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Abstract – A novel learning rule, Cross-Correlated Delay 
Shift (CCDS) learning algorithm, is proposed for processing 
spatiotemporal patterns in this study. CCDS is a supervised 
learning rule that is able to learn association of arbitrary 
spike trains in a supervised fashion. Single spiking neuron 
trained according to CCDS algorithm is capable of learning 
and precisely reproducing arbitrary target sequences of 
spikes. Unlike the ReSuMe learning rule, synapse delays and 
axonal delays in CCDS are variants which are modulated 
together with weights during learning. Besides biological 
plausibility, CCDS is also computationally efficient. In the 
presented experimental analysis, the proposed learning 
algorithm is evaluated by it properties including its 
robustness in dealing with noisy environment, and its 
adaptive learning performance to different spatio-temporal 
patterns. Simulation results have shown that the proposed 
CCDS learning method achieves learning accuracy and 
learning speed improvements comparable to ReSuMe. 
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Learning, Spike pattern association 

 

1 Introduction 
 In recent years, supervised learning in a network of 
spiking neurons has gained increased attention in diverse 
machine learning applications. One reason for this interest is 
that learning from instructions or demonstrations is a 
fundamental property of our brain to acquire new knowledge 
and develop new skills. Several supervised learning 
algorithms have been successfully developed for nonlinear 
benchmark problems. Some of the existing supervised 
learning rules, such as SpikeProp [1], QProp [2], RProp [2] 
etc. are using error back propagation similar to the traditional 
Neural Network (NN). The two major limitations of these 
methods and their extensions [2]–[4] are that (1) they do not 
allow multiple spikes in the output spike train, and (2) are 
sensitive to spike loss, in that no error gradient is defined 
when the neuron does not fire for any pattern, and hence will 
never recover. The tempotron learning rule [5], another 
gradient descent based approach which is efficient for binary 
temporal classification task, has these two problems as well. 
As demonstrated in study [6], non-gradient-based methods 

like evolutionary strategies do not suffer from these tuning 
issues. An evolutionary strategy is, however, time consuming 
for large-scale networks. Other temporal learning rules, such 
as SPAN [7], PSD [8], Chronotron [9], have been developed 
to train neurons to generate multiple output spikes in response 
to a spatio-temporal stimulus. In the Chronotron, both 
analytically-derived (E-learning) and heuristically-defined (I-
learning) rules are introduced. Both the E-learning rule and 
the SPAN rule are based on error function of the difference 
between the actual output spike train and the desired spike 
train. Their application is therefore limited to tractable error 
evaluation, which is unavailable in biological neural networks 
and is computationally inefficient. The I-learning rule of 
Chronotron is based on particular case of Spike Response 
Model, which might have limitations for other spiking neuron 
models. In addition, it depends on weight initialization. Those 
synapses with zero initial value will not be updated according 
to the I-learning rule, which will lead to information loss 
from afferent neurons. 

 Well known biologically inspired spike-timing 
dependent plasticity (STDP) was observed through 
experiments on hippocampal neurons [10] which directly 
related the synaptic weight value to the time differential 
between the pre and post-synaptic firing times. ReSuMe [11] 
is one of few supervised learning algorithms that based on a 
learning window concept similar to STDP. Similar to SPAN 
and PSD, ReSuMe is derived from the Widrow-Hoff rule [12]. 
It combines STDP and anti-STDP learning window under 
remote supervision of instruction neuron to produce a desired 
output spike train in response to a spatiotemporal input spike 
pattern. With this method, it also can reconstruct the target 
input/output transformation.  

