammatical,

incomplete or fragmentary utterances have been addressed

in several ways. The authors in [10] constrain the task and

use incremental language analysis based on CCG, regular

expression-based filter and a trigram statistical model to

process fragmentary or otherwise ungrammatical utterances.

3. Shallow semantic parsing
Shallow semantic parsing, also called semantic-role-

labeling, is the task of finding semantic roles for a given

sentence. Semantic roles describe general relations between

predicates and its arguments in a sentence. For example,

in a sentence like “Mary gave the ball to Peter”, “gave” is

the predicate, “Mary” represents the semantic role donor,

“the ball” represents the semantic role theme, and “Peter”

represents the semantic role recipient.
FrameNet [11] is a system with large amounts of such

analyzes for English sentences. Whereas other attempts, like

PropBank [12], assign roles to individual verbs, FrameNet

assign roles to frames. A semantic frame includes a list

of associated words and phrases that can potentially evoke

the frame. Each frame also defines several semantic roles

corresponding to aspects of the scenario represented by the

frame. The Semafor system (Semantic Analyzer of Frame

Representations) is built on FrameNet and provides both

an on-line service (http://demo.ark.cs.cmu.edu/parse) and

downloadable code for off-line use of the system. Semafor

is reported [13] to have achieved the best published results

up to 2012 on the SemEval 2007 frame-semantic structure
extraction task [14]. In the present work we use the Semafor

on-line system for extraction of frames and semantic roles

from all sentences used in the experiments.

4. Description of method
We propose a method by which the expected actions for

a verbally uttered commands to a robot can be learned, such

that the robot automatically can determine what to do when

hearing a new sentence. The robot learns how to infer action

and parameters from a set of labeled example sentences.

Each sentence is parsed by a shallow semantic parser that

produces frames and associated semantic roles. If multiple

frames occur, the frame related to the predicate is selected,

and denoted as the primary frame. Conditional probabilities

for how these entities relate to expected actions and asso-

ciated parameters are estimated and used to construct the

necessary inference mechanisms.

The example sentences used in this paper were manually

generated. Each sentence was labeled with one of nA robot

actions a1, ..., anA
and ma associated parameters p1, ..., pma

(see Table 1). A total of 94 sentences representing plausible

commands that a human might utter to a robot were gener-

ated. Some examples are given in Table 4.

Table 1: Pre-programmed robot actions ai with associated

parameters p1, p2.

i ai p1 p2 Expected function

1 BRING object recipient Fetches object
2 TELL message recipient Relays a message
3 COLLECT object source Gathers objects
4 MOVE location Moves self to location
5 PUT object location Places an object

For the purpose of this paper, the actions did not have to

be physically implemented but would in a complete system

be pre-programmed in the robot.

The proposed method comprises a learning part and

an inference part, as described in the following two sub-

sections.

4.1 Learning
In the learning phase, each sentence in a training data

set comprising N sentences was presented to the Semafor

system, which output frames and associated semantic roles.

If several frames were generated, the primary frame is

selected. For our entire data set, nF = 21 distinct primary

frames f1, ..., fnF
, were generated, and are listed in Table 2

together with some of their most common semantic roles.

The proposed method builds on the hypothesis that the

expected action for a command can be inferred from the

primary frame of the command. To initially test this hypothe-

sis, statistics for combinations of primary frames and labeled

actions for all sentences were generated, and is presented in

Table 3. The number of occurrences for each frame/action

combination is shown, followed by the relative frequency

after the / symbol. Most rows contain only one non-zero

entry, thus supporting the hypothesis that the expected action

can be inferred from the frame. However, some frames occur

for more than one action, and many actions occur for several

frames.

In order to infer expected action from the primary frame

of a sentence, the conditional probability

P (Action = ai|Frame = fj), (1)

i.e. for the expected action to be ai, given a primary frame

fj , are estimated. With simplified notation and by using the
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Table 2: Frame names generated by the Semafor system for

the sentences used in the experiments.

i Frame fi Common semantic roles

1 BRINGING Theme Goal Source Path
2 GETTING Event Experiencer Focal participant
3 GIVING Donor Recipient Theme
4 NEEDING Cognizer Dependant Requirement
5 DESIRING Event Experiencer
6 TELLING Addressee Message Speaker
7 STATEMENT Message Speaker Medium
8 POLITICAL LOCALES Locale
9 BEING NAMED Entity Name
10 TEXT Text Author
11 COME TOGETHER Individuals
12 AMASSING Mass Theme Recipient
13 GATHERING UP Agent Individuals
14 PLACING Agent Goal Theme
15 MOTION Path Goal Theme
16 GRANT PERMISSION Grantee Grantor Action
17 DEPARTING Source Theme
18 STIMULUS FOCUS Stimulus
19 HAVE AS REQ. Dependant Required entity Requirement
20 LOCALE BY USE Locale Use
21 COMPLIANCE Act Norm Protagonist

definition of conditional probability, (1) can be written as

P (ai|fj) = P (ai, fj)/P (fj), (2)

which can be estimated from data by

P̂ (ai, fj) = #(ai, fj)/N (3)

and

P̂ (fj) = #(fj)/N, (4)

where #(ai, fj) denotes the total number of sentences in the

training data that were labeled with action ai and for which

Semafor determines fj as primary frame1. Hence, P (ai|fj)
can be estimated by

P̂ (ai|fj) = #(ai, fj)/#(fj). (5)