 The importance of delays in computing with spiking 
neurons defining a supervised learning rule acting on the 
delays of connections (instead of weights) between the 
reservoir and the readout neurons was well demonstrated in 
[13]. Axonal conduction delays refer to the time required for 
an action potential to travel from its initial site near the 
neuronal soma to the axon terminals, where synapse connect 
the soma with other neurons. Evidence shows that conduction 
delay in the mammalian brain can reach from a few ms up to 
over 50 ms [14]. The effect of delay on the processing ability 
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of the nervous system has been studied in great detail [15], 
[16]. There is biological evidence that the synaptic delay can 
be modulated instead of always being invariant [17]. Such 
evidence supports the introduction of a novel learning 
algorithm for spiking neurons. Two known approaches for 
delay learning in SNNs are delay selection [3], [18] and delay 
shift [19]. In the delay selection method, two neurons are 
assumed to be connected by multiple synapses with different 
fixed delays. The weights of connections when related to 
suitable delays are enhanced while the weights related to 
unsuitable ones are decreased. Delay shift method adapts the 
actual delay values of the connections between neurons 
during training. Input spike patterns close to the synaptic 
delay vector will make the neuron emit an output spike. Such 
adaptation may be achieved by changing the length or 
thickness of dendrites and axons, the extent of myelination of 
axons, or the density and type of ion channels [20]. However, 
the weights in study [19] are considered constant during the 
learning procedure.  

 In this paper, a novel supervised learning method, called 
cross-correlated delay shift (CCDS), is proposed to improve 
ReSuMe by integrating synaptic delay, axonal delay learning 
with the synaptic weights learning process. 

2 Methods 
 In this new learning method, the synapse delays and 
axonal delays associated with weights are obtained in the 
training phase. The neuron model used in this study is 
described in section 2.1, ReSuMe method is outlined in 
section 2.2, and details on the CCDS learning rule are given 
in section 2.3. 

2.1 Spiking neuron model 
 Simple phenomenon models with low computational 
cost are more popular for studying the dynamics of spiking 
neural networks as compared to the more detailed 
conductance-based neuron model. The 1-D leaky integrate-
and-fire model is considered in this study, and the dynamic of 
the i-th neuron is as defined in the following equation: 

inssyni
i

i RIIVE
dt

dV )(     (1) 

where iV is the membrane potential, iii CR is the time 
constant of membrane, E defines the resting potential, 

synI and nsI are the synaptic current and background noise 
current, respectively. Note that when membrane voltage iV  
reaches the threshold level thV , the neuron emits a spike and 

iV  is reset to restV  for a refractory period reft . The synaptic 
current is thus modeled as  

j

j
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where jw  defines the synaptic efficacy of the j-th afferent 

neuron, j
PSCI represents the postsynaptic current from afferent 

spikes. The postsynaptic current with synaptic delay can thus 
be written as: 
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where mt and jdt are the m-th spike and the synaptic delay 
from the j-th afferent neuron, respectively; )(tH is the 
Heaviside function; K refers to a normalized exponential 
kernel function as: 

))/exp()/(exp()( 0 fs ttVtK     (4) 

where 0V is the normalized factor, s and f are the slow and 

fast decay time constant, respectively, with 4/ fs . 

2.2 ReSuMe 
 Supervised learning in temporal encoded SNNs attempts 
to link the input spike train with output spike sequence. 
ReSuMe is such a learning method which adjusts the synaptic 
weights of a neuron to generate a desired spike train )(tS d  in 
response to a spatio-temporal input spike pattern 

)](,),(),([)( 21 tstststS n
in . 

 In ReSuMe, synaptic weights are modified according to 

0
)()()]()([)( dsstSsWatStStw

dt
d inod   (5) 

where )(tS d , )(tS in and )(tS o are the desired, pre-and post-
synaptic spike trains, respectively. The parameter a  is a non-
Hebbian term. In the case of excitatory synapses, the term a  
is positive and the learning window )(sW  has a shape similar 
as in STDP. In the case of inhibitory synapses, a  is negative 
and )(sW is defined similarly as for the anti-STDP rule. 
When the number of spikes in the actual output spike train 

)(tS o is more or less than the number of spikes in the desired 

spike train )(tS d , a  decrease/increase is assumed in the 
weights. This will speed up the convergence of the training 
process. In ReSuMe, no delay was considered. 

2.3 CCDS 
 Taking into consideration both the synaptic and axonal 
delays, Fig. 1 illustrates a neuron structure with multi-path 
connectivity. Each spike from the afferent neuron will result 
in a post-synaptic current (PSC). The membrane potential of 
the post-synaptic neuron is a weighted sum of all incoming 
PSCs from afferent neurons. Fig. 1 shows a multi-connected 
neuron structure with axonal delays id , ni ,...,1  and 
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synapse delays idt  ni ,...,1 . Their corresponding weight 
values are iw ni ,...,1 , respectively. 
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Fig. 1: Neuron structure with multi-path connectivity: axonal delays 

and synapse delays are from 1d to nd  and 1dt to ndt  with 
corresponding weight values 1w through nw , respectively. 

  

 The time differential between input and output spike 
times can be formulated as follows: 

)( iiprepostt dtdtt
i

, ni ,,1     (6) 

 Then, the positive half of the learning window of spike-
timing-dependent plasticity (STDP) results in long-term 
potentiation (LTP) of the synaptic weights as expressed 
below:  

)exp(
1

1
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where 1A is the maximum value of the weight potentiation, 

1  is the width of the window for LTP and 
it is the time 

differential as defined by (6). 

 Similarly, the negative part of the learning window 
where long-term depression (LTD) occurs is defined as 

)exp(
2

2
i
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where 2A is the maximum value of weight depression and 2  
defines the width of the window for LTD. 

 The weight modulation can be written as 

ioldinewi www )()(       (9) 

 Let us first consider a simple example in order to 
formulate the relative occurrence rule. Assume both data 
groups 1d  and 2d  has a total of k  spikes occurring at 
various times within a temporal window T . Consider a 
particular spike time st  occurring at n different channels 
(neurons). These are divided into M groups, ig , Mi ,...,1 , 
with m channels in each group.  st  occurs p times within 
group 1g and q times within group 2g ,Therefore, occurrence 
of st  in 1g  relative to 2g is 

qp
pgO )( 1           (10) 

 Similarly, the relative occurrence of st  in 2g  can be 
expressed as 

qp
qgO )( 2           (11) 

 Then the weight that reflects the association of st  with 

1g  is modified to 

)()()( sijoldijnewij tw
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where )(oldijw  is the pre-trained value associate with 

connection ijw . 

 A similar rule that reflects the association of st  with 2g  
is given by 

)()()( sijoldijnewij tw
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 Dividing all input spike trains into M groups, each 
group having m spike trains, the updated weight can be 
written as  

)()()( sijcoldijnewij twCww      (14) 

where the cross correlated term is given by the relation 
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 The proposed CCDS algorithm is a heuristic method 
which helps the neuron generate a desired output with the 
ability of removing undesired output instances. In CCDS, the 
delay is applied to the connection that has the nearest spike 
before the desired time, which leads to an increase in post-
synaptic potential (PSP) at the desired time. In addition, the 
reduction of the PSP for undesired output spike is achieved 
by delayed PSP. The reduction may eventually cancel 
undesired spikes.  

 The nearest previous input spike is calculated via local 
variable, )(txi , described in (16) below: 
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where amplitude oA and time decay are constants.  )(txi  in 
this case jumps to a saturated value oA  whenever a 
presynaptic spike arrives. 

 If the previous spike is far from the current time t , then 
)(txi  is low, otherwise if it is close to t , then )(txi  is high. 

The delays id  and idt  shift the effect of its spike to time t by 
using the inverse operation of (16) as expressed below: 
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 At desired spiking time without any actual output spikes, 
)(txo  is chosen from excitatory synapses that are not delayed 

previously. The chosen connection is delayed by ii dtd . 
Then the spike is shifted toward the desired time, which will 
lead into an increment in the PSP. In contract, at the 
undesired spiking time with output spikes, )(txo  is chosen 
from inhibitory synapses that are not delayed previously.  