The nF different frames that appear in our scenario have

in total nR distinct associated semantic roles with the follow-

ing names: Goal, Theme, Source, Recipient, Requirement,
Cognizer, Event, Experiencer, Addressee, Message, Name,
Text, Donor, Individuals, Mass theme, Path, Grantee, Action,
Direction, and Dependent. These semantic roles are in the

following denoted r1, ..., rnR
.

Normally, each frame only has a few semantic roles

defined. When parsing an input sentence s, Semafor assigns

substrings of s as values to these semantic roles.

According to the suggested approach, parameters for each

robot action are related to specific semantic roles. Since

the manual identification of parameters in the labeling of

sentences not necessarily works by the same principles as

1In general, the function # denotes the number of observations for with
the conjunction of all arguments are true. We simplify the notation as when
we denote probabilities, and write for instance ai instead of Action= ai.

the identification of semantic roles in Semafor, a parameter

pi is regarded as matching (denoted by the symbol ∼) a

semantic role rj if pi is a nonempty substring of the value

of rj :

pi ∼ rj ≡ pi is a nonempty substring of the value of rj .
(6)

Example: Assume that the sentence “Give me the glass”

is labeled with action a1 (i.e. BRING) and parameter p1 =
“glass”. Semafor generates a primary frame f3 (i.e. GIV-

ING), and semantic role r2 (i.e. Theme) is assigned the value

“the glass” for the sentence. Hence, p1 ∼ r2.

In the next section we will construct a classifier to infer

expected action aE for a sentence with a primary frame name

fE . To infer parameters for aE , we need to estimate the prob-

ability that a parameter pi for aE matches a semantic role

rj , given that the primary frame is fE (separate estimates

for each pi, i = 1, ...,ma). With the introduced notation, and

by using the definition of conditional probability, this can be

written as:

P (pi ∼ rj |fE) = P (pi ∼ rj , fE)/P (fE). (7)

The probabilities on the right-hand-side of (7) can be esti-

mated as follows.

P̂ (pi ∼ rj , fE) = #(fE , pi ∼ rj)/N (8)

and

P̂ (f) = #(fE)/N (9)

where #(fE , pi ∼ rj) denotes the total number of sentences

in the training data for which Semafor determines a primary

frame fE and a semantic role rj , and the sentence was

labeled with parameter pi, satisfying pi ∼ rj . The entity

#(fE) is the total number of sentences in the training

data for which Semafor determines a primary frame fE .

Combining (7−9), yields the following estimation:

P̂ (pi ∼ rj |fE) = #(fE , pi ∼ rj)/#(fE). (10)

As described in the next section, the estimated conditional

probabilities are used to infer expected action and associated

parameters for a given sentence.

4.2 Inference of expected action and parame-
ters

A Bayes classifier is used to infer the expected action aE
for a sentence with a primary frame name fE and semantic

roles ri, i = 1, ..., nR. It works by inferring the action with

highest conditional probability, as given by (1−5):

aE = arg max
1≤i≤nA

P̂ (Action = ai|Frame = fE)

= arg max
1≤i≤nA

#(ai, fE)/#(fE)

= arg max
1≤i≤nA

#(ai, fE).

(11)
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Frame \ Labeled Action BRING TELL COLLECT MOVE PUT