 Considering both the cross-correlation and delay shift 
effect, the weights as governed by the CCDS learning rule are 
updated on the basis of (18).  
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where cC is the same as in (12), with the learning window 
being 
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3 Results 
3.1 Experimental setup 
 The trained neuron is connected with n afferent neurons, 
and each fires a spike train in the time interval (0, T). Input 
spike trains are desired spike train and are randomly 
generated with a homogeneous Poisson distribution with 
mean frequency inF and dF , respectively. The ratio of 
inhibitory and excitatory synapses is set to the standard ratio 
of 1/4 as cortical neuron [21]. The initial synaptic weights are 
drawn randomly from uniform distribution with mean value 
of -0.5 and a standard deviation of 0.2 for inhibitory synapse, 
and with mean value of 75.0  and a standard deviation of 0.2 
for excitatory one. For the learning parameters, we set the 
membrane time constant msi 10 ; the refractory 
period mstref 5 ; the initial voltage, the threshold voltage and 
the reset voltage are selected as mVVinit 60 , 

mVVth 55 and mVVreset 65 , group number M=20, 
number each channels m=30, respectively. The weights are 
capped in the range [-15, 15] to ensure convergence. At the 
beginning of the training phase, 20% of the weights are 
considered inhibitory while 80% of the weights are 
considered excitatory. In each epoch, synaptic delay and 
axonal delay are assumed to be adjusted only once. In 
contrast, the connection weight can be changed many times 
during the learning phase. 

 As axonal delays and synapses delays are limited in the 
biological neurons, all axonal delays and synaptic delays in 
this method evolve within the interval [0, 40]ms and [0, 2]ms, 
respectively. 

3.2 Learning process 
 The correlated-based metric(C) [22] is used to evaluate 
the similarity of the desired spike pattern with the actual 
output spike train. It takes values between zero and one. The 
metric C equals one for identical spikes and drops to zero for 
loosely correlated trains. 
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Fig. 2: Training results without noise. (a) Vm: membrane potential 
after learning; red dots: target spike train; green dots: actual output 
spike train; (b) correlated-based metric C of target and output spike 

trains. 

 Input spike trains are generated by a homogenous 
Poisson spike train with frequency HzFi 10 with n afferent 
neurons (n=600). Frequency HzFd 40  is chosen to produce 
the output spike train. Delayed version LIF is utilized for the 
training. In Fig. 2(a), the red dots are the target spikes while 
the green dots are the actual spikes. In Fig. 2(b), at around 16 
epochs, the correlation C of desired and observed output 
spike trains reach a satisfactory level C>0.95. After a small 
period oscillating, the correlation C converges towards 1. The 
evolution of firing patterns generated by the neuron in 
consecutive learning epochs can be seen in Fig. 3(c), where 
the cyan line is the desired spike and the blue dots are the 
actual output spike patterns according to the learning epochs. 
Fig. 3(a) and Fig. 3(b) present the membrane voltage of 
learned neuron before learning and after learning, 
respectively.  

 The results show that the neuron can successfully learn 
to emit the desired spike train from the initial random output 
spike train after just 69 learning epochs. The six randomly 
generated spike patterns converge perfectly after training.  
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Fig. 3: Temporal sequence learning of a typical run without noise (a) 
membrane potential before learning; (b) membrane potential after 

learning; (c) learning process. 

3.3 Adaptive learning performance 
 At the beginning, the neuron is trained to learn a target 
train as in the previous experiments. After successfully 
learning the process, the target spike train is changed to an 
arbitrarily generated train, where the precise spike time and 
firing rate may be different from the previous target train. We 
found that, we could successfully train the neuron to learn the 
new target within several epochs with the CCDS learning rule. 
As shown in Fig. 4(a), each dot denotes a spike. At the 
beginning, the neuron is trained to learn one target (denoted 
by cyan bar in the bottom part). After 100 epochs of learning 
(the dashed blue line), the target is changed to another 
randomly generated train (denoted by the cyan bar in the top 
part). Again, the neuron successfully learned the new target 
spike train within 60 epochs. Fig. 4(b) shows the correlated 
measure C of different desired spike train and output spike 
train along the learning process. 
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(b) 

Fig. 4: Adaptive learning of different target trains (a) sequence 
learning with the changed target train; (b) correlated-based metric C 

of target and output spike trains. 

3.4 Robustness to noise 
 In the previous experiments, the simple case where the 
neuron is trained to learn a single pattern without noise is 
assumed. However, in practical settings, the reliability of the 
results could be significantly affected by the presence of 
noise. ReSuMe is shown to be robust to noise during the 
learning process [11]. Here, we re-evaluate the robustness of 
the proposed CCDS learning rule.   
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Fig. 5: Temporal sequence learning of a typical run with noise 

 In this experiment, a LIF neuron with n=600 afferent 
neurons under background current noise is tested. Gaussian 

noise is added to the LIF neuron where 2.0nsI nA. 
Randomly generated Poisson spike trains are used for both 
the input and desired spike trains. As shown in Fig. 5, eight 
spike patterns still converge within 50 epochs. Even when 
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more patterns are considered in the presence of noise, the 
results still converged within 50 epochs as illustrated in Fig. 5 
and Fig. 6. 
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Fig. 6: Synaptic weights during CCDS supervised learning with 

noise Ins=0.2nA 

3.5 Comparison with ReSuMe 

 In the following experiments, each spike train has a total 
time duration of msT 400 . At the beginning of CCDS 
simulation, none of the input spike trains have delays. The 
same input spike trains with HzFin 5 and desired spike train 

HzFd 100 are selected for both CCDS and ReSuMe. The 
performance of the proposed method is compared with that of 
ReSuMe in Fig. 7. One can note that CCDS learning rule 
achieves high learning accuracy much faster than ReSuMe. 
The evolution of weights for each method is given in Fig. 8(a) 
and Fig. 8(b), respectively. The CCDS method managed to 
reach the satisfied level C>0.95 much earlier at the 8th epoch 
and settles on a stable set of weights thereafter. In contract, 
the ReSuMe training shows the weights continue to adapt 
even after the 100th epoch. 
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Fig. 7: Evolution of correlated-based metric C for ReSuMe and 

CCDS 
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Fig 8: Evolution of the weights during learning using (a) CCDS rule; 
(b) ReSuMe rule 

4 Conclusions 
 In this study, the spatio-temporal associations of key 
events or patterns were investigated using the proposed 
CCDS training algorithm. By making use of the biological 
concepts of spike-timing dependent plasticity (STDP), axonal 
delays, and synapse delays, the CCDS is able to learn the 
association between precise test patterns. The results obtained 
confirm that the proposed method is highly effective and 
computationally efficient in the spatio-temporal association of 
arbitrary spike trains in a supervised fashion. Future work 
will focus on application of proposed learning method to real-
world problems such as detecting interictal spikes in 
electroencephalography (EEG) data and extend the single 
neuron learning algorithm to network level to do the spatio-
temporal pattern classification. 

5  Acknowledgements 
 This research is supported through NSF grants CNS-
0959985, CNS-1042341, HRD-0833093, IIP 1338922 and 

Int'l Conf. Artificial Intelligence |  ICAI'15  | 583



IIP-1230661. The support of the Ware Foundation is greatly 
appreciated.  

6 References 
[1] Sander M. Bohte, Joost N. Kok, and H. La Poutre, 

“Error-backpropagation in Temporally Encoded 
Networks of Spiking Neurons,” Neurocomputing, vol. 
48, pp. 17–37, 2002. 

[2] S. McKennoch, Dingding Liu, and L. G. Bushnell, 
“Fast Modifications of the SpikeProp Algorithm,” 
IJCNN ’06. Int. Jt. Conf. Neural Networks, 2006., pp. 
3970–3977, 2006. 

[3] S. Ghosh-Dastidar and H. Adeli, “Improved Spiking 
Neural Networks for EEG Classification and Epilepsy 
and Seizure Detection,” Integr. Comput. Aided. Eng., 
vol. 14, no. 3, pp. 187–212, 2007. 

[4] S. B. Shrestha and Q. Song, “Adaptive learning rate of 
SpikeProp based on weight convergence analysis,” 
Neural Networks, vol. 63, pp. 185–198, Dec. 2015. 

[5] R. Gutig and H. Sompolinsky, “The Tempotron: a 
Neuron that Learns Spike Timing-Based Decisions,” 
Nat. Neurosicence, vol. 9, pp. 420–428, 2006. 

[6] A. Beltreche, L. P. Maguire, M. Mcginnity, and Q. Wu, 
“Evolutionary Design of Spiking Neural Networks,” 
New Math. Nat. Comput., vol. 02, no. 03, pp. 237–253, 
Nov. 2006. 