1 Bringing 7/100% 0/0% 0/0% 0/0% 0/0%

2 Getting 4/100% 0/0% 0/0% 0/0% 0/0%

3 Giving 3/60% 2/40% 0/0% 0/0% 0/0%

4 Needing 2/100% 0/0% 0/0% 0/0% 0/0%

5 Desiring 4/100% 0/0% 0/0% 0/0% 0/0%

6 Telling 0/0% 8/100% 0/0% 0/0% 0/0%

7 Statement 0/0% 8/100% 0/0% 0/0% 0/0%

8 Political locales 0/0% 0/0% 0/0% 0/0% 0/0%

9 Being named 0/0% 0/0% 0/0% 0/0% 0/0%

10 Text 0/0% 1/100% 0/0% 0/0% 0/0%

11 Come together 0/0% 0/0% 4/100% 0/0% 0/0%

12 Amassing 0/0% 0/0% 4/100% 0/0% 0/0%

13 Gathering up 0/0% 0/0% 6/100% 0/0% 0/0%

14 Placing 0/0% 0/0% 2/11% 0/0% 17/89%

15 Motion 0/0% 0/0% 0/0% 14/82% 3/18%

16 Grant permission 0/0% 0/0% 0/0% 0/0% 0/0%

17 Departing 0/0% 0/0% 0/0% 1/100% 0/0%

18 Stimulus focus 0/0% 0/0% 0/0% 0/0% 0/0%

19 Have as requirement 0/0% 0/0% 0/0% 0/0% 2/100%

20 Locale by use 0/0% 0/0% 0/0% 0/0% 1/100%

21 Compliance 0/0% 0/0% 0/0% 0/0% 1/100%

Table 3: Occurrences/frequencies for combinations of primary frames and labeled actions, for the input data used in the

experiments. Most rows contains only one non-zero entry, thus supporting the hypothesis that the expected action can be

inferred from the frame.

Each one of the parameters pEi , i = 1, ...,maE
required

by action aE is assigned the value of one of the semantic

roles ri, i = 1, ..., nR for the sentence. The procedure for

inference of parameters follows the same principles as for

inference of action in (7−10), and parameter values are

assigned as follows:

pEi = ropt, (12)

where

opt = arg max
1≤j≤nR

P̂ (pi ∼ rj |fE)
= arg max

1≤j≤nR

#(fE , pi ∼ rj)/#(fE)

= arg max
1≤j≤nR

#(fE , pi ∼ rj).

(13)

The inference of expected action and parameters, as

described above, is expressed as pseudo-code in Algorithm

1. In steps 5-6, Semafor is used to compute primary frame

and semantic role values for the input sentence s. The subset

of training sentences with the same primary frame is selected

in step 7, such that the computation of the expected action

in step 8 corresponds to (11). Values for the parameters

pEi are computed in steps 11-12, corresponding to (12−13).

The algorithm was implemented and evaluated with cross-

validation, as described in the next section.

Algorithm 1 Infer expected action aE and associated pa-

rameters pEi for an input sentence s.

1: return aE and pEi , ..., p
E
maE

2: inputs:
3: s : sentence to be analyzed
4: A : set of training sentences labeled with action a

and parameters p1, ...pma

5: fE ← the primary frame of s
6: rE1 , ..., r

E
nR

← semantic roles for s
7: B ← the subset of A with fE as primary frame
8: aE ← the most common action a in B
9:

10: for i = 1 to maE
do

11: find the index opt for which pi ∼ ropt in most
sentences in B

12: pEi ← rEopt
13: end for

4.3 Evaluation
The developed system was evaluated using the full data

set of 94 sentences. Evaluation was done by leave-one-

out cross-validation, i.e. one sentence was left out of the

training data set, and a model was constructed as described in

Section 4.1. The model was evaluated by inferring expected
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Table 4: Examples of sentences used for training and evaluation. Each sentence is labeled with expected action and associated

parameter(s).

Sentence Expected action p1 p2

1 move the chairs to the kitchen PUT chairs the kitchen

2 Move 2 meters to the left MOVE 2 meters to the left

3 I want a glass of water. BRING a glass of water

4 Robot, tell Ola the name of the book. TELL the name of the book Ola

5 stash the balls in the wardrobe. PUT the balls in the wardrobe

6 package all glasses into nice parcels. PUT all glasses into nice parcels

7 Gather all the green balls. COLLECT all the green balls

8 Robot, tell Ola the color of the ball. TELL the color of the ball Ola

9 Gather dust in the room. COLLECT dust in the room

10 Go to the tire storage. MOVE the tire storage

11 Robot, tell the direction of the exit to me. TELL the direction of the exit me

12 Bring Ola’s book to me. BRING Ola’s book me

Table 5: Semantic parses of the sentences in Table 4, as given by the Semafor system. The table shows primary frame name

and some of the generated semantic roles for the frame.

Primary frame Semantic role/value Semantic role/value Semantic role/value

1 MOTION Theme/the chairs Goal/to the kitchen

2 MOTION Theme/2 meters Goal/to the left

3 DESIRING Experiencer/I Event/a glass of water

4 TELLING Speaker/Robot Addresse/Ola Message/the name of the book

5 PLACING Theme/the balls Goal/in the wardrobe

6 PLACING Theme/all glasses Goal/into nice parcels

7 COME TOGETHER Individuals/all the green balls

8 TELLING Speaker/Robot Addresses/Ola Message/the color of the ball

9 COME TOGETHER

10 MOTION Goal/to the tire storage

11 TELLING Speaker/Robot Addresses/to me Message/the direction of the exit

12 BRINGING Theme/Ola’s book Goal/to me

action and parameters for the held out sentence, as described

in Section 4.2, and the procedure was then repeated 93

times such that all sentences were left out once from the

training. Performance figures were computed as the average

performance for all 94 training/evaluation sessions.