[7] A. Mohemmed, S. Schliebs, S. Matsuda, and N. 
Kasabov, “SPAN: Spike Pattern Association Neuron 
for Learning Spatio-Temporal Spike Patterns,” Int. J. 
Neural Syst., vol. 22, no. 4, p. -1, 2012. 

[8] Q. Yu, H. Tang, K. C. Tan, and H. Li, “Precise-Spike-
Driven Synaptic Plasticity: Learning Hetero-
Association of Spatiotemporal Spike Patterns,” PLoS 
One, vol. 8, no. 11, p. e78318, 2013. 

[9] R. V Florian, “The Chronotron: A Neuron That Learns 
to Fire Temporally Precise Spike Patterns,” PLoS One, 
vol. 7, no. 8, pp. 1–27, 2012. 

[10] R. P. N. Rao and T. J. Sejnowski, “Spike-Timing-
Dependent Hebbian Plasticity as Temporal Difference 
Learning,” Neural Comput., vol. 13, no. 10, pp. 2221–
2237, 2001. 

[11] F. Ponulak and A. Kasinski, “Supervised Learning in 
Spiking Neural Networks with ReSuMe: Sequence 
Learning, Classification, and Spike Shifting,” Neural 
Comput., vol. 22, pp. 467–510, 2010. 

[12] B. Widrow and M. Hoff, “Adaptive switching 
circuits.,” 1960 IRE WESCON Conv. Rec., no. 4, pp. 
96 – 104, 1960. 

[13] A. G. Ioana Sporea, “Supervised Learning in 
Multilayer Spiking Neural Networks,” Neural Evol. 
Comput., vol. 25, no. 2, pp. 473–509, 2013. 

[14] H. A. Swadlow, “Physiological properties of 
individual cerebral axons studied in vivo for as long as 
one year,” J. Neurophysiol., pp. 1346–1362, 1985. 

[15] B. Glackin, J. A. Wall, T. M. McGinnity, L. P. 
Maguire, and L. J. McDaid, “A spiking neural network 
model of the medial superior olive using spike timing 
dependent plasticity for sound localization.,” Front. 
Comput. Neurosci., vol. 4, 2010. 

[16] M. Gilson, M. Bürck, A. N. Burkitt, and J. L. van 
Hemmen, “Frequency Selectivity Emerging from 
Spike-Timing-Dependent Plasticity,” Neural Comput., 
vol. 24, no. 9, pp. 2251–2279, 2012. 

[17] J. W. Lin and D. S. Faber, “Modulation of synaptic 
delay during synaptic plasticity,” Trends Neurosci., vol. 
25, no. 9, pp. 449–455, 2002. 

[18] S. Ghosh-Dastidar and H. Adeli, “A New Supervised 
Learning Algorithm for Multiple Spiking Neural 
Networks with Application in Epilepsy and Seizure 
Detection,” Neural Networks, vol. 22, no. 10, pp. 
1419–1431, 2009. 

[19] P. Adibi, M. R. Meybodi, and R. Safabakhsh, 
“Unsupervised learning of synaptic delays based on 
learning automata in an RBF-like network of spiking 
neurons for data clustering,” Neurocomputing, vol. 64, 
no. 1–4 SPEC. ISS., pp. 335–357, 2005. 

[20] R. Wang, G. Cohen, K. M. Stiefel, T. J. Hamilton, J. 
Tapson, and A. van Schaik, “An FPGA 
Implementation of a Polychronous Spiking Neural 
Network with Delay Adaptation,” Front. Neurosci., 
vol. 7, no. February, pp. 1–14, 2013. 

[21] J. Mishra, J. M. Fellous, and T. J. Sejnowski, 
“Selective attention through phase relationship of 
excitatory and inhibitory input synchrony in a model 
cortical neuron,” Neural Networks, vol. 19, no. 9, pp. 
1329–1346, 2006. 

[22] S. Schreiber, J. M. Fellous, D. Whitmer, P. Tiesinga, 
and T. J. Sejnowski, “A new correlation-based 
measure of spike timing reliability,” Neurocomputing, 
vol. 52–54, pp. 925–931, 2003.  

 

584 Int'l Conf. Artificial Intelligence |  ICAI'15  |