5. Results
In order for a robot to be able act correctly on an uttered

sentence, both action and parameters have to be correctly

inferred. We present results for both these tasks in Table 6.

Each row in the confusion matrix shows how sentences with

a specific labeled action leads to inference of various actions,

shown in separate columns. Cases where no inference of

action was possible are shown in the column labeled “?”. At

the end of each row, the accuracy for combined action and

parameter inference is shown. E.g., sentences labeled with

the TELL action leads in 2 cases (11%) to an incorrectly

inferred BRING action, and in 16 cases (84%) to a correctly

inferred TELL action. For one sentence labeled with a TELL

action, no action could be inferred. The reason was that the

primary frame (the TEXT frame) for this sentence occurred

only once in the whole data set (see Table 3), and hence

not at all in the training set for that specific sentence.

Hence, no inference was possible for that sentence. The

combined inference of both action and parameters, for all

sentences labeled with a TELL action, was correct in 14

cases (74%). As a whole, the non-zero entries are gathered

on the diagonal, which means that the inferred actions equals

the labeled actions. The average accuracy for all sentences

for inference of action was 88%, and for combined inference

of action and parameters 68%.

6. Discussion
The proposed method builds on the hypothesis that ex-

pected actions can be inferred from shallow semantic in-

formation. We conclude that the hypothesis was valid for

more than 88% of the tested sentences. Expected actions

and parameters were correctly inferred for 68% of the cases.
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Table 6: Confusion matrix showing number of cases/percentages for inference of expected robot actions. Figures for inference

of both actions and associated parameters is shown in the right-most column. Each row contains results for sentences with

one specific labeled action.

Labeled \ Inferred BRING TELL COLLECT MOVE PUT ? Accuracy

BRING 20/100% 0/0% 0/0% 0/0% 0/0% 0/0% 14/70%

TELL 2/11% 16/84% 0/0% 0/0% 0/0% 1/5% 14/74%

COLLECT 0/0% 0/0% 14/88% 0/0% 2/13% 0/0% 10/62%

MOVE 0/0% 0/0% 0/0% 14/93% 0/0% 1/7% 9/60%

PUT 0/0% 0/0% 0/0% 3/13% 19/79% 2/8% 17/71%

Given the large variety of sentences, and the small data

set being used, the result is considered both surprising and

promising. Better results can be expected by adding more

data. One specific problem with limited data was discussed

in the previous section: if a frame occurs only once in the

data set, it is not possible to infer the expected action for that

sentence since it is removed as part of the cross-validation

process. Extending the data such that there are at least

two sentences for each frame name, would clearly improve

performance. By removing the four sentences for which the

situation occurs in our data, the accuracy for inference of

action improves to 92%, and for combined inference of

actions and parameters to 71%.

The proposed method relies, to a very large extent, on

the quality of the semantic labeling, which in our case was

performed by the Semafor system. While identified frames

and semantic roles do not necessarily have to be linguisti-

cally “correct”, they should be consistent in the sense that

semantically similar sentences should give the same results.

This is unfortunately not the case with the online version of

Semafor that we have been using (the downloadable version

behaves somewhat differently but not better in this respect).

Not only does it fail in the sense described above, but also by

producing vastly different results depending on capitalization

of the first letter in the sentence, and on whether the sentence

is ended by a period or not. As an example, adding a period

to sentence 1 in Table 4 results in a replacement of the

semantic role Goal with Building subparts (also see Table

5). Another example is the sentence “Bring Mary the cup.”,

with varying results depending on both punctuation and

replacement of “Mary” by “me”. Due to such experienced

problems with the Semafor system, the sentences used in

the reported experiments were manually selected to ensure

that the automatic semantic analysis was reasonable and

consistent. This is clearly a concern for practical usage and

continued research on the proposed method, but was outside

the scope of the present work.

7. Future work
Since the results of the proposed method depends heavily

on the quality of the semantic parsing, alternative approaches

in which syntax and semantics are treated simultaneously

[15] will be investigated.

As part of the inference process, the parameters for an

expected action are bound to the values of certain semantic

roles (12). These values are substrings like “the green ball”,

and “all my books” and have in this work not been further

analyzed, but rather assumed to be properly interpreted by

the pre-programmed action routines. This is definitely not a

trivial task and contains several hard problems. The parame-

ters are typically noun phrases, that have to be semantically

analyzed and grounded to objects that the robot can perceive.

This task will be a major and important part of the continued

work.
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